PWA on the $e^+e^- \rightarrow \pi^+\pi^-h_c$ at $\sqrt{s} = 4.42 \text{ GeV}$

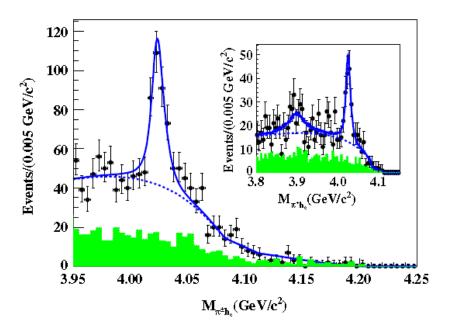
Ping RongGang^(a), Guo Yuping^(b) and Yuan Changzheng^(a)
(a) Institute of High Energy Physics, Beijing 100049, P. R. China.
(b)Johannes Gutenberg University of Mainz, Johann-Joachim-Becher-Weg 45, D-55099 Mainz, Germany.

Outline

- 1. Introduction
- 2. Event selection
- 3. Amplitude and fit method
- 4. Study Zc(4020) as 1⁺
- 5. Study Zc(4020) as other J^P states
- 6. Statistical significance to assign J^P=1⁺
- 7. Uncertainties
- 8. Cross section
- 9. Summary and discussion

1. Introduction

- Zc(4020) was observed for the first time at BESIII using cocktail data sets taken from 3.9~4.42GeV.
- Evidence of Zc(3900) was searched in the final state $\pi^+\pi^-h_c$.
- Recent observation of charmonium and bottomnium like state motivate many theoretical investigation on the nature , structure and decay mechanism.
- To interpret them, such as tetraquark scenario, hadronic molecular, meson loop and so on.
- Using more XYZ data accumulated at BESIII, the cross section for $\pi^+\pi^-h_c$ was measured.
- We perform the PWA based on 1073.56/pb taken at 4.42 GeV.



BESIII, PRL111, 242001 (2013)

2. Event selection

- Data sets: L=1073.56/pb taken at 4.42 GeV
- $h_c \to \gamma \eta_c$ and $\eta_c \to X_i$

 X_i : 16 exclusive modes , see arXiv: 1610.07044v1

 $\begin{array}{l} p\bar{p}, \ 2(\pi^{+}\pi^{-}), \ 2(K^{+}K^{-}), \ \pi^{+}\pi^{-}K^{+}K^{-}, \\ \pi^{+}\pi^{-}p\bar{p}, \ 3(\pi^{+}\pi^{-}), \ 2(\pi^{+}\pi^{-})K^{+}K^{-}, \ K^{0}_{S}K^{\pm}\pi^{\mp}\pi^{\mp}, \\ K^{0}_{S}K^{\pm}\pi^{\mp}\pi^{\mp}\pi^{-}, \ K^{+}K^{-}\pi^{0}, \ p\bar{p}\pi^{0}, \ K^{+}K^{-}\eta, \\ \pi^{+}\pi^{-}\eta, \ 2(\pi^{+}\pi^{-})\eta, \ \pi^{+}\pi^{-}\pi^{0}\pi^{0} \ \text{and} \ 2(\pi^{+}\pi^{-})\pi^{0}. \end{array}$

Candidates: 914 Background: 323

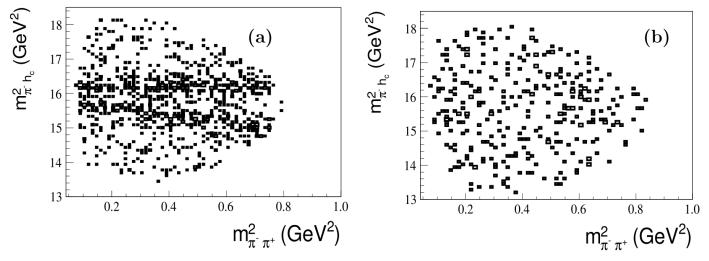
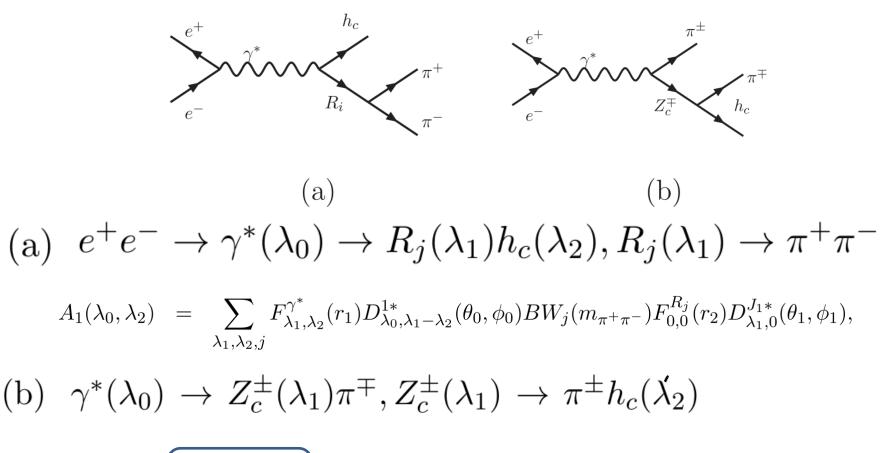


Fig. 1: Dalitz plots for the data (a) and backgrounds (b).

3. Amplitude and fit method

The quasi-two body decays for process $e^+e^- \rightarrow \gamma^* \rightarrow \pi^+\pi^- h_c$



$$A_{2}(\lambda_{0},\lambda_{2}) = \left(\sum_{\lambda_{2}'} d_{\lambda_{2}',\lambda_{2}}^{J_{1}}(\theta_{2}) \sum_{\lambda_{1},j} F_{\lambda_{1},0}^{\gamma^{*}}(r_{1}) D_{\lambda_{0},\lambda_{1}}^{1*}(\theta_{0},\phi_{0}) BW_{j}(m_{h_{c}\pi}) F_{\lambda_{2}',0}^{Z_{c}}(r_{2}) D_{\lambda_{1},\lambda_{2}'}^{J_{1}*}(\theta_{1},\phi_{1}),$$

Helicity amplitude are expanded according to the L-S coupling scheme:

$$F_{\lambda\nu}^{J} = \sum_{ls} \left(\frac{2l+1}{2J+1}\right)^{1/2} \langle l0S\delta|J\delta\rangle \langle s\lambda\sigma - \nu|S\delta\rangle g_{lS}r^{l}B_{l}(r),$$

If Zc(4020) is assigned as 1⁺, one has

$$F_{1,0}^{\gamma^*}(r) = F_{-1,0}^{\gamma^*}(r) = \frac{1}{\sqrt{3}}g_{01}B_0(r) + \frac{r^2}{\sqrt{6}}g_{21}B_2(r),$$

$$F_{0,0}^{\gamma^*}(r) = \frac{1}{\sqrt{3}}g_{01}B_0(r) - \frac{2r^2}{\sqrt{6}}g_{21}B_2(r),$$

Angular distribution for $e+e- \rightarrow Z_c (4020)\pi$ take the form

$$\frac{d|\mathcal{M}|^2}{d\cos\theta_0} \propto 1 + \alpha\cos^2\theta_0, \text{ with } \alpha = \frac{|F_{1,0}^{\gamma^*}|^2 - |F_{0,0}^{\gamma^*}|^2}{|F_{1,0}^{\gamma^*}|^2 + |F_{0,0}^{\gamma^*}|^2},$$

The total amplitude is expressed by:

$$A(\lambda_0, \lambda_2) = \sum_{i=1}^3 g_i A_i(\lambda_0, \lambda_2),$$

The differential cross-section is given by:

$$d\sigma = \left(\frac{3}{8\pi^2}\right) \sum_{\lambda_0,\lambda_2} A(\lambda_0,\lambda_2) A^*(\lambda_0,\lambda_2) d\Phi,$$

Breit-Wigner

We use a relativistic Breit-Wigner function in the analysis,

$$BW(m) = \frac{1}{m^2 - m_0^2 - im\Gamma_X(m)},$$

$$\sigma$$
 resonance: $\Gamma_X(s) = \sqrt{1 - \frac{4m_\pi^2}{s}}\Gamma$, E791 type

The $f_0(980)$ is parametrized by the Flatté-formula:

$$BW(s) = \frac{1}{M^2 - s - i(g_1 \rho_{\pi\pi}(s) + g_2 \rho_{K\bar{K}}(s))},$$

Flatté-like formula:

 $Z_c(3900)$

$$BW(s) = \frac{1}{M^2 - s - i(g'_1 \rho_{\pi J/\psi}(s) + g'_2 \rho_{D^*D}(s))},$$

٠

 \cdot Fit method

Likelihood function:

$$\mathcal{L} = \prod_{i=1}^{N} P(x_i), \quad P(x_i) = \frac{(d\sigma/d\Phi)_i}{\sigma_{MC}},$$

$$\sigma_{MC} = \frac{1}{N_{MC}} \sum_{i=1}^{N_{MC}} \left(\frac{d\sigma}{d\Phi}\right)_i$$

Use MINUIT package to minimize the object function

$$S = -\ln \mathcal{L}$$

Background is subtracted from lon-likelihood function

$$\ln \mathcal{L} = \ln \mathcal{L}_{data} - \ln \mathcal{L}_{bg}.$$

Signal yields are calculated by

$$N_i = R_i * (N_{\text{obs}} - N_{\text{bg}}), \text{ with } R_i = \frac{\sigma_i}{\sigma_{\text{tot}}},$$

Statistical uncertainties are calculated with covariant matrix

$$\delta N_i^2 = \sum_{m=1}^{N_{\text{pars}}} \sum_{n=1}^{N_{\text{pars}}} \left(\frac{\partial N_i}{\partial X_m} \frac{\partial N_i}{\partial X_n} \right)_{\mathbf{X}=\mu} V_{mn}(\mathbf{X}),$$

4. Study Zc(4020) as 1⁺

- The Zc(4020)[±] are assumed as isospin partner
- The f₀(980) is described with Flatte formula with $g_1 = 0.138 \pm 0.010 \text{ GeV}^2$ and $g_2/g_1 = 4.45 \pm 0.25$.
- The Zc(3900) is parameterized with Flatte-like formula, with

$$\begin{split} M &= 3901.5 \pm 2.7 \pm 38.2 \ {\rm MeV}, \quad g_1' = 0.075 \pm 0.006 \pm 0.025 \ {\rm GeV^2}, \\ g_2'/g_1' &= 27.1 \pm 2.0 \pm 1.8 \end{split}$$

• Determine baseline solution, Zc(4020) mass and width fixed to observed value

Resonance	$\Delta(-2\ln L)$	Δndf	significance
$h_c(\pi^+\pi^-)_{\text{S-wave}}$	41.4	4	5.6σ
$Z_c(3900)^{\pm}\pi^{\mp}$	52.2	4	6.4σ
$Z_c(4020)^{\pm}\pi^{\mp}$	269.6	4	15.9σ
$h_c f_2(1270)$	26.8	8	3.4σ

 $(\pi^+\pi^-)_{\text{S-wave}}$ is parameterized with σ and $f_0(980)$ resonance.

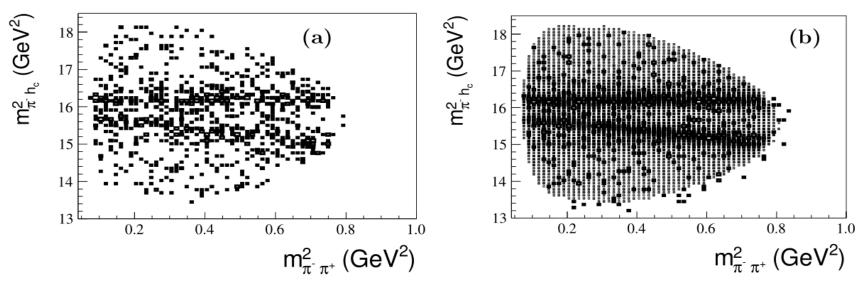


Fig. 3: (a) Dalitz plot for the data, (b) Dalitz plot for the fitted results (including background events).

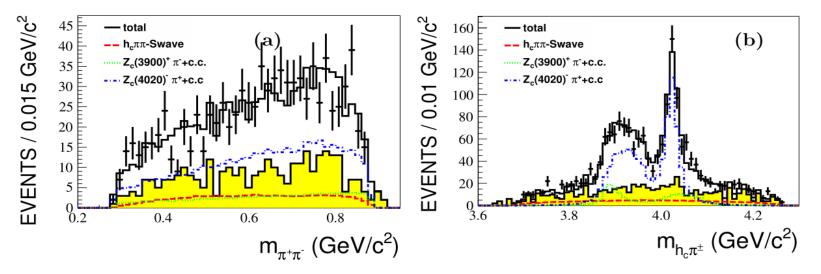


Fig. 4: Fit results with $(\pi^+\pi^-)_{\text{S-wave}}$ resonances, $Z_c(4020)^{\pm}$ and $Z_c(3900)^{\pm}$. The quantum number of Z_c is assigned as $J^P = 1^+$. (a): $m_{\pi^+\pi^-}$ distribution, (b): $m_{\pi^\pm h_c}$ distribution for data. The points with error bars are data, and black histogram is the total

The signal yields for each mode, here the errors are only statistical

\sqrt{s}	$(\pi^+\pi^-)_{\text{S-wave}}$	$Z_c(3900)^{\pm}$	$Z_c(4020)^{\pm}$
$4.42~{\rm GeV}$	100.0 ± 84.0	102.1 ± 71.1	443.9 ± 153.3

• Helicity amplitude ratio for $e^+e^- \rightarrow Zc(4020)^+\pi^- + c.c.$ $|F_{1,0}^{\gamma^*}|^2/|F_{0,0}^{\gamma^*}|^2 = 0.59 \pm 0.19,$

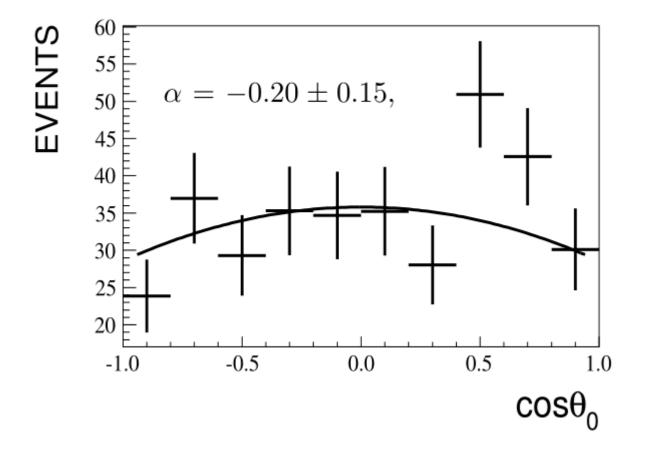
Angular distribution parameter is calculated to be

$$\alpha = \frac{|F_{1,0}^{\gamma^*}|^2 - |F_{0,0}^{\gamma^*}|^2}{|F_{1,0}^{\gamma^*}|^2 + |F_{0,0}^{\gamma^*}|^2}$$
$$= -0.22 \pm 0.15.$$

• A cross check on the angular distribution parameter.

 $Z_c(4020)$ mass region with $4.0 < m_{\pi^{\pm}h_c} < 4.05 \text{ GeV}$

Detection efficiency correction is done based on the scatter plot of $\cos \theta_0$ versus $m_{\pi^{\pm}h}$ Background events are subtracted within the Zc(4020) mass region



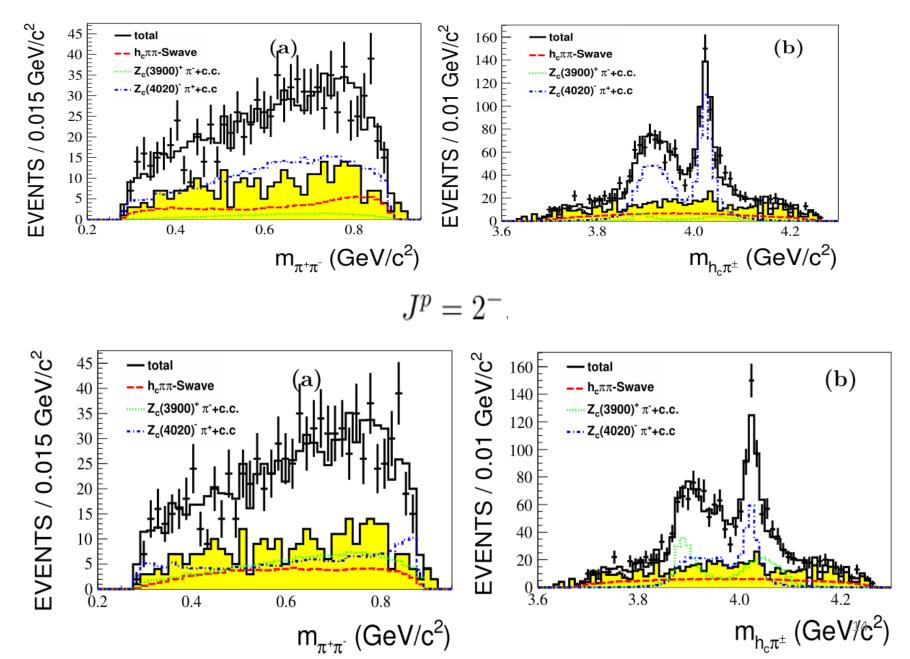
5. Study Zc(4020) as other J^P states

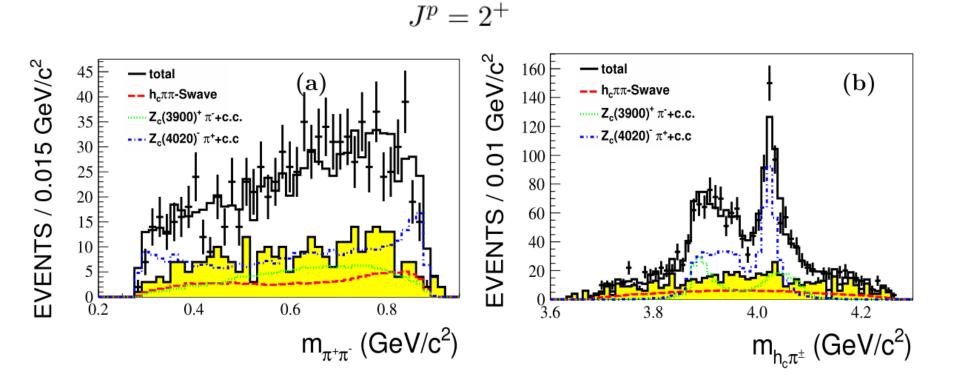
- The $J^P = 0^{\pm}$ states are not allowed to conserve the spin parity
- We only consider $J^P = 1^-$ and 2^{\pm} .
- The mass and width of Zc(4020) are all fixed to the observed values in all cases

$Z_c: J^P$	$-\ln L$
1^{-}	-290.6
1^{+}	-299.6
2^{-}	-279.7
2^{+}	-265.3

Comparison of minus log-likelihood

• The data favors for $J^P = 1^+$ assignment to Zc(4020)





6.Statistical significance for the Zc(4020) as 1^+ state

Null hypothesis H_0 : data described with $(\sigma_0, Zc(J^p))$ Alternative hypothesis H_1 : data described with $(\sigma_0, Zc(1^+), other Zc(J^P))$

$$t \equiv -2\ln\lambda = 2[\ln L_{\max}(H_1) - \ln L_{\max}(H_0)], \quad \text{See Ref.}$$

$$p(t_{\rm obs}) = \int_{t_{\rm obs}}^{\infty} \chi^2(t; r) dt.$$

. .

Ilya Narsky, Nucl. Instr. Meth., A **450**, 444 (2000); Zhu Yong-Sheng, High Energy Physics and Nuclear Physics, **30**, 331 (2006).

$$\int_{-S}^{S} \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx = 1 - p(t_{\text{obs}}) = \int_{0}^{t_{\text{obs}}} \chi^2(t; r) dt.$$

Significance to distinguish the quantum number 1^+ over other quantum numbers.

Hypothesis	$\Delta(-2\ln L)$	$\Delta(\mathit{nd}\!f)$	significance
1^+ over 1^-	31.6	4	4.7σ
1^+ over 2^-	48.2	4	6.1σ
1^+ over 2^+	55.4	4	6.7σ

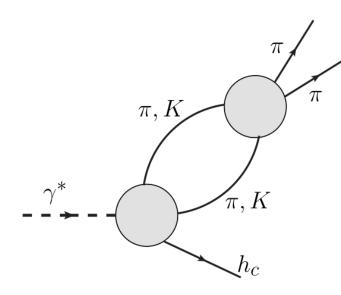
7. Uncertainties

• Uncertainty from event selection

Source	Uncertainty $(\%)$
Luminosity	1.0
η_c mass	0.7
ISR factor	0.6
$\mathcal{B}(h_c \to \gamma \eta_c)$	11.8
$\sum_i \epsilon_i \cdot \mathcal{B}(\eta_c \to B_i)$	9.1
Total	15.0

• Uncertainties from $\pi\pi$ -S wave amplitude

 $(\pi\pi)_{\text{S-Wave}}$ is described with $\pi\pi$ – rescattering amplitude



$$\begin{split} S_{\pi^{+}\pi^{-}} &= \frac{1+z(s)}{D(s)} = S_{\pi^{+}\pi^{-}}^{0} + cS_{\pi^{+}\pi^{-}}^{1} + \dots, \\ D(s) &= m_{0}^{2} - s - \left[\sum_{c} Re\Pi_{c}(s) - Re\Pi_{c}(m_{0}^{2})\right] - i\sum_{c} Im\Pi_{c}, \\ Re\Pi_{c}(s) &= \frac{1}{\pi} \int_{s_{th}}^{\inf} \frac{Im\Pi_{c}(s')ds'}{(s'-s)}, \text{ with } Im\Pi_{c}(s) = g_{c}^{2}\rho_{c}(s), \end{split}$$

 $\pi^+\pi^-$ rescattering amplitude in the process $e^+e^- \to \gamma^* \to \pi^+\pi^-h_c$.

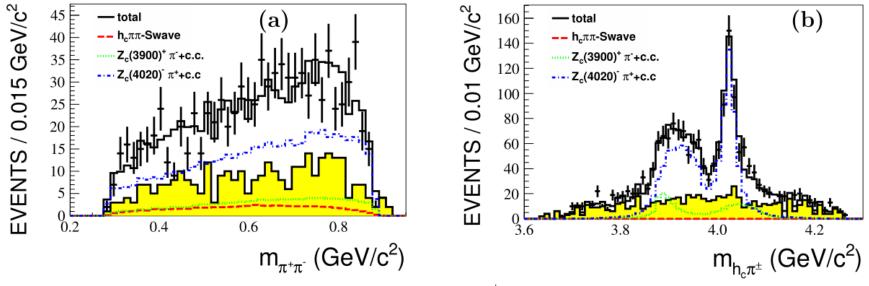


Fig. 9: Fit results with the $\pi\pi$ -S wave and $Z_c(4020)^{\pm}$ components, (a) $m_{\pi^+\pi^-}$ and (b) $m_{h_c\pi^{\pm}}$.

\cdot Uncertainties from the backgrounds

The number of background events estimated with the h_c sidebands is 323 ± 18 . The uncertainties due to its statistical fluctuation are estimated with 305 background events

• Uncertainty from the Barrier radius

For meson decays, the radius of the centrifugal barrier is often taken in the range $r \in (0.25, 0.76)$ fm, the nominal values are obtained with $r_0 = 0.6$ fm, and uncertainties are checked at both ends, and estimated with r = 0.76 fm for conservative consideration.

• Uncertainty from insignificant resonances Uncertainty is taken as the difference in the signal yields estimated with $h_c(\pi^+\pi^-)_{\text{S-wave}}, h_c f_2(1270), Z_c(3900)^{\pm}\pi^{\mp} \text{ and } Z_c(4020)^{\pm}\pi^{\mp},$

Summary of uncertainties for the signal yields of the $\pi\pi$ -S wave, $Z_c(3900)$ and $Z_c(4020)$ components (%).

Sources	$(\pi^+\pi^-)_{\text{S-wave}}$	$Z_c(3900)$	$Z_c(4020)$
Event selection	15.0	15.0	15.0
$\pi\pi$ amplitude	26.1	8.4	17.6
Backgrounds	40.8	5.4	20.2
Barrier radius	7.9	35.9	12.5
Insignificant resonance	56.8	3.0	20.8
Total	76.6	40.2	39.1

8. Cross section

$$\sigma^{B}(e^{+}e^{-} \to h_{c}(\pi^{+}\pi^{-})_{\text{S-wave}} \to \pi^{+}\pi^{-}h_{c}) = 7.7 \pm 6.5 \pm 5.9 \text{ pb},$$

$$\sigma^{B}(e^{+}e^{-} \to \pi^{+}Z_{c}(3900)^{-} + c.c. \to \pi^{+}\pi^{-}h_{c}) = 7.6 \pm 5.3 \pm 3.0 \text{ pb},$$

$$\sigma^{B}(e^{+}e^{-} \to \pi^{+}Z_{c}(4020)^{-} + c.c. \to \pi^{+}\pi^{-}h_{c}) = 31.7 \pm 10.9 \pm 12.4 \text{ pb},$$

9. Summary and discussion

We have performed a PWA on the process $e^+e^- \rightarrow \pi^+\pi^-h_c$ at $\sqrt{s} = 4.42$ GeV. To explain the peaks observed at around $m_{\pi h_c} = 4.02$ GeV, the $Z_c(4020)$ is introduced, together with $Z_c(3900)$ and $\pi^+\pi^-$ S-wave components with significance larger than 5.0 σ . The fit results show that:

- The spin parity of the $Z_c(4020)^{\pm}$ is determined to be $J^P = 1^+$ over other quantum numbers with statistical significance larger than 4.5σ .
- The angular distribution for $e^+e^- \rightarrow Z_c(4020)^+\pi^- + c.c.$ is measured to be

$$\frac{dN}{d\cos\theta_0} \propto 1 + \alpha\cos\theta_0$$
 with $\alpha = -0.22 \pm 0.15$.

• The Born cross sections are determined to be

$$\sigma^{B}(e^{+}e^{-} \to h_{c}(\pi^{+}\pi^{-})_{\text{S-wave}} \to \pi^{+}\pi^{-}h_{c}) = 7.7 \pm 6.5 \pm 5.9 \text{ pb},$$

$$\sigma^{B}(e^{+}e^{-} \to \pi^{+}Z_{c}(3900)^{-} + c.c. \to \pi^{+}\pi^{-}h_{c}) = 7.6 \pm 5.3 \pm 3.0 \text{ pb},$$

$$\sigma^{B}(e^{+}e^{-} \to \pi^{+}Z_{c}(4020)^{-} + c.c. \to \pi^{+}\pi^{-}h_{c}) = 31.7 \pm 10.9 \pm 12.4 \text{ pb},$$

Sum of these cross sections is very close to that measured $\sigma(e^+e^- \rightarrow \pi^+\pi^-h_c) = 52.1 \pm 2.7 \pm 5.9 \pm 6.1$ in [27].

Thanks for your intension!