(IIIIIII

H

Studies towards Y(4260) \rightarrow Ψ (2S) + η/π^{0}

First steps of our analysis

living.knowledge WWU Münster

Marcel Rump - March 22, 2017

Introducing our group at Münster University, Germany

- We recently started analysing BESIII data.
 - \rightarrow Marcel Rump (PhD student) since Nov 2016
 - → Johannes Kellers (Bachelor student)
- The group keeps growing.
 - \rightarrow new Master student in summer 2017
 - \rightarrow more will come in the near future
- We would like to contribute to studies on Y(4260) decays \rightarrow Looking into different decay channels such as $e^+e^- \rightarrow Y(4260) \rightarrow \Psi(2S) + \eta/\pi^0$

using existing as well as upcoming data.

Motivation

- Y(4260) (discovered 2005) is a good candidate for an exotic state which makes it a highly interesting topic of research.
- Internal structure still not completely understood
 → Investigate how the Y(4260) decays into other particles.
 - \rightarrow Studies on the Y(4260) lineshape using different decay channels.
- Talk by Ryan Mitchell at the Collaboration Meeting in June 2016 showed that there could be signals in the decay channels: $Y(4260) \rightarrow \Psi(2S) + \eta$ and $Y(4260) \rightarrow \Psi(2S) + \pi^{0}$

First steps of our analyses

• Look for possible decay channels and their final states:

```
\Upsilon(4260) \rightarrow \Psi(2S) + \eta/\pi^{_0}
```

```
\begin{split} \Psi(2S) &\rightarrow J/\Psi \ \pi^+ \ \pi^- \\ J/\Psi \rightarrow |^+|^- \\ \eta \rightarrow \gamma \gamma, \ \pi^0 \pi^0 \pi^0, \ \pi^+ \pi^- \pi^0 \\ \pi^0 \rightarrow \gamma \gamma \end{split}
```

• We first studied $e^+e^- \rightarrow J/\Psi \pi^+ \pi^-$ and tried to reproduce the results that has been published recently Phys. Rev. Lett. 118, 092001 (2017).

 \rightarrow Get a good unterstanding of BESIII detector and the analysis and simulation software.

→ Learn how to identify the sub-decay $\Psi(2S) \rightarrow J/\Psi \pi^+ \pi^-$, which has the same final state.

$\underline{e^+e^-} \rightarrow \underline{J/\Psi} \pi^+\pi^- \quad (\underline{J/\Psi} \rightarrow \underline{I^+I^-})$

Event selection

Background suppression

Charged tracks |r_{xy}| < 1.0 cm |z| < 10.0 cm |cos θ| < 0.93

iving knowledge

5

Marcel Rump – March 22, 2017

$\underline{e^+e^-} \rightarrow \underline{J/\Psi} \pi^+\pi^- \quad (\underline{J/\Psi} \rightarrow \underline{I^+I^-})$

Event selection

Background suppression

Charged tracks |r_{xy}| < 1.0 cm |z| < 10.0 cm |cos θ| < 0.93

$\underline{e^+e^-} \rightarrow \underline{J/\Psi} \pi^+\pi^- \quad (\underline{J/\Psi} \rightarrow \underline{|+|^-})$

- Define the J/Ψ signal region as [3.08, 3.12]
- Define sidebands as
 [3.0, 3.06] and
 [3.14, 3.2]
- Determine signal events by subtraction of a flat background distribution, as well as detection efficiencies using MC simulation

$\underline{e^+e^-} \rightarrow \underline{J/\Psi} \pi^+\pi^- \quad (\underline{J/\Psi} \rightarrow \underline{I^+I^-})$

- Our results are in good agreement with the results published early March, 2017.
- Only slight deviations which might be caused using different selection criteria.
- → Analyses and simulation well under control
- \rightarrow Start analysing e⁺e⁻ \rightarrow $\Psi(2S)$ + η/π^{o}

Note: cross section values were calculated using integrated luminosities and radiative correction factors as cited in Phys. Rev. Lett. 118, 092001 (2017).

 $e^+e^- \rightarrow \Psi(2S) + \eta$

Event selection

Charged tracks |r_{xy}| < 1.0 cm |z| < 10.0 cm |cos θ| < 0.93

PID Momentum < 1.0 GeV/c : π⁺/π⁻ > 1.0 GeV/c : I⁺/I⁻ E_{EMC} < 0.35 GeV : μ⁺/μ⁻ > 1.10 GeV : e⁺/e⁻

Neutral tracks $E_{barrel} > 25 \text{ MeV}, \quad E_{endcap} > 50 \text{ MeV}$ $|\cos \theta| < 0.8$ or $0.86 < |\cos \theta| < 0.92$ $0 \leq TDC \leq 14$, $\Delta \theta > 20^{\circ}$ \rightarrow Y(4260) \rightarrow Ψ (2S) n signalMC 7000 Events / 1 MeV/c 6000 5000 4000 3000 2000 1000 0 0.2 0.4 0.6 0.8 0 1.2 1.4 1.6 1.8 2 1 P / GeV/c

10

WILHELMS-UNIVERSITÄT

 $e^+e^- \rightarrow \Psi(2S) + \eta$

Vesteälische

Münster

 $\eta \rightarrow yy$ $\Psi(2S) \rightarrow J/\Psi \; \pi^+\pi^ \rightarrow$ |+|- π + π -

 4 charged tracks (2 leptons, 2 pions) with 0 total charge

• N_v ≥ 2

• $\chi^2_{4C} < 100$

 $\eta \rightarrow \pi^0 \pi^0 \pi^0$ $\Psi(2S) \rightarrow J/\Psi \pi^+\pi^ \rightarrow$ |+|- π + π -

• 4 charged tracks with 0 total charge

• $N_v \ge 6$

• $\chi^2_{AC} < 180$

(2 leptons, 2 pions)

 $\eta \rightarrow \pi^+\pi^-\pi^0$ $\Psi(2S) \rightarrow J/\Psi \pi^+\pi^ \rightarrow$ |+|- π + π -

• 6 charged tracks (2 leptons, 4 pions) with 0 total charge

•
$$N_{\gamma} \ge 2$$

• χ²_{4C} < 140

$e^+e^- \rightarrow \Psi(2S) + \eta$

- J/ Ψ candidates: |M(I+I- π + π -) - m_{I/ Ψ}| < 100 MeV/c²
- η candidates: $|M(\eta) m_{\eta}| < 200 \text{ MeV/c}^2$
- π^{o} candidates: $|M(\pi^{o}) - m_{\pi^{o}}| < 50 \text{ MeV/c}^{2}$

Note:

- In case of multiple events, choose smallest $\chi^2_{_{4C}}$.
- M(J/Ψ) is slightly to high, which will be checked.

iving www.Münster

 \rightarrow detection efficiency

 $\varepsilon \approx 0.162 \pm 0.002_{stat}$

using MC simulation

and sidebands

Marcel Rump – March 22, 2017

WILHELMS-UNIVERSITÄT

MÜNSTER

- Analyses of all data points 4.0 4.6 GeV
- In addition the upcoming data will be analysed when available

<u>Summary</u>

What we have done so far ...

- At the University of Münster we started our analysis of $e^+e^- \rightarrow \Psi(2S) + \eta/\pi^0$ on existing data, which will also be performed on the upcoming data.
- As a first check we successfully reproduced the results of $e^+e^- \rightarrow J/\Psi \pi^+\pi^-$ that has been published early March.
- In a first iteration we applied similar idenfication techniques to start analysing the $e^+e^- \rightarrow \Psi(2S) + \eta$ channel.

<u>Outlook</u>

What will be done next ...

- Finish analysis of $e^+e^- \rightarrow \Psi(2S) + \eta$
 - Optimization of selection criteria
 - Background studies
 - Analysis of all data points
- Analyse $e^+e^- \rightarrow \Psi(2S) + \pi^0$ (already in progress)