Measurements of σ(e⁺e[−]→J/ψX) in Range from 3.645 to 3.891 GeV

Gang RONG, Jingyi ZHAO, Yi FANG, Hailong MA, Lili JIANG

22 Mar., 2017

Charmonium Group Meeting

OUTLINE

- Introduction
- Measurements of Cross Sections
- Analysis of Observed Cross Sections
- Summary

Introduction

Measurements of cross sections for $e^+e^- \rightarrow J/\psi X$ would help better understanding

✓ the anomaly line-shape of cross sections for e⁺e⁻→hadrons observed at the BES-II Expt.

- ✓ the non-open charm decays of heavy cc-bar states or cc-bar-like states
- \checkmark the dynamics of heavy charmonium production and decays
- ✓ the non-DD decays of $\psi(3770)$ decays

It would also help in searching for new structure(s) in the open-charm energy region

Data Samples & Software

Data Samples

- 44.5 pb⁻¹ @ 3.650 GeV
- 928 pb⁻¹ @ 3.773 GeV
- About 2 pb⁻¹ fast $\psi(3686)$ scan data

New reconstructed data and a complete New Analysis

 About 70 pb⁻¹ energy scan data taken in range from 3.700 to 3.891 GeV

➢ Software

- BOSS software 6.6.4.p01
- Monte Carlo events were generated with KKMC + BesEvtGen

Event Selection

Charged track selection

- $-|R_{xy}| < 1.0 \text{ cm and } |R_z| < 10.0 \text{ cm};$
- $-|\cos\theta| < 0.93$
- $-|\cos\theta| < 0.81$ for leptons (to reject Bhabha scattering events);

Lepton selection

- 1.0 GeV
- E/p > 0.7 for electron
- -0.05 < E/p < 0.35 for muon

> Photon selection:

- $E_{EMC} > 25 (50)$ MeV for barrel (end-cap) calorimeter - $\theta_{\gamma,charge} > 10^{\circ}$ - $0 \le TDC \le 14$

Event Selection

> Number of good charged tracks and photons satisfy:

- $N_{good} = 2$ and $N_{\gamma} \ge 2$
- $3 \le N_{\text{good charge}} \le 4$
- > Other requirements
 - l^+l^- opening angle $\theta_{e+e- \text{ or } \mu+\mu-} < 179^\circ$
 - Charged tracks not identified as

leptons are subject to particle identification (based on dE/dx and TOF): CL(π) > CL(K) to select $\pi^{+/-}$

\succ Signal of J/ ψ X

Examine invariant mass of l^+l^- to get number of $J/\psi X$ events from data set

Lepton-pair Mass Spectra

Only show a few mass spectra as an example (More plots in Back Up slides)

The signal and background shapes are described by MC-Shape of the mass distribution of lepton pair and 2nd order Chebychev polynomial, respectively.

Fitting these M_{ll} spectra yields the observed number of signal events for $e^+e^- \rightarrow J/\psi X$ at these energy points.

Background Subtraction

• Major background: $e^+e^- \rightarrow (\gamma_{ISR})J/\psi \rightarrow l^+l^-$

• The mis-identification rate is determined from MC simulation:

 $\eta = (0.200 \pm 0.024)\%$

- The expected cross section is calculated using resonance parameters of J/ψ.
- The number of background events:

$$N_{\rm BCK} = L \times \sigma_{J/\psi} \eta$$

Monte Carlo Events & Efficiencies

- Monte Carlo events are generated with the BES-III Standard ISR KKMC + EvtGen MC generator.
 - $-\pi^0$ and η are set to decay into any possible final states;
 - J/ ψ is set to decay into e⁺e⁻ or $\mu^+\mu^-$;
 - The ratio of each process is determined with its branching fraction.
- ➤ In determination of the efficiency for e⁺e⁻ → J/ψX, we consider the mixture of the ψ(3686) and ψ(3770) decay into these final states.

Monte Carlo Events & Efficiencies

ψ(3686) → J/ψ X

$\psi(3686) ightarrow$	Br	Ratio	MODEL
$\mathrm{J}/\psi\pi^+\pi^-$	$(34.45\pm 0.30)\%$	0.5631	JPIPI+PHOTOS VLL
${ m J}/\psi\pi^0\pi^0$	$(18.13 \pm 0.31)\%$	0.2963	JPIPI+PHOTOS VLL
${ m J}/\psi\eta$	$(3.36 \pm 0.05)\%$	0.0549	HELAMP+PHOTOS VLL
${ m J}/\psi\pi^0$	$(0.1268 \pm 0.0032)\%$	0.0021	HELAMP+PHOTOS VLL
$\gamma\chi_{c0},\chi_{c0} ightarrow\gamma J/\psi$	$(9.99\pm 0.27)\% imes(1.27\pm 0.06)\%$	0.0021	P2GC0+S2GV+PHOTOS VLL
$\gamma \chi_{c1}, \chi_{c1} ightarrow \gamma J/\psi$	$(9.55\pm0.31)\% imes(33.9\pm1.2)\%$	0.0529	P2GC1+AV2GV+PHOTOS VLL
$\gamma\chi_{c2},\chi_{c2} ightarrow\gamma\mathrm{J}/\psi$	$(9.11\pm0.31)\% imes(19.2\pm0.7)\%$	0.0286	P2GC2+PHSP+PHOTOS VLL

 E_{cm} (GeV)

ψ(3770) → J/ψ X

					07.	
$\psi(3770) ightarrow$	Br	Ratio	MODEL		0.7	_
$\mathrm{J}/\psi\pi^+\pi^-$	$(1.93\pm 0.28) imes 10^{-3}$	0.3956	JPIPI+PHOTOS VLL]	<i>0.65</i>	-
${ m J}/\psi\pi^0\pi^0$	$(8.0 \pm 3.0) imes 10^{-4}$	0.1640	JPIPI+PHOTOS VLL			-
${ m J}/\psi\eta$	$(9.0 \pm 4.0) imes 10^{-4}$	0.1845	HELAMP+PHOTOS VLL	Ψ	0.6	A CONTRACT OF THE
$\gamma \chi_{c0}, \chi_{c0} \to \gamma J/\psi$	$(7.3\pm0.9) imes10^{-3} imes(1.27\pm0.06)\%$	0.0190	P2GC0+S2GV+PHOTOS VLL		0.55	
$\gamma \chi_{c1}, \chi_{c1} ightarrow \gamma J/\psi$	$(2.9\pm0.6) imes10^{-3} imes(33.9\pm1.2)\%$	0.2015	P2GC1+AV2GV+PHOTOS VLL			-
$\gamma \chi_{c2}, \chi_{c2} \to \gamma J/\psi$	$9.0 imes 10^{-4} imes (19.2\pm 0.7)\%$	0.0354	PHSP+PHSP+PHOTOS VLL		0.5	
				-		3.65 3.7 3.75 3.8 3.85 3.9

• Efficiency of $e^+e^- \rightarrow J/\psi X$

 $\bar{\epsilon} = \frac{1}{\sigma_{J/\psi X}^{\psi(3686)} + \sigma_{J/\psi X}^{\psi(3770)}} (\sigma_{J/\psi X}^{\psi(3686)} \times \epsilon_{\psi(3686)} + \sigma_{J/\psi X}^{\psi(3770)} \times \epsilon_{\psi(3770)})$

Observed Cross Sections

Cross Sections

$$\sigma^{\text{obs}} = \frac{N^{\text{obs}}(e^+e^- \to J/\psi X)}{L \times \varepsilon \times B(J/\psi \to l^+l^-)}$$

- *N*^{obs}: Number of signal events;
- *L*: Luminosity;
- *ɛ*: Efficiency
- *B*: Branching fraction of $J/\psi \rightarrow l^+ l^-$

Analysis of this observed cross section needs the expectedobserved cross sections for this final state, which can be obtained with BW function and ISR sampling function.

Number of events & Cross Sections

$E_{\rm cm}$ (GeV)	N ^{obs} J/ψX	N ^{obs} BCK	\mathcal{L} (nb ⁻¹)	ε ^{ψ(3686)}	ε ^{ψ(3770)} J/ψX	σ ^{ψ(3636)} J/ψX	σ ^{ψ(3770)} J/ψX	$\epsilon_{J/\psi X}$	σ (nb)
3.6451	8.9 ± 6.1	2.0 ± 0.1	568.6682 ± 2.4146	0.5646	0.5490	0.0529	0.0012	0.5643	0.1802 ± 0.1602
3.6789	9.1 ± 3.7	0.2 ± 0.0	49.1467 ± 0.7153	0.5714	0.5661	1.6603	0.0021	0.5714	2.6809 ± 1.1107
3.6799	10.7 ± 4.1	0.2 ± 0.0	46.5151 ± 0.6954	0.5718	0.5665	2.3268	0.0021	0.5718	3.3414 ± 1.3001
3.6809	15.3 ± 4.8	0.2 ± 0.0	49.5699 ± 0.7180	0.5718	0.5670	3.7884	0.0022	0.5718	4.4987 ± 1.4282
3.6818	20.6 ± 5.5	0.2 ± 0.0	52.1995 ± 0.7368	0.5720	0.5674	8.1814	0.0022	0.5720	5.7637±1.5540
3.6822	49.4 ± 8.0	0.2 ± 0.0	50.9509 ± 0.7277	0.5720	0.5675	13.1367	0.0022	0.5720	14.2313 ± 2.3215
3.6826	80.1 ± 9.8	0.2 ± 0.0	51.1923 ± 0.7287	0.5721	0.5677	22.2338	0.0023	0.5721	22.9928 ± 2.8380
3.6834	219.8 ± 16.0	0.2 ± 0.0	51.7823 ± 0.7309	0.5723	0.5680	64.1992	0.0023	0.5723	62.4359± 4.6330
3.6840	469.1 ± 22.9	0.2 ± 0.0	50.6911 ± 0.7202	0.5724	0.5683	128.2829	0.0023	0.5724	138.1535 ± 6.9246
3.6846	776.3 ± 29.8	0.2 ± 0.0	48.7171 ± 0.7040	0.5725	0.5685	222.0155	0.0024	0.5725	234.4403± 9.6178
3.6848	854.0 ± 31.4	0.1 ± 0.0	39.8739 ± 0.6365	0.5725	0.5686	257.1420	0.0024	0.5725	315.1202 ± 12.6328
3.6854	1039.2 ± 33.8	0.1 ± 0.0	38.0340 ± 0.6197	0.5728	0.5689	356.6788	0.0024	0.5728	401.9508 ± 14.6235
3.6860	1097.4 ± 34.8	0.1 ± 0.0	41.1700 ± 0.6458	0.5727	0.5691	416.1883	0.0024	0.5727	392.0602 ± 13.8720
3.6866	1055.4 ± 33.6	0.1 ± 0.0	40.1444 ± 0.6402	0.5728	0.5694	409.2658	0.0025	0.5728	386.6200 ± 13.7678
3.6873	878.6 ± 30.5	0.1 ± 0.0	40.6680 ± 0.6480	0.5729	0.5696	327.2611	0.0025	0.5729	317.6458 ± 12.1345
3.6874	828.2 ± 29.6	0.1 ± 0.0	40.0996 ± 0.6440	0.5729	0.5697	311.8015	0.0025	0.5729	303.6665 ± 11.9000
3.6890	302.3 ± 18.6	0.1 ± 0.0	40.6696 ± 0.6540	0.5732	0.5703	100.3777	0.0026	0.5732	109.1998± 8.9474
3.6920	73.0 ± 9.8	0.1 ± 0.0	41.5615 ± 0.6621	0.5737	0.5715	26.2155	0.0028	0.5737	25.7451 ± 3.4868
3.6964	49.5 ± 8.1	0.2 ± 0.0	49.6530 ± 0.7243	0.5744	0.5732	14.3660	0.0031	0.5744	14.5745 ± 2.4021
3.7002	32.5 ± 6.4	0.2 ± 0.0	50.7208 ± 0.7329	0.5750	0.5746	10.4916	0.0034	0.5750	9.3414 ± 1.8537
3.7055	22.9 ± 5.5	0.2 ± 0.0	60.4076 ± 0.8006	0.5759	0.5764	7.6777	0.0039	0.5759	5.4995 ± 1.3339
			Continued or	n next page					

Number of events & Cross Sections

Table 3 – continued from previous page									
$E_{\rm cm}$ (GeV)	$N_{J/\psi X}^{obs}$	N ^{obs} BCK	\mathcal{L} (nb ⁻¹)	s (seac)	£9(3770)	J/WX	a)/wX	EJ/WX	σ (nb)
3.7136	44.6 ± 7.8	0.3 ± 0.0	106.1170 ± 1.0643	0.5771	0.5791	5.4790	0.0049	0.5771	6.0902 ± 1.0748
3.7215	41.8 ± 7.7	0.4 ± 0.0	136.0553 ± 1.2068	0.5781	0.5814	4.2963	0.0063	0.5781	4.4327 ± 0.8257
3.7296	74.7 ± 10.1	0.7 ± 0.0	229.2306 ± 1.5703	0.5792	0.5837	3.5229	0.0086	0.5792	4.6961 ± 0.6417
3.7368	113.6 ± 13.0	1.5 ± 0.1	494.1513 ± 2.3094	0.5801	0.5855	3.0389	0.0117	0.5801	3.2954 ± 0.3824
3.7454	213.4 ± 17.7	2.8 ± 0.2	955.3906 ± 3.2190	0.5810	0.5874	2.6113	0.0181	0.5810	3.1963 ± 0.2688
3.7470	287.8 ± 20.7	4.1 ± 0.3	1409.9951 ± 3.9121	0.5812	0.5878	2.5447	0.0199	0.5813	2.9163 ± 0.2129
3.7493	391.3 ± 24.7	6.6 ± 0.5	2278.7526 ± 4.9773	0.5815	0.5883	2.4547	0.0228	0.5816	2.4456 ± 0.1571
3.7508	540.0 ± 29.0	8.6 ± 0.6	2979.2289 ± 5.6927	0.5816	0.5886	2.3994	0.0250	0.5817	2.5834 ± 0.1411
3.7530	611.3 ± 31.0	9.5 ± 0.7	3317.8297 ± 6.0108	0.5819	0.5890	2.3227	0.0288	0.5820	2.6255 ± 0.1353
3.7544	563.7 ± 30.0	9.8 ± 0.7	3426.9142 ± 6.1112	0.5820	0.5893	2.2763	0.0317	0.5821	2.3392 ± 0.1268
3.7558	691.0 ± 33.2	11.1 ± 0.8	3883.0165 ± 6.5083	0.5821	0.5895	2.2318	0.0348	0.5822	2.5336 ± 0.1238
3.7587	769.2 ± 34.7	12.7 ± 0.9	4451.5534 ± 6.9739	0.5824	0.5901	2.1448	0.0428	0.5826	2.4577 ± 0.1128
3.7617	716.4 ± 34.0	12.7 ± 0.9	4503.1526 ± 7.0189	0.5827	0.5906	2.0617	0.0530	0.5829	2.2584 ± 0.1092
3.7645	469.6 ± 27.8	9.3 ± 0.7	3292.6249 ± 6.0069	0.5830	0.5911	1.9896	0.0642	0.5833	2.0194 ± 0.1220
3.7674	327.5 ± 23.3	6.9 ± 0.5	2448.9506 ± 5.1843	0.5832	0.5915	1.9201	0.0764	0.5835	1.8904 ± 0.1374
3.7702	243.1 ± 20.3	5.6 ± 0.4	2021.5679 ± 4.7135	0.5835	0.5920	1.8574	0.0865	0.5839	1.6949 ± 0.1449
3.7731	214.4 ± 19.5	5.1 ± 0.4	1831.6311 ± 4.4906	0.5837	0.5924	1.7966	0.0920	0.5841	1.6483 ± 0.1536
3.7760	245.9 ± 20.0	5.0 ± 0.4	1829.4733 ± 4.4909	0.5840	0.5928	1.7393	0.0914	0.5844	1.8978 ± 0.1577
3.7789	277.0 ± 21.2	5.4 ± 0.4	1956.8374 ± 4.6491	0.5842	0.5932	1.6858	0.0839	0.5846	2.0004 ± 0.1562
3.7818	283.9 ± 21.6	5.9 ± 0.4	2156.7390 ± 4.8840	0.5844	0.5935	1.6354	0.0735	0.5848	1.8571 ± 0.1443
3.7847	327.6 ± 23.2	6.9 ± 0.5	2556.7382 ± 5.3213	0.5847	0.5939	1.5879	0.0627	0.5850	1.8060 ± 0.1307
3.7873	364.8 ± 24.7	7.7 ± 0.5	2840.9075 ± 5.6136	0.5849	0.5942	1.5475	0.0540	0.5852	1.8097 ± 0.1252
3.7915	430.6 ± 26.9	9.5 ± 0.7	3542.7657 ± 6.2762	0.5852	0.5946	1.4864	0.0426	0.5855	1.7104 ± 0.1093
3.7952	484.5 ± 28.5	10.8 ± 0.8	4060.9293 ± 6.7263	0.5854	0.5950	1.4363	0.0351	0.5856	1.6780 ± 0.1010
3.7989	408.0 ± 27.5	10.4 ± 0.7	3941.2619 ± 6.6322	0.5856	0.5953	1.3895	0.0293	0.5858	1.4508 ± 0.1004
3.8030	266.0 ± 22.5	7.1 ± 0.5	2701.8225 ± 5.4977	0.5859	0.5957	1.3409	0.0245	0.5861	1.3775 ± 0.1197
3.8068	168.5 ± 18.2	4.6 ± 0.3	1765.8710 ± 4.4484	0.5861	0.5960	1.2987	0.0211	0.5863	1.3338 ± 0.1481
3.8099	121.8 ± 14.9	3.3 ± 0.2	1258.1692 ± 3.7580	0.5863	0.5962	1.2661	0.0188	0.5864	1.3535 ± 0.1702
3.8128	87.9 ± 12.8	2.3 ± 0.2	899.8812 ± 3.1812	0.5865	0.5964	1.2371	0.0170	0.5866	1.3657 ± 0.2043
3.8160	56.5 ± 11.1	1.8 ± 0.1	682.4762 ± 2.7732	0.5866	0.5966	1.2065	0.0154	0.5867	1.1519 ± 0.2336
3.8240	31.4 ± 7.8	1.0 ± 0.1	400.9534 ± 2.1299	0.5870	0.5970	1.1360	0.0123	0.5871	1.0877 ± 0.2792
3.8319	45.2 ± 8.2	0.7 ± 0.1	285.5685 ± 1.8016	0.5874	0.5972	1.0738	0.0101	0.5875	2.2340 ± 0.4120
3.8400	22.1 ± 6.5	0.7 ± 0.0	281.1397 ± 1.7910	0.5877	0.5974	1.0165	0.0086	0.5878	1.0914 ± 0.3315
3.8479	19.7 ± 6.1	0.7 ± 0.0	277.4507 ± 1.7823	0.5879	0.5975	0.9659	0.0074	0.5880	0.9826 ± 0.3151
3.8561	16.4 ± 5.8	0.8 ± 0.1	319.9245 ± 1.9191	0.5881	0.5976	0.9182	0.0065	0.5882	0.6999 ± 0.2597
3.8640	14.9 ± 5.5	0.7 ± 0.1	301.2150 ± 1.8657	0.5883	0.5975	0.8764	0.0057	0.5884	0.6744 ± 0.2615
3.8719	36.1 ± 8.1	1.2 ± 0.1	514.1173 ± 2.4421	0.5885	0.5974	0.8379	0.0052	0.5886	0.9717 ± 0.2256
3.8809	14.4 ± 5.0	0.4 ± 0.0	190.1108 ± 1.4884	0.5886	0.5972	0.7979	0.0046	0.5886	1.0611 ± 0.3765
3.8909	8.2 ± 4.4	0.4 ± 0.0	183.4354 ± 1.4658	0.5887	0.5970	0.7574	0.0041	0.5887	0.6073 ± 0.3433
3.6474	28.3 ± 12.5	8.1 ± 0.6	2260.9186 ± 4.8176	0.5651	0.5504	0.0591	0.0012	0.5648	0.1336 ± 0.0825
3.6534	21.1 ± 12.0	7.8 ± 0.6	2217.7081 ± 4.7789	0.5664	0.5537	0.0819	0.0013	0.5662	0.0893 ± 0.0806
3.7269	239.4 ± 18.7	2.7 ± 0.2	896.5586 ± 3.1023	0.5788	0.5829	3.7473	0.0077	0.5788	3.8425 ± 0.3039
3.7359	63.6 ± 10.3	1.0 ± 0.1	337.7342 ± 1.9090	0.5800	0.5853	3.0919	0.0112	0.5800	2.6921 ± 0.4432
3.7379	87.1 ± 11.3	1.0 ± 0.1	329.6546 ± 1.8872	0.5802	0.5857	2.9765	0.0123	0.5802	3.7934 ± 0.4982
3.6500	183.4 ± 54.8	157.5 ± 11.3	44490.0000 ± 20.0000	0.5657	0.5518	0.0675	0.0013	0.5654	0.0087 ± 0.0184
3.7730	124069.9 ± 479.6	2568.8 ± 184.2	927670.0000 ±100.0000	0.5837	0.5924	1.7986	0.0920	0.5841	1.8890 ± 0.0075
3.6861	4593716.1 ± 2311.3	533.9 ± 38.3	162800.0000 ± 10.0000	0.5727	0.5692	419.9274	0.0024	0.5727	415.0318 ± 0.2104

Source	Systematic uncertainty (%)
$\theta_{\ell^+\ell^-} < 179^\circ \text{ cut}$	0.0
$ \cos \theta_{\ell} < 0.81 \text{ cut}$	0.4
$E_{\rm EMC}/p {\rm cut}$	0.3
Momentum cut	0.2
N_{good} and N_{γ} cut	0.4
Fit to $M_{\ell^+\ell^-}$ spectrum	1.5
MC modeling	0.9
π identification	1.0
$\mathcal{B}(J/\psi \to \ell^+ \ell^-)$	0.4
Background subtraction $N_{\rm BCK}^{\rm obs}$	< 0.1
Luminosity	1.0
Total	2.4

Expected-Observed Cross Section

$$\sigma_{J/\psi\chi}^{\text{expected}}(s) = \int_{0}^{\infty} ds' G(s,s') \int_{0}^{x_{\text{max}}} dx F(x,s) \sigma^{\text{dress}}(s(1-x))$$

$$\sigma^{\text{dress}}(s) \text{ is dressed cross section}$$

$$G(s,s') = \frac{1}{\sqrt{2\pi}\sigma_{E_{\text{BEPCH}}}} \exp\left[-\frac{(\sqrt{s}-\sqrt{s'})^{2}}{2\sigma_{E_{\text{BEPCH}}}^{2}}\right]$$

$$F(x,s) \text{ is sampling function}$$

$$F(x,s) = \beta x^{\beta-1} \delta^{V+S} + \delta^{H}$$

$$\beta = \frac{2\alpha}{\pi} \left(\ln \frac{s}{m_{e}^{2}} - 1\right)$$

$$\delta^{V+S} = 1 + \frac{3}{4}\beta + \frac{\alpha}{\pi} \left(\frac{\pi^{2}}{3} - \frac{1}{2}\right) - \frac{\beta^{2}}{24} \left(\frac{1}{3}\ln \frac{s}{m_{e}^{2}} + 2\pi^{2} - \frac{37}{4}\right)$$

$$\delta^{H} = \delta_{1}^{H} + \delta_{2}^{H}$$

$$\delta_{1}^{H} = -\beta \left(1 - \frac{x}{2}\right)$$

$$\delta_{2}^{H} = \frac{1}{8}\beta^{2} \left[4(2-x)\ln \frac{1}{x} - \frac{1+3(1-x)^{2}}{x}\ln(1-x) - 6 - x\right]$$

Amplitude Analysis

$$\sigma_{J/\psi X}^{\text{Dress}}(s) = |A_{\psi(3686)} + e^{i\phi A_1} + e^{i\phi A_2} + \dots |^2$$

A $_{\psi(3686)}$ is BW amplitude for $\psi(3686) \rightarrow J/\psi$ X decays A₁, A₂, ... are other BW amplitudes for structures $S \rightarrow J/\psi$ X decays

 $\phi 1, \phi 2, \dots$ are relative phase of the amplitudes

χ^2 fit to the observed cross sections

$$\chi^{2} = \sum_{i=1}^{n} \left[\frac{\sigma_{J/\psi X}^{obs}(S)_{i} - \sigma_{J/\psi X}^{expected}(S)_{i}}{\Delta_{\sigma_{J/\psi X}^{obs}}(S)_{i}} \right]^{2}$$

 $\sigma_{
m J/\psi X}^{
m expected}(s)$ is the expected cross sections

> Hypotheses #1

Assuming that there is ψ (3686) only

Our measurements :

 $B[\psi(3686) \rightarrow J/\psi X] = (66.69 \pm 0.239 \pm 1.60 \pm 1.12)\%$

· · · · · · · · · · · · · · · · ·	-
Parameter	Solution
χ^2	128.326
$n_{\rm pnts} - n_{\rm PRMT}$	68 - 3 = 65
Energy Spread [MeV]	$1.4382 \pm 0.006 \pm 0.003$
$ \begin{array}{cccc} M_{\psi(3686)} & [MeV/c^2] \\ \Gamma^{ee}_{\psi(3686)} & [keV/c^2] \\ \psi^{tot}_{\psi(3686)} & [keV] \\ B(\psi(3686) \to J/\psiX) & [\%] \end{array} $	$\begin{array}{c} 3686.10 \pm 0.02 \pm 0.01 \pm 0.00 \\ 2.34 \\ 296 \\ 66.69 \pm 0.239 \pm 1.60 \pm 1.12 \end{array}$

> Hypotheses #2

Assuming that there are ψ (3686) and ψ (3770) only

Our measurements :

 $B[\psi(3686) \rightarrow J/\psi X] = (64.26 \pm 0.40 \pm 1.51 \pm 1.08)\%$

 $B[\psi(3770) \rightarrow J/\psi X] = (1.21 \pm 0.83 \pm 0.03 \pm 0.00)\%$

 $\phi_1 = (-168.3 \pm 51.0 \pm 0.0 \pm 0.3)^{\circ}$

Summing over the known Bfs for exclusive modes given in PDG yields

 $B[\psi(3770) \rightarrow J/\psi X] = (1.4 \pm 0.1)\%$

> Hypotheses #3 Assuming that there are $\psi(3686)$, $S_1(3760)$ and $S_2(3780)$

The signal significance of the Di-structure(s) decay into $J/\psi X$ is more than 4σ [from analyzing the observed cross sections]

Four Solutions

Parameter	Solution1	Solution2	Solution3	Solution4
χ^2	76.497	76.497	76.641	76.600
$n_{ m pnts} - n_{ m PRMT}$	68 - 11 = 57	68 - 11 = 57	68 - 11 = 57	68 - 11 = 57
Energy Spread [MeV]	$1.352 \pm 0.017 \pm 0.000$	$1.351 \pm 0.017 \pm 0.006$	$1.351 \pm 0.020 \pm 0.006$	$1.350 \pm 0.019 \pm 0.006$
	± 0.003	± 0.003	± 0.003	± 0.003
$M_{\psi(3686)} [MeV/c^2]$	$3686.00 \pm 0.03 \pm 0.00$	$3686.00 \pm 0.03 \pm 0.00$	$3686.00 \pm 0.03 \pm 0.00$	$3686.0 \pm 0.01 \pm 0.00$
	± 0.00	± 0.00	± 0.00	± 0.00
$\Gamma_{\psi(3686)}^{ee}$ [keV/c ²]	2.34	2.34	2.34	2.34
$\psi_{\psi(3686)}^{\text{tot}}$ [keV]	296	296	296	296
$B(\psi(3686) \rightarrow J/\psi X) [\%]$	$62.88 \pm 0.84 \pm 1.51$	$63.06 \pm 0.70 \pm 1.51$	$62.76 \pm 0.89 \pm 1.51$	$63.07 \pm 0.72 \pm 1.51$
	± 0.15	± 0.15	± 0.15	± 0.15
$M_{s(3760)} [MeV/c^2]$	$3763.5 \pm 5.5 \pm 0.1$	$3763.5 \pm 5.7 \pm 0.1$	$3767.5 \pm 6.0 \pm 0.1$	$3766.1 \pm 13.6 \pm 0.1$
	± 0.4	± 0.4	± 0.4	± 0.4
$\Gamma^{ee}_{s(3760)} [\text{keV}/c^2]$	0.186	0.186	0.186	0.186
$\Gamma_{s(3760)}^{\text{tot}}$ [MeV]	$12.8 \pm 12.3 \pm 0.1$	$12.8 \pm 12.5 \pm 0.1$	$20.1\pm8.4\pm0.1$	$18.3 \pm 11.5 \pm 0.1$
-()	± 0.4	± 0.4	± 0.4	± 0.4
$B[s(3760) \rightarrow J/\psi X] [\%]$	$4.96 \pm 10.19 \pm 0.17$	$5.52 \pm 12.62 \pm 0.17$	$38.94 \pm 57.44 \pm 0.17$	$21.48 \pm 51.58 \pm 0.17$
	± 0.30	± 0.30	± 2.40	± 1.34
ϕ_1 [degree]	$233.9 \pm 61.3 \pm 1.2$	$-88.4 \pm 103.1 \pm 1.2$	$-105.3.1 \pm 139.0 \pm 1.2$	$-52.2 \pm 206.3 \pm 1.2$
	± 4.5	± 1.7	± 2.0	± 1.0
M [M-N/-2]	2720 7 1 10 0 1 0 1			
$M_{s(3780)}$ [MeV/C]	$3780.7 \pm 10.9 \pm 0.1$	$3780.7 \pm 11.1 \pm 0.1$	$3773.7 \pm 5.9 \pm 0.1$	$3775.0 \pm 17.1 \pm 0.1$
The $(1-3)/(-2)$	± 0.4	± 0.4	± 0.4	± 0.4
s(3780) [kev/c ⁻]	0.243	0.243	0.243	0.243
$\Gamma_{s(3780)}^{\text{tot}}$ [MeV]	$27.7 \pm 12.7 \pm 0.1$	$27.7 \pm 12.8 \pm 0.1$	$29.1 \pm 19.1 \pm 0.1$	$29.1 \pm 25.3 \pm 0.1$
	± 0.2	± 0.2	± 0.2	± 0.2
$B[s(3780) \rightarrow \mathrm{J}/\psi\mathrm{X}] ~[\%]$	$7.77 \pm 10.40 \pm 0.41$	$9.50 \pm 25.80 \pm 0.41$	$41.78 \pm 33.50 \pm 0.41$	$27.78 \pm 27.19 \pm 0.41$
	± 0.20	± 0.24	± 1.07	± 0.71
ϕ_2 [degree]	$128.7 \pm 108.7 \pm 0.1$	$173.0 \pm 56.8 \pm 0.1$	$99.3 \pm 94.3 \pm 0.1$	$172.0 \pm 70.3 \pm 0.1$
	± 0.4	±0.1	± 0.0	±0.0

Comparison with BES-II Result

This J/ ψ X result confirms (at ~4.5 σ) the BES-II observation of Di-Structure Rs(3770) in the range from 3.71 to 3.87 GeV.

Conclusion

- ➤ We measured the observed cross sections for e⁺e⁻ →J/ψ X in range from 3.645 to 3.87 GeV.
- To well describe the line-shape of these observed cross sections, needing one more BW amplitude additional ψ(3770).
- We observed the Di-Structures "S(3760)+S(3780)" in J/ψ X (X=anything) final states, and the parameters of the Di-structure are consistent within errors with those measured at BES-II.

BES-III $e^+e^- \rightarrow J/\psi X$ $M_1 = 3763.5 \pm 5.5 \pm 0.4 \text{ MeV}$ $\Gamma_1 = 12.8 \pm 12.3 \pm 0.4 \text{ MeV}$ $M_2 = 3780.7 \pm 10.9 \pm 4.7 \text{ MeV}$ $\Gamma_2 = 27.7 \pm 12.7 \pm 0.2 \text{ MeV}$

BES-II e⁺e[−] → hadrons

- $M_1 = 3762.6 \pm 11.8 \pm 0.5 \text{ MeV}$
- $\Gamma_1 = 49.9 \pm 32.1 \pm 0.1 \text{ MeV}$
- $M_2 = 3781.0 \pm 1.3 \pm 0.5 \text{ MeV}$
- $\Gamma_2 = 19.3 \pm 3.1 \pm 0.1 \text{ MeV}$

Thank You!

Comparison of Data and Monte Carlo

Selection of $\ell^+\ell^-$

Sources

- 1. Uncertainty in angle cut ($\theta_{\ell^+\ell^-} < 179^\circ$) for the leptons
- 2. Uncertainty in polar angle cut ($|\cos \theta_{\ell}| < 0.81$) for the charged tracks
- 3. Uncertainty in lepton PID

 $e^{\pm} E_{\rm EMC}/p > 0.7$ $\mu^{\pm} 0.05 < E_{\rm EMC}/p < 0.35$

4. Uncertainty in momentum cut (1.0)

Mehtod

• Compare the corresponding efficiencies for data and MC events, which are measured using the lepton samples selected from the $\psi(3686) \rightarrow \pi^+\pi^- J/\psi$, $J/\psi \rightarrow \ell^+\ell^-$ process

$heta_{\ell^+\ell^-} < 179^\circ$ Cut

	N _{tot}	$N_{ m cut}$	${\it R}\equiv {\it N}_{ m cut}/{\it N}_{ m tot}$			
data	1456805	1437505	0.9868 ± 0.0001			
MC	1322668	1305311	0.9869 ± 0.0001			
$R_{\rm data}/R_{\rm MC}-1$	$(-0.01 \pm 0.01)\%$					

・ロト・4日ト・4日ト・日 うへぐ

 $|\cos\theta_\ell| < 0.81$ Cut

	N _{tot}	$N_{ m cut}$	${\it R}\equiv {\it N}_{ m cut}/{\it N}_{ m tot}$				
data	1456805	1259484	0.8646 ± 0.0003				
MC	1322668	1139355	0.8614 ± 0.0003				
$R_{\rm data}/R_{ m MC}-1$	$(0.37 \pm 0.05)\%$						

	N _{tot}	$N_{\rm cut}$	$R\equiv N_{ m cut}/N_{ m tot}$			
data	803718	786977	0.9792 ± 0.0002			
MC	783994	770110	0.9823 ± 0.0001			
$R_{\rm data}/R_{\rm MC}-1$	$(-0.32 \pm 0.02)\%$					

・ロト・4日ト・4日ト・日 うへぐ

	N _{tot}	$N_{ m cut}$	$R\equiv N_{ m cut}/N_{ m tot}$			
data	653087	644969	0.9876 ± 0.0001			
MC	538674	532596	0.9887 ± 0.0001			
$R_{\rm data}/R_{\rm MC}-1$	$(-0.12 \pm 0.02)\%$					

▲□▶▲□▶▲≡▶▲≡▶ ≡ のへで

Momentum Cut

	N _{tot}	$N_{ m cut}$	$R\equiv N_{ m cut}/N_{ m tot}$			
data	1456805	1435805	0.9856 ± 0.0001			
MC	1322668	1306778	0.9880 ± 0.0001			
$R_{\rm data}/R_{\rm MC}-1$	$(-0.24 \pm 0.01)\%$					

・ロト・4日ト・4日ト・日 うへぐ

$N_{ m good}$ and N_{γ} Cut

- After subtracting QED and $\gamma_{\rm ISR} J/\psi$ backgrounds

	N _{tot}	$N_{ m cut}$	${\it R}\equiv {\it N}_{ m cut}/{\it N}_{ m tot}$
data	4644114	4454535	0.9592 ± 0.0001
MC	57820	55682	0.9630 ± 0.0008
$R_{\rm data}/R_{\rm MC}-1$	$(-0.40\pm0.08)\%$		

Fit to $M_{\ell^+\ell^-}$ Spectrum

• Nominal fit: $N_{\rm obs} = 124069.9 \pm 479.6$ at $E_{\rm cm} = 3.773$ GeV

- 1. Signal shape
 - Crystal Ball function 0.53%
- 2. Background shape
 - 4th order polynomial 0.63%
- 3. Fit region 0.88%
- 4. Bin width 0.93%
- Total systematic uncertainty from fit to mass spectrum: $\sqrt{0.53^2 + 0.63^2 + 0.88^2 + 0.93^2}\% = 1.52\%$

Efficiency

• Vary the normalization of several of the largest components ($J/\psi\pi^+\pi^-$, $J/\psi\pi^0\pi^0$) based on branching fraction uncertainties

 The maximum changes (0.86%) is taken as systematic uncertainty

Quoted Systematic Uncertainties

- π PID
 - 1.0% per pion
 - Weighted by the distribution of charged track multiplicity at $E_{\rm cm} = 3.686$ GeV

$N_{ m good}$	N _{obs}	Δ (%)
2	1989790	0.0
3	763368	1.0
4	1980909	2.0
Average	3734067	1.0

- Branching Fraction
 - $\mathcal{B}(J/\psi \to \ell^+ \ell^-) = (11.932 \pm 0.046)\%$ (PDG2016)
 - ► 0.39%
- Luminosity
 - ▶ 1.0% (Chin. Phys. C 37, 123001 (2013))

