$e^+e^- \rightarrow D^0\overline{D}^0$ Born cross sections measurements

Liu Jingyi Feb. 2017

OUTLINE

- Motivation
- Dataset and BOSS version
- Analysis method
 - Born cross sections
 - Event reconstructions
 - Background study
 - Signal extraction
 - Reconstruction efficiency
 - Iteration procedure
 - Systematic uncertainty
- Results

Short motivation

- Searching charmonium(-like) state in electron pairs to exclusive open-charm decays
- dressed cross sections of $e^+e^- \rightarrow D^0\overline{D}{}^0$ measured by Belle with ISR return method

 Using larger data samples collected by BESIII at BEPCII to improve the precision

Dataset and BOSS version

- Data samples
 - XYZ data sample (18 points)
 - R-can data sample(104 points)
 - See BAM-0157
- Analysis in BOSS 700

- ✓ Generic MC samples in BOSS 664p01
- ✓ Exclusive MC samples generated in BOSS 700
 - ✓ 50K at each point
 - $\checkmark D^0 \to K^- \pi^+$
 - $\checkmark \ \overline{D}{}^0 \rightarrow anything$
 - ✓ KKMC (with ISR)+BesEvtGen

Data sample ID	weighted average $E_{cms}(\text{GeV})$	$L(pb^{-1})$ BOSS versi	
3808	$3807.65 \pm 0.10 \pm 0.58$	50.54 ± 0.03	6.6.4.p01
3896	$3896.24 \pm 0.11 \pm 0.72$	52.61 ± 0.03	6.6.4.p01
4008	$4007.62 \pm 0.05 \pm 0.66$	481.96 ± 0.01	6.6.4
4085	$4085.45 \pm 0.14 \pm 0.66$	52.63 ± 0.03	6.6.4.p01
4189	$4188.59 \pm 0.15 \pm 0.68$	43.09 ± 0.03	6.6.4.p01
4208	$4207.73 \pm 0.14 \pm 0.61$	54.55 ± 0.03	6.6.4.p01
4217	$4217.13 \pm 0.14 \pm 0.67$	54.13 ± 0.03	6.6.4.p01
4226^{1}		44.4 ± 0.03	6.6.4.p01
4226^{2}	$4226.26 \pm 0.04 \pm 0.65$	1047.34 ± 0.14	6.6.4.p01
4242	$4241.66 \pm 0.12 \pm 0.73$	55.59 ± 0.04	6.6.4.p01
4258^{1}		523.74 ± 0.1	6.6.4.p01
4258^{2}	$4257.97 \pm 0.04 \pm 0.06$	301.93 ± 0.08	6.6.4.p01
4308	$4307.89 \pm 0.17 \pm 0.63$	44.9 ± 0.03	6.6.4.p01
4358	$4358.26 \pm 0.05 \pm 0.62$	539.84 ± 0.1	6.6.4.p01
4387	$4387.40 \pm 0.17 \pm 0.65$	55.18 ± 0.04	6.6.4.p01
4416^{1}		44.67 ± 0.03	6.6.5.p01
4416^{2}	$4415.58 \pm 0.04 \pm 0.72$	1028.89 ± 0.13	6.6.5.p01
4467	$4467.06 \pm 0.11 \pm 0.73$	109.94 ± 0.04	6.6.5.p01
4527	$4527.14 \pm 0.11 \pm 0.72$	109.98 ± 0.04	6.6.5.p01
4575	$4574.50 \pm 0.18 \pm 0.70$	47.67 ± 0.03	6.6.5.p01
4600	$4599.53 \pm 0.07 \pm 0.74$	566.93 ± 0.11	6.6.5.p01

5

- Cross section for inputting exclusive MC productions
 - Use Belle results and fit with multi-Gaussians

$$\sigma(E_{cms}) = \sum_{i=1}^{n} A_i Gaussian(mass_i, width_i)$$

Parameters	A_i	mass(MeV)	width(MeV)
$D^0 \overline{D}^0$ i = 1	5.46	3769.9	12.6
$D^0\overline{D}^0$ i = 2	0.42	3897.0	42.7
$D^0\overline{D}^0$ i = 3	0.41	4087.7	46.1
$D^0\overline{D}^0$ i = 4	0.08	4401.5	311.0

- Use interpolation approximation (200 points in 3.81-4.6 GeV)

Born cross sections

• The Observed cross section defined as

$$\sigma^{obs} = \frac{N^{obs}}{L \times \epsilon}$$

• The Born cross section defined as

$$\sigma^{obs}(s) = \int_0^{x_{max}} dx \tilde{\sigma}(s(1-x)) F(x,s), \quad \tilde{\sigma}(s) = \sigma^B(s) \frac{1}{|1 - \Pi(s)|^2}$$

- F(x,s) is the initial-state radiative factor

• To obtain Born cross sections, define ISR correction factor $(1 + \delta) = \sigma_{obs}/\sigma_B$ and then

$$\sigma^{obs}(s) = \tilde{\sigma}(s) \times (1+\delta) = \sigma^B(s) \frac{1}{|1 - \Pi(s)|^2} (1+\delta)$$

use radiator form in generator ConExc

Event reconstruction

- Single tag method
- Decay channel $D^0 \to K\pi$ to reconstruct D
- Reconstruct one **D**⁰ only in an event
 - official good tracks requirement
 - Combined PID of dE/dx and TOF, P(K) > P(pi) for pion and P(pi) > P(K) for kaon
 - Loop all selected $K\pi$ combination
 - Loose requirement mass window $|m_{K\pi} m_{D^0}| < 0.12 \text{ GeV}$
 - Kpi recoiling mass > 1.7 GeV
 - choose the one has minimal $\Delta E = E_{K\pi} E_{beam}$ as tagged D

XYZ data sample as example in analysis below

Cut flow from MC

Sample	Sample $ m_{K\pi} - m_{D^0} $	best D	$(m_{K\pi \ recoiling} - m_{D^0})$	$ m_{K\pi} - m_{D^0} $	$ m_{K\pi \ recoiling} - m_{D^0} $	
Sumple	$< 0.12~{\rm GeV}$	5000 2	$> 1.7 { m ~GeV}$	$< 0.02 { m ~GeV}$	$< 0.075 { m ~GeV}$	
3808	36903/73.81%	35601/96.47%	35543/99.84%	33348/93.82%	33262/99.74%	
3896	36157/72.31%	34601/95.70%	34465/99.61%	32244/93.56%	25831/80.11%	
4008	35343/70.69%	33689/95.32%	33485/99.39%	31127/92.96%	20907/67.17%	
4085	34926/69.85%	33118/94.82%	32900/99.34%	30216/91.84%	26446/87.52%	
4189	34959/69.92%	33074/94.61%	32884/99.43%	30148/91.68%	18610/61.73%	
4208	35068/70.14%	33137/94.49%	32941/99.41%	30315/92.03%	17663/58.26%	
4217	35197/70.39%	33300/94.61%	33079/99.34%	30415/91.95%	17614/57.91%	
4226	35204/70.41%	33257/94.47%	33055/99.39%	30269/91.57%	17327/57.24%	
4242	35063/70.13%	33145/94.53%	32896/99.25%	30166/91.70%	17377/57.60%	
4258	35138/70.28%	33146/94.33%	32971/99.47%	30193/91.57%	17536/58.08%	
4308	34958/69.92%	32857/93.99%	32647/99.36%	29779/91.22%	17785/59.72%	

Sample	$ m_{K\pi} - m_{D^0} $	best D	$(m_{K\pi \ recoiling} - m_{D^0})$	$ m_{K\pi} - m_{D^0} $	$ m_{K\pi \ recoiling} - m_{D^0} $	
	< 0.12 Gev		> 1.7 Gev	< 0.02 Gev	< 0.010 Gev	
4358	35027/70.05%	32886/93.89%	32697/99.43%	29806/91.16%	18140/60.86%	
4387	35084/70.17%	32947/93.91%	32717/99.30%	29773/91.00%	18428/61.90%	
4416	35106/70.21%	32900/93.72%	32704/99.40%	29784/91.07%	18509/62.14%	
4467	35444/70.89%	33238/93.78%	33062/99.47%	29960/90.62%	18919/63.15%	
4527	34789/69.58%	32572/93.63%	32387/99.43%	29261/90.35%	18621/63.64%	
4575	35359/70.72%	33000/93.33%	32837/99.51%	29675/90.37%	18864/63.57%	
4600	35351/70.70%	32958/93.23%	32811/99.55%	29664/90.41%	19109/64.42%	

• Best D selection efficiency decrease along Ecms

Fitting with Gaussian and 2nd order polynomial

- Signal window $3\sigma_{ave} \sim 20 \text{ MeV}$
- Sidebands $6\sigma_{ave}$ to $9\sigma_{ave}$ ~40-60 MeV
- Gaussian mean for MC is ~ 1.5 MeV higher than data

Mass spectrum of part of XYZ data

Data recoiling mass spectrum

- With mass window
- Clear peak at D0 mass
- Non peaking from sideband events
- Complicated structures mainly from other open-charm decays

- Green histogram: sideband events
- Blue histogram: sideband-subtracted in range $|m_{recoiling} m_{D^0}| < 0.075$ GeV to make peak clear

Background study

- generic MC samples at 4040, 4230, 4260, 4360
 - signal $e^+e^- \rightarrow D^0\overline{D}^0$ is subtract
 - Main background from bhabha and $q\bar{q}$ events
- Fit these backgrounds in recoiling mass
 - range $|m_{recoiling} m_{D^0}| < 0.075 \text{ GeV}$
 - Fit with 2nd order polynomial $f(x) = 1 + a_{pol}x + b_{pol}x^2$
 - Parameters of background shape changes slowly along the center-mass energy

generic MC	$\mathrm{mean}(\mathrm{MeV})$	$\sigma(\text{MeV})$	λ	$c^2/d.o.f$	a_{pol}	b_{pol}
4040	1865.52	6.27		0.84	-2.08	1.00
4230	1865.48	6.36		0.63	-1.12	0.32
4260	1865.37	6.34		0.75	- 2.11	0.98
4360	1865.40	6.44		0.86	-2.04	1.01

• range $|m_{recoiling} - m_{D^0}| < 0.075 \text{ GeV}$

5

Signal extraction

- Fitting on recoiling mass
 - Events in mass window
 - MC shape convoluted with Gaussian function as signal shape
 - 2nd order polynomial as background shape
- Use XYZ data samle to determine the fit parameters

- The background is fixed by benchmark energy points
 - Fit with a straight line to parameters
 - Use fit above as fixed background shape

$$a_{pol}$$

 $f(x) = 1 + a_{pol}x + b_{pol}x^2$

- Then fix the Gaussian
 - Linear assumption
- Special fit range for point[®] 3808 [1.785,1.880] GeV to exclude ISR to ψ^{''}

 $D_{K\pi \text{ recoiling}} + m_{K\pi} - m_{D^0}(GeV)$

Reconstruction efficiency

- efficiency including from exclusive MC sample
 - Tracking, PID efficiency
 - Tagged D mass window, recoiling mass range requirements
 - Signal extraction in fitting
- Performing the same selection criteria of data
- $Br(DX) = 2Br(K\pi) Br^2(K\pi), Br(K\pi) = Br(D^0 \rightarrow K\pi)$
- ✓ the efficiency is related to the ISR effects of the MC samples, do iterations on Born cross sections

The iteration procedure

- With initial σ_B (Belle's as approximation)
 - Generate MC samples with σ_B input and get the efficiency ϵ
 - Calculating σ_{obs} from formula and get $(1 + \delta) = \sigma_{obs} / \sigma_B$ from formula (from BesEvtGen/ConExc)

$$\sigma^{obs}(s) = \int_0^{x_{max}} dx \tilde{\sigma}(s(1-x)) F(x,s), \quad \tilde{\sigma}(s) = \sigma^B(s) \frac{1}{|1 - \Pi(s)|^2}$$

– Then using data collected, get a new σ_B from

$$\sigma^{B} = \frac{N^{obs}}{L \times \epsilon_{DX} B r_{DX} \times (1 + \delta^{v}) \times (1 + \delta)}$$

- Do iterations on Born cross sections until the differences are tolerable
 - Notice that the $\sigma_B(s)$ is fit by model-independent method Local Weighted Regression for MC sample generation

LOWESS fit

- degree-1 polynomial fit on each point with subset with fraction 0.15 to full set
- points are cubic-weighted by distance fraction to farest or $\hat{w}(x) = (1 |x|^3)^3$ (for |x| < 1)

 Image: Cross sections

 Image: Crose

 Image: C

 The third iteration and relative difference to last one, error bars statistical only

Systematic uncertainty

- Luminosity 1% (official)
- Branching ratios of $D^0 \rightarrow K\pi$ 1.1% (PDG2016)
- Reconstruction efficiency
 - Tracking 2% per track
 - PID 1% per track
 - Mass window, change 20 MeV to 18 MeV, use the differences on cross sections
 - Recoiling mass range, change range $|m_{recoiling} m_{D^0}| < 0.075$ GeV to 0.070 GeV, use the differences on cross sections
- Fitting model
 - For Fixed method: let one parameter $a_{pol}/b_{pol}/mean/width$ free, use the changes of signal events
- Iteration of cross sections
 - Differences between last two iterations for each point

Systematic uncertainty

- For mass window, recoiling mass range, fit model, Use XYZ data samples only with number of signal events
 >120 and used for R-scan data sample
- Relative differences below

Results

 Lineshape with both statistical and systematic uncertainty combined

 Coupled-channel model to data of Belle

ΔR

Naïve fits

• Fit with four charmonium states and use Gaussian for 3.9 GeV

$$BW(E_{cms}, M, \Gamma) \propto \frac{1}{E_{cms}^2 - M^2 + iM\Gamma}$$

 $\sigma(E_{cms}) = |\Sigma A_i B W_i e^{i\delta_i}|^2 + A_G Gaussian(mean, width), \ i = 1, 2, 3$

 $\sigma(E_{cms}) = |\Sigma A_i B W_i e^{i\delta_i}|^2 + A_G Gaussian(mean, width), \ i = 1, 2, 3, 4$

Fix Gaussian mean to be 3.9 GeV and width 38 MeV from fit above

 $\delta_1 = -5^\circ \pm 20^\circ, \ \delta_2 = 38^\circ \pm 27^\circ, \ \delta_3 = 158^\circ \pm 30^\circ, \ \delta_4 = 0^\circ,$

 $M_4 = 4117.7 \pm 6.0 \text{ MeV}, \ \Gamma_4 = 96 \pm 10 \text{ MeV}.$

Next to do

- Measure lineshape of $e^+e^- \rightarrow D^+D^-$
- Estimate the systematic uncertainties from signal shape and background shape

Back-up

MC mass spectrum

LOWESS fitting

- Local Weighted Regression(LOWESS) fitting
 - Model independent
 - For every fit point, Use $f \times N_{total}$ (f < 1) data points instead of all points around fitted points
 - F=0.15, Cubic weighted 1st order fitting in this analysis