# Measurement of inclusive branching fraction for $\psi^{\prime} \rightarrow \mathrm{K}_{\mathbf{s}}{ }^{0} \mathrm{X}$ 

Y.Fu G.Rong Y.Fang J.Y.Zhao 2017-03-29

Charmonium Group Meeting

## Outline

$\nrightarrow$ Introduction
\& Measurement of cross sections

+ Analysis of cross sections
${ }_{\phi}$ Summary


## Introduction

$\nrightarrow$ The hadronic decay of $\psi^{\prime}$ provides us some informations to better understanding of the decay mechanism;
$\nrightarrow$ This study of $\psi^{\prime} \rightarrow \mathrm{K}_{s}{ }^{0} X$ will give an inclusive branching fraction. And to compare with the exclusive branching fraction, it will probably help us to find some unknown final states of $\psi^{\prime}$ that contains $\mathrm{K}_{s}{ }^{0}$ mesons;
\& In this analysis, we measured the inclusive branching fraction by analyzing the observed cross sections of $\mathrm{e}^{+} \mathrm{e}^{-\rightarrow} \mathrm{K}_{s}{ }^{0} \mathrm{X}$;

## Data sets and MC samples

- Boss Version: 6.6.4.p01
+ Data Sample: The data sets is taken from 3.640 GeV to 3.705GeV in 2010;
¢ The Monte Carlo are generated separately by KKMC + BesEvtGen;

The components of $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{K}_{s}{ }^{0} \mathrm{X}$ in the energy range 3.640 to 3.705 GeV :

* Continuum Process;
* J/ $\psi$ Decay;
* $\psi^{\prime}$ Decay;


## Event Selection

\& Good charged track:
$\square$ At least three good charged track;

- $\left|R_{x y}\right|<10.0 \mathrm{~cm}$ and $\left|R_{z}\right|<20.0 \mathrm{~cm}$; (For $\pi$ from $K_{s}{ }^{0}$ )
- $\left|R_{x y}\right|<1.0 \mathrm{~cm}$ and $\left|R_{z}\right|<10.0 \mathrm{~cm}$; (For particle not from $\mathrm{K}_{5}{ }^{0}$ )
ㅁ $|\cos \theta|<0.93$;
${ }_{\phi} \mathbf{K}_{5}{ }^{0}$ reconstruction:
- Vertex fit;
- If more than one combinations, we retain the longest decay length ( $L_{\max }$ ) of $\mathrm{K}_{5}{ }^{0}$ and require $\mathrm{L}_{\max }$ $>0.4 \mathrm{~cm}$;


## $\mathbf{M}_{\pi^{+} \pi-}$ spectrum

## ${ }^{+}$Invariant mass spectra of $\pi^{+} \pi$ :

Signal: Double Gaussian
Background: Second-order Chebychev polynomial


## Background Analysis

中 To analyze the QED background, we checked the invariant mass spectra of $\pi^{+} \pi^{-}$from bhabha, dimu and ditau MC at $\mathrm{E}_{\mathrm{cm}}=3.773 \mathrm{GeV}$;




## There is no peaking background

## Efficiency

## ¢ Continuum process:


$\varepsilon=0.0323 * E c m+0.0035$

* $\psi$ ' decay:

+ J/ $\psi$ decay:



## ISR cross section

- Here shows the ISR cross sections of each process:
+ Continuum:



女 J/ $\psi$ decay:


## Total Efficiency

- With these expected reconstruction efficiencies and the ISR cross sections, we obtained the total efficiencies for selection of $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{K}_{s}{ }^{0} \mathrm{X}$ :

$$
\varepsilon_{t o t}=\frac{1}{\sigma_{c o n}+\sigma_{J / \psi}+\sigma_{\psi^{\prime}}}\left(\sigma_{c o n} \varepsilon_{c o n}+\sigma_{J / \psi} \varepsilon_{J / \psi}+\sigma_{\psi^{\prime}} \varepsilon_{\psi^{\prime}}\right)
$$



## Observed cross sections

${ }_{\phi}$ According to the formula below, we obtained the observed cross sections for $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{K}_{s}{ }^{0} \mathrm{X}$ :


$$
\sigma_{e^{+} e^{-} \rightarrow K_{s}^{0} X}^{o b s}=\frac{N_{e^{+} e^{-} \rightarrow K_{s}^{0} X}^{o b s}}{L\left(E_{c m, i}\right)}
$$

Nobs:Number of signal events;
L: The integrated luminosities;
$\varepsilon$ : The detection efficiencies;

## Expected cross sections

\& The expected cross section for $\mathrm{K}_{s}{ }^{0} \mathrm{X}$ production can be written as:

$$
\begin{aligned}
& \sigma_{K_{s}^{0} X}^{\exp }(s)=\int_{0}^{\infty} d s^{\prime} G\left(s, s^{\prime}\right) \int_{0}^{1} d x \cdot \sigma_{K_{s}^{0} X}^{\text {Drss }}(s(1-x)) \frac{F(x, s)}{\text { Sampling function }} \\
& \sigma_{K_{s}^{0} X}^{\text {Drss }}(s(1-x))=\frac{\left|A_{\psi(3686)}\right|^{2}+\left|A_{J / \psi}\right|^{2}}{}+\left|A_{\text {continuum }}\right|^{2} \\
& A_{\text {continuum }}=\sqrt{\frac{f}{E_{c m}^{n}}} \\
& G\left(s, s^{\prime}\right)=\frac{1}{\sqrt{2 \pi} \Delta} e^{-\frac{\left(\sqrt{s}-\sqrt{s^{\prime}}\right)^{2}}{2 \Delta^{2}}} \text { To descripted by Breit-Wigner function } \\
& \text { To describe the BEPCII c.m.energy distribution }
\end{aligned}
$$

## $X^{2}$ fit

\& We made a $\chi^{2}$ fit to these observed cross sections:

$$
\chi^{2}=\sum_{i=1}^{N}\left(\frac{\sigma_{K_{s}^{0} X}^{o b s}\left(E_{c m, i}\right)-\sigma_{K_{s}^{0} X}^{\exp }\left(E_{c m, i}\right)}{\left.\Delta_{\substack{\sigma_{K_{s}^{o s} X}^{o b s}\left(E_{c m, i}\right)}}\right)}\right.
$$

$\sigma_{K_{s}^{0} X}^{o b s}\left(E_{c m, i}\right) \quad-----$ The measured value of the observed cross section;
$\sigma_{K_{s}^{0} X}^{\exp }\left(E_{c m, i}\right) \quad$----- The theoretically expected cross section;
$\Delta_{\sigma_{K_{S}^{0} X}^{o b s}}\left(E_{c m, i}\right) \quad$----- The point-to-point errors at the i.th c.m energy;
$N \quad$----- Number of the data sets collected at different energy points;

## Fit Result

\& To fit with these observed cross sections, we can get the branching fraction for $\psi^{\prime} \rightarrow \mathrm{K}_{s}{ }^{0} \mathrm{X}$ :


## Summary

$\nrightarrow$ We measured the observed cross sections for $\mathrm{e}^{+} \mathrm{e}^{-}$ $\rightarrow \mathrm{K}_{s}{ }^{0} \mathrm{X}$ in the energy region 3.64 to 3.705 GeV ;

- By analyzing these cross sections, we obtianed the inclusive branching fraction for $\psi^{\prime} \rightarrow \mathrm{K}_{s}{ }^{0} \mathrm{X}$, and the result gives:

$$
\operatorname{Br}\left[\psi(3686) \rightarrow K_{s}{ }^{0} X\right]=\left(16.16 \pm 0.30 \pm \Delta_{\text {sys }}\right) \%
$$



## Back up

## Invariant mass spectra of $\pi^{+} \pi^{-}$




3.7002 GeV


