Measurements of $\sigma\left(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{J} / \psi \mathbf{X}\right)$ in Range from 3.645 to 3.891 GeV

Gang RONG, Jingyi ZHAO,
Yi FANG, Hailong MA, Lili JIANG

22 Mar., 2017

Charmonium Group Meeting

OUTLINE

- Introduction
- Measurements of Cross Sections
- Analysis of Observed Cross Sections
- Summary

Introduction

Measurements of cross sections for $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{J} / \psi \mathbf{X}$ would help better understanding
\checkmark the anomaly line-shape of cross sections for $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow$ hadrons observed at the BES-II Expt.

\checkmark the non-open charm decays of heavy cc-bar states or cc-bar-like states
\checkmark the dynamics of heavy charmonium production and decays
\checkmark the non-DD decays of $\psi(3770)$ decays
It would also help in searching for new structure(s) in the open-charm energy region

Data Samples \& Software

$>$ Data Samples
$-44.5 \mathrm{pb}^{-1} @ 3.650 \mathrm{GeV}$
$-928 \mathrm{pb}^{-1} @ 3.773 \mathrm{GeV}$

- About 2 pb $^{-1}$ fast $\psi(\mathbf{3 6 8 6})$ scan data

New
 reconstructed data and a complete New Analysis

- About 70 pb $^{-1}$ energy scan data taken in range from 3.700 to 3.891 GeV
>Software
- BOSS software 6.6.4.p01
- Monte Carlo events were generated with KKMC + BesEvtGen

Event Selection

$>$ Charged track selection

- $\left|\mathrm{R}_{\mathrm{xy}}\right|<1.0 \mathrm{~cm}$ and $\left|\mathrm{R}_{\mathrm{z}}\right|<10.0 \mathrm{~cm}$;
- |cose| < 0.93
$-|\cos \theta|<0.81$ for leptons (to reject Bhabha scattering events);
$>$ Lepton selection
$-1.0 \mathrm{GeV}<\mathrm{p}<0.47 \mathrm{E}_{\mathrm{cm}}$
$-\mathrm{E} / \mathrm{p}>0.7$ for electron
$-0.05<\mathrm{E} / \mathrm{p}<0.35$ for muon
$>$ Photon selection:

$-\mathrm{E}_{\mathrm{EMC}}>25(50) \mathrm{MeV}$ for barrel (end-cap) calorimeter
$-\theta_{\gamma, \text { charge }}>10^{\circ}$
$-0 \leq \mathrm{TDC} \leq 14$

Event Selection

$>$ Number of good charged tracks and photons satisfy:

- $\mathrm{N}_{\text {good }}=2$ and $\mathrm{N}_{\gamma} \geq 2$
- $3 \leq \mathrm{N}_{\text {good charge }} \leq 4$
$>$ Other requirements
-1^{+1} opening angle $\theta_{\text {e+e- or } \mu+\mu-}<179^{\circ}$
- Charged tracks not identified as

leptons are subject to particle identification (based on
$\mathrm{dE} / \mathrm{dx}$ and TOF): $\mathrm{CL}(\pi)>\mathrm{CL}(\mathrm{K})$ to select $\pi^{+/-}$
$>$ Signal of J/ $\psi \mathbf{X}$
Examine invariant mass of I^{+1-} to get number of $\mathrm{J} / \Psi \mathrm{X}$ events from data set

Lepton-pair Mass Spectra

Only show a few mass spectra as an example (More plots in Back Up slides)

The signal and background shapes are described by MC-Shape of the mass distribution of lepton pair and $2^{\text {nd }}$ order Chebychev polynomial, respectively.
Fitting these $\mathbf{M}_{\| I}$ spectra yields the observed number of signal events for $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{J} / \psi \mathbf{X}$ at these energy points.

Background Subtraction

- Major background: $\mathbf{e}^{+} \mathbf{e}^{-} \rightarrow\left(\gamma_{\text {ISR }}\right) \mathrm{J} / \psi \rightarrow \mathrm{l}^{+} \mathrm{l}^{-}$

- The mis-identification rate is determined from MC simulation:

$$
\eta=(0.200 \pm 0.024) \%
$$

- The expected cross section is calculated using resonance parameters of J/ ψ.

- The number of background events:

$$
N_{\mathrm{BCK}}=L \times \sigma_{J / \psi} \eta
$$

Monte Carlo Events \& Efficiencies

$>$ Monte Carlo events are generated with the BES-III Standard ISR KKMC + EvtGen MC generator.
$-\pi^{0}$ and η are set to decay into any possible final states;
$-\mathrm{J} / \psi$ is set to decay into $\mathrm{e}^{+} \mathrm{e}^{-}$or $\mu^{+} \mu^{-}$;

- The ratio of each process is determined with its branching fraction.
$>$ In determination of the efficiency for $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{J} / \psi \mathrm{X}$, we consider the mixture of the $\psi(3686)$ and $\psi(3770)$ decay into these final states.

Monte Carlo Events \& Efficiencies

- $\psi(3686) \rightarrow \mathrm{J} / \psi \mathbf{X}$

$\psi(3686) \rightarrow$	Br	Ratio	MODEL
$\mathrm{J} / 4 \pi^{+} \pi^{-}$	$(34.45 \pm 0.30) \%$	0.5631	JPIPI+PHOTOS VLL
$\mathrm{J} / 4 \pi^{0} \pi^{0}$	(18.13 $\pm 0.31) \%$	0.2963	JPIPI + PHOTOS VLL
$\mathrm{J} / \psi \eta$	$(3.36 \pm 0.05) \%$	0.0549	HELAMP+PHOTOS VLL
$\mathrm{J} / \psi \pi^{0}$	$(0.1268 \pm 0.0032) \%$	0.0021	HELAMP+PHOTOS VLL
$\gamma \chi_{00}, \chi_{00} \rightarrow \gamma \mathrm{~J} / \psi$	$(9.99 \pm 0.27) \% \times(1.27 \pm 0.06) \%$	0.0021	P2GC0+S2GV+PHOTOS VLL
$\gamma \chi_{\text {cl }}, \chi_{\text {cl }} \rightarrow \gamma \mathrm{J} / \psi$	$(9.55 \pm 0.31) \% \times(33.9 \pm 1.2) \%$	0.0529	P2GC1+AV2GV+PHOTOS VLL
$\gamma \chi_{\text {c2 }}, \chi_{\text {c2 }} \rightarrow \gamma \mathrm{J} / \psi$	$(9.11 \pm 0.31) \% \times(19.2 \pm 0.7) \%$	0.0286	P2GC2+PHSP+PHOTOS VLL

- $\psi(3770) \rightarrow \mathbf{J} / \psi \mathbf{X}$

$\psi(3770) \rightarrow$	Br	Ratio	MODEL
$\mathrm{J} / \psi \pi^{+} \pi^{-}$	$(1.93 \pm 0.28) \times 10^{-3}$	0.3956	JPIPI+PHOTOS VLL
$\mathrm{J} / 4 \pi^{0} \pi^{0}$	$(8.0 \pm 3.0) \times 10^{-4}$	0.1640	JPIPI+PHOTOS VLL
$\mathrm{J} / \psi \eta$	$(9.0 \pm 4.0) \times 10^{-4}$	0.1845	HELAMP + PHOTOS VLL
$\gamma \chi_{00}, \chi_{00} \rightarrow \gamma \mathrm{~J} / \psi$	$(7.3 \pm 0.9) \times 10^{-3} \times(1.27 \pm 0.06) \%$	0.0190	P2GCO+S2GV+PH0TOS VLL
$\chi_{\text {cl }} \chi_{\text {c }} \chi_{\text {cl }} \rightarrow \gamma \mathrm{J} / \psi$	$(2.9 \pm 0.6) \times 10^{-3} \times(33.9 \pm 1.2) \%$	0.2015	P2GC1+AV2GV+PHOTOS VLL
$\gamma \chi_{c_{22}} \chi_{\mathrm{c}_{2} \rightarrow \gamma \mathrm{~J} / \psi}$	$9.0 \times 10^{-4} \times(19.2 \pm 0.7) \%$	0.0354	PHSP+PHSP+PHOTOS VLL

- Efficiency of $\mathbf{e}^{+} \mathbf{e}^{-} \rightarrow \mathbf{J} / \boldsymbol{\psi} \mathbf{X}$

$$
\bar{\epsilon}=\frac{1}{\sigma_{\mathrm{J} / \psi \mathrm{X}}^{\psi(3686)}+\sigma_{\mathrm{J} / \psi \mathrm{X}}^{\psi(3770)}}\left(\sigma_{\mathrm{J} / \psi \mathrm{X}}^{\psi(3686)} \times \epsilon_{\psi(3686)}+\sigma_{\mathrm{J} / \psi \mathrm{X}}^{\psi(3770)} \times \epsilon_{\psi(3770)}\right)
$$

Observed Cross Sections

Cross Sections

$$
\sigma^{\mathrm{obs}}=\frac{N^{\mathrm{obs}}\left(e^{+} e^{-} \rightarrow J / \psi X\right)}{L \times \mathcal{E} \times B\left(J / \psi \rightarrow l^{+} l^{-}\right)}
$$

- $N^{\text {obs: }}$ Number of signal events;
- L : Luminosity;
- ε : Efficiency
- B : Branching fraction of $J / \psi \rightarrow l^{+} l^{-}$

Analysis of this observed cross section needs the expectedobserved cross sections for this final state, which can be obtained with BW function and ISR sampling function.

Number of events \＆Cross Sections

$E_{\text {max }}(\mathrm{GNV})$	$N_{\text {d／}}^{\text {dim }}$	$N_{\text {mick }}^{\text {bim }}$	$C\left(\mathrm{nb}^{-1}\right)$	$5^{4 / 4 / 4 x}$	${ }^{5} \mathrm{C} / \mathrm{MX}$	$\mathrm{g}_{\mathrm{j} / \mathrm{dx}}^{\text {P／}}$		$5_{\sqrt{1 / \psi}} \mathrm{x}$	－（ab）
3．4451	8.9 ± 6.1	20 ± 0.1	限环62 ± 2.4146		0.5490	0.0 .593	0.0012	0.54 .15	0.1802 ± 0.1002
1.8989	9.1 ± 3.7	0.2 ± 0.0	$4.1467 \pm 0.71{ }^{2}$	0.15714	0.5661	1.6863	0.0021	0.5714	2.800 ± 1.1107
3.879	10.7 ± 4.1	0.2 ± 0.0		0.51518	0．5665	2 228	0.0021	0.5716	5.3414 ± 1.3001
2.8059	15.9 ± 4.8	0.2 ± 0.0	42609 ± 0.716	0.51518	0.5670	488884	0.0022	0.5718	$4.4887 \pm 1.48 \mathrm{EL}$
1．8818	20.4 ± 5.5	0.2 ± 0.0		0.15720	0.5674	8.81814	0.0022	0.5720	$5.7637 \pm 1.55 \cdot 40$
1．8822	4.4 ± 8.0	0.2 ± 0.0	60．960 ± 0.7277	0.6720	0.5875	13．19．67	0.0022	0.5720	14.2315 ± 2.2315
2．8826	80.1 ± 9.8	0.2 ± 0.0	$61.152 \pm \pm 0.7287$	0.57721	0.5877	22．238	0.0029	0．572	2． $2.29 \pm \pm 2.85$
3．8484	249.8 ± 10.0	0.2 ± 0.0	61.7628 ± 0.7809	0.16728	0.5880	64．19\％	0.0029	0.5729	62.4359 ± 4.6395
2．8840	469.1 ± 7.9	0.2 ± 0.0	60．0911 ± 0.7202	0.15724	0.5889	18.2804	0.0029	0.574	138．1535土 6.5448
2．8848	776.3 ± 2.8	0.2 ± 0.0	$48.7171 \pm 0.70 .40$	0.15725	0.5885	W\％．015	0.0024	0.5725	$23.4413 \pm 9.2 .678$
2．8848	85.0 ± 31.4	0.1 ± 0.0	$3.8799 \pm 0.88 .85$	0.16725	0.588	267.1420	0.0024	0.5725	\＄15．1202 12.6028
3.8854	1090.2 ± 37.8	0.1 ± 0.0	38.0840 ± 0.8197	0.15728	0.5689	\＄56．078	0.0024	0.5728	401．9608 14.6235
2．880	1097.4 ± 34.8	0.1 ± 0.0	41.1700 ± 0.8488	0.16727	0.6591	416．188	0.0024	0.5727	900．0002 13.8770
2．8888	1068.4 ± 37.6	0.1 ± 0.0	40.144 ± 0.8402	0.15728	0.5954	400.2688	0.0025	0.5728	988．6\％00 13.7678
${ }^{2.8873}$	878.8 ± 30.5	0.1 ± 0.0	40.6850	0.1572	0.5696	927．2611	0.0025	0.5729	317，6458 12.1385
3.8874	$82.2 \pm$ \％2．	0.1 ± 0.0	40.0975 ± 0.0440	0.1672	0.5697	311.8015	0.0025	0.5729	9016065 11.0000
1．8890	300.9 ± 18.6	0.1 ± 0.0	$40.668 \pm \pm 0.6540$	0.67312	0.5001	100.9777	0.0028	0.5779	100．1990土 6.944
3.8920	73.0 ± 2.8	0.1 ± 0.0	41.6615 ± 0.6864	0.6737	0.7515	2 Cm 2156	0.0028	0.5737	25.7451 ± 3.4688
1．8984	4.5 ± 8.1	0.2 ± 0.0	$4.68670 \pm 0.734 .3$	0.1574	0.6792	14．9660	0.0031	0.5744	14.5745 ± 2.4021
3.7002	32.5 ± 8.4	0.2 ± 0.0	阿708 $\pm 0.79 \%$	0.15760	0.5748	10．4916	0.0034	0.5750	9.9414 ± 1.865
1.7055	7.9 ± 5.5	0.2 ± 0.0	0.4076 ± 0.8060	0.15769	0.5764	T． 8.1777	0.0099	0.5759	$5.405 \pm \pm 1.9393$
Continud an nuxt page									

Number of events \& Cross Sections

$E_{\text {cme }}(\mathrm{CeV})$	$N_{\text {d/¢ }}^{\text {asm }}$	$N_{\text {max }}^{\text {OEM }}$	$\mathcal{L}\left(\mathrm{nb}^{-1}\right)$	$5^{4 / 2 / 2 x}$	$\varepsilon_{j / 20 x}^{\text {¢ (3ive }}$	$\sigma^{+1 / 2 / 2 x}$	$a^{4 / 20 x}$		σ (mb)
3.7136	44.6 ± 7.8	0.3 ± 0.0	106.1170 ± 1.0643	0.5771	0.5791	5.4790	0.0049	0.5771	8.0002土 1.0748
3.7215	41.8 ± 7.7	0.4 ± 0.0	136.0653 ± 1.2068	0.5781	D.5814	4.2963	D.0063	0.5781	4.4327 ± 0.8257
3.7296	74.7 ± 10.1	0.7 ± 0.0	229.2308 ± 1.5709	0.5792	0.5837	3.5229	D.008	0.5792	4.6081 ± 0.6417
3.7368	113.6 ± 13.0	1.5 ± 0.1	494.1513 ± 2.3094	0.5801	0.5855	3.0389	0.0117	0.5801	3.2954 ± 0.3824
3.7454	213.4 ± 17.7	2.8 ± 0.2	955.3906 ± 3.2190	0.5810	D.5874	2.6113	D.0181	0.5810	3.1983 ± 0.2688
3.7470	287.8 ± 20.7	4.1 ± 0.3	1409.9051 ± 3.9121	0.5812	0.5878	2.5447	D.0199	0.5813	2.9163 ± 0.2129
3.7493	391.9 ± 24.7	6.6 ± 0.5	2278.7528 ± 4.9773	0.5815	0.5883	2.4547	0.0228	0.5816	2.4458 ± 0.1571
3.7508	540.0 ± 29.0	8.6 ± 0.6	$2979.2289 \pm$ E.6927	0.5816	0.5886	2.3994	0.0280	0.5817	2.6834 ± 0.1411
3.7530	611.9 ± 31.0	2.5 ± 0.7	3317.8297 ± 6.0108	0.5819	0. 58890	23227	0.0288	0.5820	2.6255 ± 0.1359
3.7544	563.7 ± 30.0	2.8 ± 0.7	3426.9142 ± 6.1112	0.5820	0.5893	2.2763	0.0317	0.5821	2.3392 ± 0.1268
3.7558	691.0 ± 33.2	11.1 ± 0.8	3883.0165 ± 6.5083	0.5821	0.5895	2.2918	0.0348	0.5822	2.6336 ± 0.1298
3.7587	769.2 ± 34.7	12.7 ± 0.9	4451.5634 ± 6.9739	0.5824	0.5901	2.1448	D.0428	0.5826	2.4577 ± 0.1128
3.7617	716.4 ± 34.0	12.7 ± 0.9	4503.1528 ± 7.0189	0.6827	0.5906	2.0617	D.0530	0.5829	2.2684 ± 0.1002
3.7645	469.6 ± 27.8	2.9 ± 0.7	3292.6249 ± 6.0069	0.58380	0.5911	1.9896	D.0842	0.5833	2.0194 ± 0.1220
3.7674	927.5 ± 23.3	6.9 ± 0.5	2448.9605 ± 5.1843	0.8832	0.5915	1.9201	0.0764	0.58335	1.8504 ± 0.1374
3.7702	243.1 ± 20.3	5.6 ± 0.4	2021.5679 ± 4.7135	0.5835	0. 5920	1.8574	D.0865	0.5839	1.6049 ± 0.1449
3.7731	214.4 ± 19.5	5.1 ± 0.4	1831.6311 ± 4.4906	0.5837	D.E.5924	1.7966	0.0920	0.5841	1.6483 ± 0.1536
9.7760	245.9 ± 20.0	5.0 ± 0.4	1829.4733 ± 4.4900	0.5840	0. 5928	1.7398	0.0914	0.5844	1.8978 ± 0.1577
3.7789	277.0 ± 21.2	6.4 ± 0.4	1958.8374 ± 4.6491	0.5842	0. 5933	1.6858	0.0839	0.5846	2.0004 ± 0.1562
3.7818	283.9 ± 21.6	5.9 ± 0.4	2158.7390 ± 4.8840	0.88 .4	0.5935	1.6354	0.0735	0.5848	1.8571 ± 0.1443
3.7847	327.6 ± 23.2	6.9 ± 0.5	2658.7382 ± 5.3213	0.5847	D. 5939	1.5879	D.0827	0.5850	1.8090 ± 0.1307
3.7873	$36.4 .8 \pm 24.7$	7.7 ± 0.5	$28.40 .9075 \pm 5.6136$	0.58 .49	0. 5942	1.5475	0.0540	0.5852	1.8097 ± 0.1262
3.7915	430.6 ± 28.9	2.5 ± 0.7	$3542.76 .57 \pm 6.2762$	0.6852	0.E.546	1.4864	D.0426	0.5855	1.7104 ± 0.1009
3.7952	484.5 ± 28.5	10.8 ± 0.8	4060.9093 ± 6.7263	0.5854	0.5950	1.4363	D.0351	0.5856	1.6780 ± 0.1010
3.7989	408.0 ± 27.6	10.4 ± 0.7	3941.2619 ± 6.6372	0.5856	0. 5953	1.3896	0.0293	0.5858	1.4508 ± 0.1004
3.8030	268.0 ± 22.5	7.1 ± 0.5	2701.8225 ± 6.4977	0.5859	0.5957	1.3400	0.0245	0.5861	1.3775 ± 0.1197
3.8068	168.5 ± 18.2	4.6 ± 0.3	1785.8710 ± 4.4484	0.6881	0.5960	1.2987	0.0211	0.5863	1.3938 ± 0.1481
3.8099	121.8 ± 14.9	3.3 ± 0.2	1258.1692 ± 3.7680	0.6883	0.5962	1.2661	0.0188	0.5864	1.3535 ± 0.1700
3.8128	87.9 ± 12.8	2.3 ± 0.2	899.8812 ± 3.1812	0.6885	0.5964	1.2371	D.0170	0.5866	1.3657 ± 0.2043
3.8160	66.5 ± 11.1	1.8 ± 0.1	682.4762 ± 2.7732	0.5888	D.5966	1.2065	0.0154	0.5867	1.1519 ± 0.2338
3.8240	31.4 ± 7.8	1.0 ± 0.1	400.9634 ± 2.1290	0.5870	0.E970	1.1360	0.0123	0.5871	1.0877 ± 0.2792
3.8319	45.2 ± 8.2	0.7 ± 0.1	285.6685 ± 1.8016	0.5874	0.E.5972	1.0738	D.0101	0.5875	2.2340 ± 0.4120
3.8400	22.1 ± 6.5	0.7 ± 0.0	281.1397 ± 1.7910	0.5877	Q.E.5974	1.0165	D.0086	0.5878	1.0014 ± 0.3315
3.8479	19.7 ± 6.1	0.7 ± 0.0	277.4507 ± 1.7823	0.5879	Q.E975	0.9689	D.0074	0.58880	0.9826 ± 0.3151
3.8561	16.4 ± 5.8	0.8 ± 0.1	319.9245 ± 1.9191	0.6881	0.5976	0.9182	D.0065	0.58882	0.6999 ± 0.2697
3.8640	14.9 ± 5.5	0.7 ± 0.1	301.2150 ± 1.8657	0.5883	D.5975	0.8764	0.0057	0.5884	0.6744 ± 0.2615
3.8719	38.1 ± 8.1	1.2 ± 0.1	514.1173 ± 2.4421	0.5885	0.E.5974	0.8379	D.0052	0.5886	0.9717 ± 0.2266
388809	14.4 ± 5.0	0.4 ± 0.0	190.1108 ± 1.4884	0.5886	0.5972	0.7979	D.0046	0.5886	1.0611 ± 0.3765
3.8909	8.2 ± 4.4	0.4 ± 0.0	183.4354 ± 1.4658	0.5887	D.E.5970	0.7574	0.0041	0.5887	0.6073 ± 0.3439
3.6474	28.3 ± 12.5	8.1 ± 0.6	2280.9188 ± 4.8176	0.5651	D.E50.4	0.0691	0.0012	0.5648	0.1338 ± 0.0825
3.6594	21.1 ± 12.0	7.8 ± 0.6	2217.7081 ± 4.7789	0.6684	0.5637	0.0819	0.0019	0.5662	0.0893 ± 0.0806
3.7269	239.4 ± 18.7	2.7 ± 0.2	896.6686 ± 3.1023	0.6788	0. 58829	3.7473	0.0077	0.5788	3.8425 ± 0.3099
3.7359	63.6 ± 10.3	1.0 ± 0.1	$337.73 .42 \pm 1.9090$	0.5800	0.5853	3.0919	112	0.5800	2.6921 ± 0.4432
3.7379	87.1 ± 11.3	1.0 ± 0.1	329.6545 ± 1.8872	0.5802	0.58557	2.9765	0.0123	0.5802	3.7934 ± 0.4982
3.6500	183.4 ± 54.8	157.5 ± 11.3	44490.0000 ± 20.0000	0.6657	D.5518	0.DET5	0.0013	0.5654	0.0087 ± 0.0184
3.7730	124069.9 ± 479.6	2568.8 ± 184.2	927670.0000 ± 100.0000	0.5837	D. E 924	1.7986	0	0.5841	1.8890 ± 0.0075
3.6861	4593716.1 ± 2311.3	533.9 ± 38.3	162800.0000 ± 10.0000	0.5727	D. 5692	419.9274	0.0024	0.5727	415.0918 ± 0.2104

Source	Systematic uncertainty (\%)
$\theta_{\ell^{+} \ell^{-}}<179^{\circ}$ cut	0.0
$\left\|\cos \theta_{\ell}\right\|<0.81$ cut	0.4
$E_{\text {EMC }} / p$ cut	0.3
Momentum cut	0.2
$N_{\text {good }}$ and N_{γ} cut	0.4
Fit to $M_{\ell^{+} \ell^{-}}$spectrum	1.5
MC modeling	0.9
π identification	1.0
$\mathcal{B}\left(J / \psi \rightarrow \ell^{+} \ell^{-}\right)$	0.4
Background subtraction $N_{\mathrm{BCK}}^{\mathrm{obs}}$	<0.1
Luminosity	1.0
Total	2.4

Expected-Observed Cross Section

$$
\begin{gathered}
\sigma_{J / \psi X}^{\text {expected }}(s)=\int_{0}^{\infty} d s^{\prime} G\left(s, s^{\prime}\right) \int_{0}^{x_{\text {max }}} d x F \\
\sigma^{\mathrm{dress}}(\mathrm{~s}) \text { is dressed cross sectior } \\
G\left(s, s^{\prime}\right)=\frac{1}{\sqrt{2 \pi} \sigma_{E_{\text {BEPC..I }}}} \exp \left[-\frac{\left(\sqrt{s}-\sqrt{s^{\prime}}\right)^{2}}{2 \sigma_{E_{\text {BPPC.. }}^{2}}^{2}}\right]
\end{gathered}
$$

Effective c.m. energy

Nominal
c.m. energy
$F(x, s)$ is sampling function
Kuraev \& Fadin

$$
F(x, s)=\beta x^{\beta-1} \delta^{V+S}+\delta^{H}
$$

$$
\beta=\frac{2 \alpha}{\pi}\left(\ln \frac{s}{m_{e}^{2}}-1\right)
$$

$$
\delta^{V+S}=1+\frac{3}{4} \beta+\frac{\alpha}{\pi}\left(\frac{\pi^{2}}{3}-\frac{1}{2}\right)-\frac{\beta^{2}}{24}\left(\frac{1}{3} \ln \frac{s}{m_{e}^{2}}+2 \pi^{2}-\frac{37}{4}\right)
$$

$$
\delta^{H}=\delta_{1}^{H}+\delta_{2}^{H} \quad \delta_{1}^{H}=-\beta\left(1-\frac{x}{2}\right)
$$

$$
\delta_{2}^{H}=\frac{1}{8} \beta^{2}\left[4(2-x) \ln \frac{1}{x}-\frac{1+3(1-x)^{2}}{x} \ln (1-x)-6-x\right]
$$

Amplitude Analysis

$\sigma_{\mathrm{J} / \psi \mathrm{X}}^{\mathrm{Dress}}(S)=A_{\psi(3686)}+e^{\mathrm{i} \phi 1} A_{1}+e^{\mathrm{i} \phi 2} A_{2}+\left.\ldots\right|^{2}$
$\mathrm{A}_{\psi(3686)}$ is BW amplitude for $\psi(\mathbf{3 6 8 6}) \rightarrow \mathrm{J} / \psi \mathrm{X}$ decays
A_{1}, A_{2}, \ldots are other $B W$ amplitudes for structures $S \rightarrow J / \psi$ X decays
$\phi 1, \phi 2, \ldots$ are relative phase of the amplitudes
χ^{2} fit to the observed cross sections

$$
\chi^{2}=\sum_{i=1}^{n}\left[\frac{\sigma_{\mathrm{J} / \Psi \mathrm{X}}^{o b s}(S)_{i}-\sigma_{\mathrm{J} / \Psi \mathrm{X}}^{\text {expected }}(S)_{i}}{\Delta_{\sigma_{J / \Psi \mathrm{X}}^{o s,}}(S)_{i}}\right]^{2}
$$

$\sigma_{\mathrm{J} / \mu \mathrm{X}}^{\text {expected }}(S)$ is the expected cross sections

Fit the Observed Cross Sections

$>$ Hypotheses \#1
Assuming that there is $\psi(3686)$ only

Our measurements :

Parameter	Solution
χ^{2}	128.326
$n_{\text {prts }}-n_{\text {PRMT }}$	$68-3=65$
Energy Spread $[\mathrm{MeV}]$	$1.4382 \pm 0.006 \pm 0.003$
$M_{\psi(3686)}\left[\mathrm{MeV} / c^{2}\right]$	$3686.10 \pm 0.02 \pm 0.01 \pm 0.00$
$\Gamma_{\psi(368)}^{e}\left(\mathrm{keV} / c^{2}\right]$	2.34
$\psi_{\psi(3686)}^{\text {tot }}[\mathrm{keV}]$	296
$B(\psi(3686) \rightarrow \mathrm{J} / \psi \mathrm{X})[\%]$	$66.69 \pm 0.239 \pm 1.60 \pm 1.12$

$\mathrm{E}_{\mathrm{cm}}[\mathrm{GeV}]$

Fit the Observed Cross Sections

$>$ Hypotheses \#2
Assuming that there are $\psi(3686)$ and $\psi(3770)$ only

Our measurements :
$\mathrm{B}[\psi(3686) \rightarrow \mathrm{J} / \psi \mathrm{X}]=$ ($\mathbf{6 4 . 2 6} \pm \mathbf{0 . 4 0} \pm 1.51 \pm \mathbf{1 . 0 8}$)\%
$\mathrm{B}[\psi(3770) \rightarrow \mathrm{J} / \psi \mathrm{X}]=$ ($1.21 \pm 0.83 \pm 0.03 \pm 0.00) \%$
$\phi_{1}=(-168.3 \pm 51.0 \pm 0.0 \pm 0.3)^{\circ}$
Summing over the known Bfs for exclusive modes given in PDG yields

$$
\mathrm{B}[\psi(3770) \rightarrow \mathrm{J} / \psi \mathrm{X}]=(1.4 \pm 0.1) \%
$$

Fit the Observed Cross Sections

> Hypotheses \#3
Assuming that there are $\psi(3686), \mathrm{S}_{1}(3760)$ and $\mathrm{S}_{2}(3780)$

Parameter	Solution 1
$\mathrm{M}_{\psi(\text { (3686) }}\left[\mathrm{MeV} / \mathrm{c}^{2}\right]$	
	$\begin{gathered} \pm 0.34 \\ 296 \\ 20.88 \\ 62.88 .84 \pm 1.51 \\ \pm 0.15 \end{gathered}$
$\mathrm{M}_{s(3760)}\left[\mathrm{MeV} / \mathrm{c}^{2}\right]$	$\begin{array}{r} 3763.5 \pm 5.5 \pm 0.1 \\ \pm 0.4 \end{array}$
	$\begin{gathered} \begin{array}{c} \pm 0.4 \\ 0.186 \\ 12.8 \pm 12.3 \pm 0.1 \end{array} \end{gathered}$
$B[s(3760) \rightarrow \mathrm{J} / \psi \mathrm{X}][\%]$ ϕ_{1} [degree]	$\begin{gathered} \pm .96 \pm \begin{array}{l} \pm 0.4 \\ 4.19 \\ 23.17 \\ 23.9 \pm 61.30 \\ \hline 0.3 \pm 1.2 \end{array} \end{gathered}$
	± 4.5
$\mathrm{M}_{s(3780)}\left[\mathrm{MeV} / \mathrm{c}^{2}\right]$	${ }^{3780.7} \pm 10.9 \pm 0.1$
	$\begin{gathered} \pm .0 .4 \\ \text { 0.243 } \\ 27.7 \pm 12.7 \pm 0.1 \end{gathered}$
$\left.{ }_{B[s(3780)} \rightarrow \mathrm{J} / \psi \mathrm{X}\right][\%]$	(
ϕ_{2} [degree]	

The signal significance of the Di-structure(s) decay into $\mathrm{J} / \psi \mathrm{X}$ is more than 4σ [from analyzing the observed cross sections]

Fit the Observed Cross Sections

Four Solutions

Parameter	Solution1	Solution2	Solution3	Solution4
χ^{2} $n_{\text {pnts }}-n_{\text {PRMT }}$ Energy Spread $[\mathrm{MeV}]$	$\begin{gathered} \hline 66.497 \\ 68-11=57 \\ 1.352 \pm 0.017 \pm 0.000 \\ \pm 0.003 \end{gathered}$	$\begin{gathered} \hline 76.497 \\ 68-11=57 \\ 1.351 \pm 0.017 \pm 0.006 \\ \pm 0.003 \end{gathered}$	$\begin{gathered} 76.641 \\ 68-11=57 \\ 1.351 \pm 0.020 \pm 0.006 \\ \pm 0.003 \end{gathered}$	$\begin{gathered} \hline 76.600 \\ 68-11=57 \\ 1.350 \pm 0.019 \pm 0.006 \\ \pm 0.003 \end{gathered}$
$\begin{gathered} \mathrm{M}_{\psi(3686)}\left[\mathrm{MeV} / \mathrm{c}^{2}\right] \\ \Gamma_{\psi(3686)}^{e e}\left[\mathrm{keV} / \mathrm{c}^{2}\right] \\ \psi_{\psi(3686)}^{\text {tot }}[\mathrm{keV}] \end{gathered}$	$\begin{gathered} 3686.00 \pm 0.03 \pm 0.00 \\ \pm 0.00 \\ 2.34 \\ 296 \end{gathered}$	$\begin{gathered} 3686.00 \pm 0.03 \pm 0.00 \\ \pm 0.00 \\ 2.34 \\ 296 \end{gathered}$	$\begin{gathered} 3686.00 \pm 0.03 \pm 0.00 \\ \pm 0.00 \\ 2.34 \\ 296 \end{gathered}$	$\begin{gathered} 3686.0 \pm 0.01 \pm 0.00 \\ \pm 0.00 \\ 2.34 \\ 296 \end{gathered}$
$B(\psi(3686) \rightarrow \mathrm{J} / \psi \mathrm{X})[\%]$	$\begin{gathered} 62.88 \pm 0.84 \pm 1.51 \\ \pm 0.15 \end{gathered}$	$\begin{gathered} 63.06 \pm 0.70 \pm 1.51 \\ \pm 0.15 \end{gathered}$	$\begin{gathered} 62.76 \pm 0.89 \pm 1.51 \\ \pm 0.15 \end{gathered}$	$\begin{aligned} 63.07 & \pm 0.72 \pm 1.51 \\ & \pm 0.15 \end{aligned}$
$\mathrm{M}_{s(3760)}[\mathrm{MeV}$	$\begin{gathered} 3763.5 \pm 5.5 \pm 0.1 \\ \pm 0.4 \\ 0.186 \end{gathered}$	$\begin{aligned} & 3763.5 \pm 5.7 \pm 0.1 \\ & \pm 0.4 \\ & 0.186 \end{aligned}$	$\begin{aligned} & 3767.5 \pm 6.0 \pm 0.1 \\ & \pm 0.4 \\ & 0.186 \end{aligned}$	$\begin{aligned} 3766.1 & \pm 13.6 \pm 0.1 \\ & \pm 0.4 \\ & 0.186 \end{aligned}$
$\begin{gathered} \Gamma_{s(3760)}^{e e}\left[\begin{array}{c} \left.\mathrm{keV} / \mathrm{c}^{2}\right] \\ \Gamma_{s(3760)}^{\text {tot }}\left[\begin{array}{l} \text { ot } \end{array}[\mathrm{MeV}]\right. \end{array} .\right. \end{gathered}$	$\begin{gathered} 0.186 \\ 12.8 \pm 12.3 \pm 0.1 \end{gathered}$	$\begin{gathered} 0.186 \\ 12.8 \pm 12.5 \pm 0.1 \end{gathered}$	$\begin{gathered} 0.186 \\ 20.1 \pm 8.4 \pm 0.1 \end{gathered}$	$\begin{gathered} 0.186 \\ 18.3 \pm 11.5 \pm 0.1 \end{gathered}$
$\begin{gathered} B[s(3760) \rightarrow \mathrm{J} / \psi \mathrm{X}][\%] \\ \phi_{1}[\text { degree }] \end{gathered}$	$\begin{aligned} & \pm 0.4 \\ 4.96 \pm & 10.19 \pm 0.17 \\ & \pm 0.30 \\ 233.9 & \pm 61.3 \pm 1.2 \\ & \pm 4.5 \end{aligned}$	$\begin{aligned} & \pm 0.4 \\ 5.52 \pm & 12.62 \pm 0.17 \\ & \pm 0.30 \\ -88.4 & \pm 103.1 \pm 1.2 \\ & \pm 1.7 \end{aligned}$	$\begin{aligned} & \pm 0.4 \\ 38.94 & \pm 57.44 \pm 0.17 \\ & \pm 2.40 \\ -105.3 .1 & \pm 139.0 \pm 1.2 \\ & \pm 2.0 \end{aligned}$	$\begin{gathered} \pm 0.4 \\ 21.48 \pm 51.58 \pm 0.17 \\ \quad \pm 1.34 \\ -52.2 \pm 206.3 \pm 1.2 \\ \pm 1.0 \end{gathered}$
$\begin{gathered} \mathrm{M}_{s(3780)}\left[\mathrm{MeV} / c^{2}\right] \\ \Gamma_{s(3780)}^{e e}\left[\mathrm{keV} / c^{2}\right] \end{gathered}$	$\begin{aligned} 3780.7 & \pm 10.9 \pm 0.1 \\ & \pm 0.4 \\ & 0.243 \end{aligned}$	$\begin{aligned} 3780.7 & \pm 11.1 \pm 0.1 \\ & \pm 0.4 \\ & 0.243 \end{aligned}$	$\begin{aligned} & 3773.7 \pm 5.9 \pm 0.1 \\ & \pm 0.4 \\ & 0.243 \end{aligned}$	$\begin{aligned} & 3775.6 \pm 17.1 \pm 0.1 \\ & \pm 0.4 \\ & 0.243 \end{aligned}$
$\Gamma_{s(3780)}^{\text {tot }}[\mathrm{MeV}]$	$\begin{gathered} 27.7 \pm 12.7 \pm 0.1 \\ \pm 0.2 \end{gathered}$	$\begin{gathered} 27.7 \pm 12.8 \pm 0.1 \\ \pm 0.2 \end{gathered}$	$\begin{gathered} 29.1 \pm 19.1 \pm 0.1 \\ \pm 0.2 \end{gathered}$	$\begin{gathered} 29.1 \pm 25.3 \pm 0.1 \\ \pm 0.2 \end{gathered}$
$\begin{gathered} B[s(3780) \rightarrow \mathrm{J} / \psi \mathrm{X}][\%] \\ \phi_{2}[\text { degree }] \end{gathered}$	$\begin{aligned} & \pm 0.2 \\ & 7.77 \pm 10.40 \pm 0.41 \\ & \pm 0.20 \\ & 128.7 \pm 108.7 \pm 0.1 \\ & \pm 6.4 \\ & \hline \end{aligned}$	$\begin{gathered} \pm 0.2 \\ 9.50 \pm 25.80 \pm 0.41 \\ \quad \pm 0.24 \\ 173.0 \pm 56.8 \pm 0.1 \\ \\ \pm 8.7 \\ \hline \end{gathered}$	$\begin{gathered} \pm 0.2 \\ 41.78 \pm 33.50 \pm 0.41 \\ \pm 1.07 \\ 99.3 \pm 94.3 \pm 0.1 \\ \pm 5.0 \\ \hline \end{gathered}$	$\begin{gathered} \pm 0.2 \\ 27.78 \pm 27.19 \pm 0.41 \\ \pm 0.71 \\ 172.0 \\ \pm 70.3 \pm 0.1 \\ \\ \pm 8.6 \end{gathered}$

Comparison with BES-II Result

BES-III $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{J} / \psi$ X
$\mathrm{M}_{1}=3763.5 \pm 5.5 \pm 0.4 \mathrm{MeV}$
$\Gamma_{1}=12.8 \pm 12.3 \pm 0.4 \mathrm{MeV}$
$M_{2}=3780.7 \pm 10.9 \pm 4.7 \mathrm{MeV}$
$\Gamma_{2}=27.7 \pm 12.7 \pm 0.2 \mathrm{MeV}$

BES-II $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow$ hadrons
$M_{1}=3762.6 \pm 11.8 \pm 0.5 \mathrm{MeV}$
$\Gamma_{1}=49.9 \pm 32.1 \pm 0.1 \mathrm{MeV}$
$M_{2}=3781.0 \pm 1.3 \pm 0.5 \mathrm{MeV}$
$\Gamma_{2}=19.3 \pm 3.1 \pm 0.1 \mathrm{MeV}$

This $\mathrm{J} / \psi \mathrm{X}$ result confirms (at $\sim 4.5 \sigma$) the BES-II observation of Di-Structure $\mathrm{Rs}(3770)$ in the range from 3.71 to 3.87 GeV .

Conclusion

$>$ We measured the observed cross sections for $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{J} / \psi \mathrm{X}$ in range from 3.645 to 3.87 GeV .
> To well describe the line-shape of these observed cross sections, needing one more BW amplitude additional $\psi(3770)$.
> We observed the Di-Structures "S(3760)+S(3780)" in J/ $\mathbf{~ X ~}$ ($\mathrm{X}=$ anything) final states, and the parameters of the Di -structure are consistent within errors with those measured at BES-II.

$$
\begin{aligned}
& \text { BES-III } \mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{J} / \psi \mathbf{X} \\
& \mathrm{M}_{1}=3763.5 \pm 5.5 \pm 0.4 \mathrm{MeV} \\
& \Gamma_{1}=12.8 \pm \mathbf{1 2 . 3} \pm 0.4 \mathrm{MeV} \\
& \mathrm{M}_{2}=3780.7 \pm 10.9 \pm 4.7 \mathrm{MeV} \\
& \Gamma_{2}=27.7 \pm 12.7 \pm 0.2 \mathrm{MeV} \\
& \text { BES-II }{ }^{+} \mathrm{e}^{-} \rightarrow \text { hadrons } \\
& \mathrm{M}_{1}=3762.6 \pm 11.8 \pm 0.5 \mathrm{MeV} \\
& \Gamma_{1}=49.9 \pm 32.1 \pm 0.1 \mathrm{MeV} \\
& \mathrm{M}_{2}=3781.0 \pm 1.3 \pm \mathbf{0 . 5} \mathrm{MeV} \\
& \Gamma_{2}=19.3 \pm 3.1 \pm 0.1 \mathrm{MeV}
\end{aligned}
$$

Thank You!

Comparison of Data and Monte Carlo

NJStempatic Jincertainty

Selection of $\ell^{+} \ell^{-}$

Sources

1. Uncertainty in angle cut $\left(\theta_{\ell^{+} \ell^{-}}<179^{\circ}\right)$ for the leptons
2. Uncertainty in polar angle cut $\left(\left|\cos \theta_{\ell}\right|<0.81\right)$ for the charged tracks
3. Uncertainty in lepton PID

$$
\begin{aligned}
& e^{ \pm} E_{\mathrm{EMC}} / p>0.7 \\
& \mu^{ \pm} 0.05<E_{\mathrm{EMC}} / p<0.35
\end{aligned}
$$

4. Uncertainty in momentum cut ($1.0<p<0.47 \times E_{\mathrm{cm}}$)

Mehtod

- Compare the corresponding efficiencies for data and MC events, which are measured using the lepton samples selected from the $\psi(3686) \rightarrow \pi^{+} \pi^{-} J / \psi, J / \psi \rightarrow$ $\ell^{+} \ell^{-}$process

Systematic Uncertainty

$$
\theta_{\ell^{+} \ell^{-}}<179^{\circ} \mathrm{Cut}
$$

	$N_{\text {tot }}$	$N_{\text {cut }}$	$R \equiv N_{\text {cut }} / N_{\text {tot }}$
data	1456805	1437505	0.9868 ± 0.0001
MC	1322668	1305311	0.9869 ± 0.0001
$R_{\text {data }} / R_{\text {MC }}-1$	$(-0.01 \pm 0.01) \%$		

Systematic Uncertainty

$\left|\cos \theta_{\ell}\right|<0.81$ Cut

	$N_{\text {tot }}$	$N_{\text {cut }}$	$R \equiv N_{\text {cut }} / N_{\text {tot }}$
data	1456805	1259484	0.8646 ± 0.0003
MC	1322668	1139355	0.8614 ± 0.0003
$R_{\text {data }} / R_{\text {MC }}-1$		$(0.37 \pm 0.05) \%$	

NJStemeticerning

$$
e^{ \pm} \mathrm{PID}
$$

	$N_{\text {tot }}$	$N_{\text {cut }}$	$R \equiv N_{\text {cut }} / N_{\text {tot }}$
data	803718	786977	0.9792 ± 0.0002
MC	783994	770110	0.9823 ± 0.0001
$R_{\text {data }} / R_{\mathrm{MC}}-1$	$(-0.32 \pm 0.02) \%$		

Systematic Uncertainty

$\mu^{ \pm}$PID

	$N_{\text {tot }}$	$N_{\text {cut }}$	$R \equiv N_{\text {cut }} / N_{\text {tot }}$
data	653087	644969	0.9876 ± 0.0001
MC	538674	532596	0.9887 ± 0.0001
$R_{\text {data }} / R_{\text {MC }}-1$	$(-0.12 \pm 0.02) \%$		

Systematic Uncertainty

Momentum Cut

	$N_{\text {tot }}$	$N_{\text {cut }}$	$R \equiv N_{\text {cut }} / N_{\text {tot }}$
data	1456805	1435805	0.9856 ± 0.0001
MC	1322668	1306778	0.9880 ± 0.0001
$R_{\text {data }} / R_{\text {MC }}-1$		$(-0.24 \pm 0.01) \%$	

Systematic Uncertainty

$N_{\text {good }}$ and N_{γ} Cut

- After subtracting QED and $\gamma_{\text {ISR }} J / \psi$ backgrounds

	$N_{\text {tot }}$	$N_{\text {cut }}$	$R \equiv N_{\text {cut }} / N_{\text {tot }}$
data	4644114	4454535	0.9592 ± 0.0001
MC	57820	55682	0.9630 ± 0.0008
$R_{\text {data }} / R_{\mathrm{MC}}-1$		$(-0.40 \pm 0.08) \%$	

NJEtenngitc Uncentainty

Fit to $M_{\ell+\ell-}$ Spectrum

- Nominal fit: $N_{\text {obs }}=124069.9 \pm 479.6$ at $E_{\mathrm{cm}}=3.773 \mathrm{GeV}$

1. Signal shape

- Crystal Ball function - 0.53\%

2. Background shape

- $4^{\text {th }}$ order polynomial -0.63%

3. Fit region - 0.88%
4. Bin width -0.93%

- Total systematic uncertainty from fit to mass spectrum:
$\sqrt{0.53^{2}+0.63^{2}+0.88^{2}+0.93^{2}} \%=1.52 \%$

NJStampatic Uncentainty

Efficiency

- Vary the normalization of several of the largest components ($J / \psi \pi^{+} \pi^{-}, J / \psi \pi^{0} \pi^{0}$) based on branching fraction uncertainties

- The maximum changes (0.86\%) is taken as systematic uncertainty

NJEtennatic Jincertainty

Quoted Systematic Uncertainties

- π PID
- 1.0\% per pion
- Weighted by the distribution of charged track multiplicity at $E_{\mathrm{cm}}=3.686 \mathrm{GeV}$

$N_{\text {good }}$	$N_{\text {obs }}$	$\Delta(\%)$
2	1989790	0.0
3	763368	1.0
4	1980909	2.0
Average	3734067	1.0

- Branching Fraction
- $\mathcal{B}\left(J / \psi \rightarrow \ell^{+} \ell^{-}\right)=(11.932 \pm 0.046) \%(P D G 2016)$
- 0.39\%
- Luminosity
- 1.0\% (Chin. Phys. C 37, 123001 (2013))

Invariant mass spectra at each energy

Everis((0.01 Gol)

Invariant mass spectra at each energy

至

Invariant mass spectra at each energy

Invariant mass spectra at each energy

彩

为

(ip) of hand

Invariant mass spectra at each energy

