Using K-matrix to analyze the open-charm cross sections

LI Ke^{1,2}, Tang Guangyi², Yuan Changzheng², Huang Xingtao¹

¹Shandong University

²Institute of High Energy Physics

June 13, 2017

Outline

- Introduction
- Open charm
- Simultaneous fit (Flatte formula)
- 4 K-matrix
- 5 Problems in K-matrix
- Summary and questions

As we discussed before:

Breit-Wigner is not correct in multi-channel case. But to get the experimental results, we need the parameterization to do ISR correction or get efficiency.

The question is:

How to parameterize the line-shape correctly?

Introduction

- All the XYZ states are observed in exclusive channels.
- Open charm should be the most favored decay channels. Haven't observed for Y(4260), Y(4360) ...
- $\pi\pi J/\psi$ in Y(4260) decays is dominant by f_0J/ψ , so first study the final states with $s\bar{s}$.
- At BESIII, the cross sections for exclusive channels will be measured as much as possible,
- After that, how to do parameterization?
- Ocupled channel effect should be huge around thresholds and should be considered,
- Breit-Wigner is not a correct way to fit the cross sections,
- K-matrix can deal with the coupled channel effect.

Open charm channels

Data sets: XYZ + R-scan data.

More precisely than other experiment's results.

- ullet $e^+e^-
 ightarrow D_sD_s$
- ullet $e^+e^-
 ightarrow D_{s}D_{s}^*$
- $e^+e^- \rightarrow D_s^*D_s^*$
- $e^+e^- \rightarrow D_s^*D_{s0}(2317), D_s^*D_{s1}(2460), D_sD_{s1}(2460)$ (thresholds around 4.43 GeV, not included yet)
- other channels will be included.

Born cross section of $e^+e^- o D_sD_s$

A narrow $\psi(4040)$ from R-scan data.

Dip at 4.23 GeV, more clear from XYZ-data.

Maybe due to the interference between Y(4260)/Y(4220) and other charmonium states.

And there seems contribution from $\psi(4415)$.

Systematic uncertainty is very large when cross section changed dramatically due to paramterization.

Born cross section of $e^+e^- o D_sD_s^*$

The cross sections around 4.18 GeV is higher than others'. There seems contribution from $\psi(4415)$.

Born cross section of $e^+e^- o D_s^*D_s^*$

Seems related with Y(4260). And contribution from $\psi(4415)$.

Simultaneous fit

- Cover D_sD_s , $D_sD_s^*$ and $D_s^*D_s^*$
- Use Flatte for parameterization.

$$F(s)_{i} = \frac{\sqrt{12\pi \cdot \Gamma_{ee}\Gamma_{i}}}{s - m^{2} - i \cdot m \cdot (\sum_{i=1}^{3} g_{i} \cdot q_{i})},$$
(1)

here the i = 1, 2, 3 represent D_sD_s , $D_sD_s^*$ and $D_s^*D_s^*$, q_i is momentum of D_s or D_s^* , and $\Gamma_i = q_i \cdot g_i$.

- 5 Flatte formulas for each mode.
- The phase is different for different mode and different Flatte.

$$\sigma(\mathbf{s})_i = \sum_{j=0}^5 \mathbf{e}^{\mathbf{i} \cdot \phi_{ij}} \cdot F(\mathbf{s})_j$$
 (2)

Likelihood

- Assuming the cross section and error follow Gaussian distribution.
- Symmetric error for each point of D_sD_s* and D_s*D_s*.

$$G(\mathbf{x}, \sigma, t)_i = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(\mathbf{x} - t)^2}{2\sigma^2}}$$
(3)

• Asymmetric error (σ_{lo} and σ_{hi}) for each point of D_sD_s .

$$t < x : G(x, \sigma_{lo}, t)_i$$
 and $t > x : G(x, \sigma_{hi}, t)_i$ (4)

- x and σ are cross section and its error.
- Minuit to find the minimum of −2 · log(L), here L = L_{D_sD_s} * L_{D_sD_s} * L_{D_s*D_s*}

Fit results

Five states for three channels. $\psi(4040), \psi(4160), \mathbf{Y}(4260), \psi(4415)$ and another one $\mathbf{X}(4500)$. Parameters are floated.

Fit results

Mass (MeV)	Γ_{ee} (eV)	$g_{D_sD_s}$	$g_{D_sD_s^*}$	$g_{D_s^*D_s^*}$	ϕ
4030.1 ± 0.6	2.4 ± 0.3	125 ± 4	21 ± 2	0 ± 0	6.2 ± 0.01
4200.9 ± 0.8	13.6 ± 1.3	5.0 ± 0.3	172 ± 4	60 ± 4	6.3 ± 0.02
4263.0 ± 0.5	8.0 ± 0.8	2.8 ± 0.2	30 ± 1	142 ± 3	5.4 ± 0.04
4411.8 ± 1.3	8.9 ± 0.9	1.0 ± 0.1	68 ± 2	89 ± 4	0.07 ± 0.0
4500.0 ± 0.1	9.0 ± 3.4	0 ± 0	344 ± 20	22 ± 6	0

K-matrix

S. U. Chung, Ana. Physik 4, 404 (1995).

For a two-body scattering: $ab \rightarrow cd$

Cross section:

$$\sigma_{fi} = (\frac{4\pi}{q_i^2})(2J+1) \mid T_{jj}^2(s) \mid^2$$
 (5)

The scatter amplitude that initial state $|i\rangle$ will be found in final state $|f\rangle$

$$: S_{fi} = \langle f \mid S \mid i \rangle \tag{6}$$

Unitary for S: $SS^{\dagger} = S^{\dagger}S = I$

Can be written as: S = I + 2iT,

So: $(T^{-1} + iI)^{\dagger} = T^{-1} + iI$

define K-matrix:

$$K^{-1} = T^{-1} + iI (7)$$

Since S is unitary, K is Hermitian, $K^{\dagger} = K$,

$$T = \frac{K}{1 - iK}.$$
(8)

$$Re(T) = \frac{K}{I + K^2},$$
 (9)

$$Im(T) = \frac{K^2}{I + K^2} \tag{10}$$

The amplitude is the imaginary part. K_{ij} describe the coupling effect between i and j channels.

Since in strong interaction:

$$< f \mid S \mid i> = < i \mid S \mid f>$$
, so *K*-matrix is symmetric.

one way to define K-matrix

The Lorentz invariant:

$$\hat{\mathcal{K}}_{ij} = \sum_{\alpha} \frac{g_{\alpha i}(\mathbf{s})g_{\alpha j}(\mathbf{s})}{(m_{\alpha}^{2} - \mathbf{s})(\sqrt{\rho_{i}\rho_{j}})} \tag{11}$$

$$\hat{T} = \hat{K} + i\hat{K}\rho\hat{T} \tag{12}$$

phase space matrix: $\rho = \begin{pmatrix} \rho_0 & 0 \\ 0 & \rho_1 \end{pmatrix}$ s-wave two-body: $\rho_1 = 2\mathbf{q}_1/\mathbf{m}$ partial decay width: $\Gamma_{\alpha i} = \frac{g_{\alpha i}^2(\mathbf{s})}{m_\alpha}$, i,j means different channels, α represent poles.

Resonance

One decay channel (S-wave) for a resonance:

$$K = \frac{m_0 \Gamma(\mathbf{s})}{m_0^2 - \mathbf{s}} \tag{13}$$

$$\hat{T} = \left[\frac{\mathbf{m}_0 \Gamma_0}{\mathbf{m}_0^2 - \mathbf{s} - i\mathbf{m}_0 \Gamma(\mathbf{m})}\right] \left(\frac{\rho}{\rho_0}\right) \tag{14}$$

A normal relativistic Breit-Wigner.

Resonance

Two decay channel (S-wave) for a resonance:

$$\hat{\mathcal{K}}_{11} = \frac{g_1^2}{m_0^2 - s},$$
 $\hat{\mathcal{K}}_{22} = \frac{g_2^2}{m_0^2 - s},$
 $\hat{\mathcal{K}}_{12} = \hat{\mathcal{K}}_{21} = \frac{g_1 g_2}{m_0^2 - s},$

$$\hat{T} = \frac{1}{1 - \rho_1 \rho_2 D - i(\rho_1 \hat{K}_{11} + \rho_2 \hat{K}_{22})} \begin{pmatrix} \hat{K}_{11} - i\rho_2 D & \hat{K}_{12} \\ \hat{K}_{21} & \hat{K}_{22} - i\rho_1 D \end{pmatrix}$$

$$D = \hat{K}_{11} \hat{K}_{22} - \hat{K}_{12}^2.$$
(15)

$$\hat{T} = \frac{1}{m_0^2 - s - i(\rho_1 g_1^2 + \rho_2 g_2^2)} \begin{pmatrix} g_1^2 & g_1 g_2 \\ g_1 g_2 & g_2^2 \end{pmatrix}$$
(16)

branching fraction $\mathcal{B}_i = \frac{g_i}{\sqrt{m_0 \Gamma_0}}$ The Flatte formula for $f_0(980) \to \pi^+ \pi^- / K^+ K^0$

Comparison between BW and K-matrix

A. Wiranata et.al arXiv:1307.4681.

Argand diagrams

Two resonances are separated well (left), and have large overlapping (right).

BW can not preserve unitary, but K-matrix can.

BW:
$$|BW_1 + BW_2|^2$$
, K-matrix: $K_{ij} = \frac{g_i g_j}{m_1^2 - s} + \frac{g_i g_j}{m_2^2 - s}$

Problem in K-matrix

Below threshold,

$$p = \frac{\sqrt{(s - (m1 + m2)^2)(s - (m1 - m2)^2)}}{2\sqrt{s}}$$
(17)

is imaginary number.

Phase space factor p^{2L+1}

$$L = 0$$
, ip , $L = 1$, $-ip^3$,

change the sign to real part in denominator $m_0^2 - s - i \cdot p^{2L+1}$. change the pole position.

Thanks Guangyi Tang and A. Nefediev for explains

How to deal with the *P*-wave in *K*-matrix?

One approximation

T. V. Uglov *et. al.* arXiv: 1611.07582. Assume:

$$K_{ij} = \sum_{\alpha} G_{i\alpha}(s) \frac{1}{m_{\alpha}^2 - s} G_{j\alpha}(s)$$
 (18)

and

$$G_{i\alpha}^{2}(\mathbf{s}) = g_{i\alpha}^{2} \frac{\rho_{i}^{2L+1}}{\sqrt{\mathbf{s}}} \theta(\mathbf{s} - \mathbf{s}_{i})$$
 (19)

 $\theta(s-s_i)$ is a step function. So no problem below threshold, but not exactly correct.

Any better solution?

Another way

Dispersion relation:

$$\begin{array}{l} f(z) = \frac{1}{\pi} \int_{z_R}^{\infty} dz' \frac{Im(f(z'))}{z'-z} \\ \text{When } \mid \textbf{z} \mid \rightarrow \infty, \mid \frac{f(z)}{z} \mid \rightarrow 0, \\ \text{first order substraction:} \\ \frac{f(z)-f(z_0)}{z-z_0} \\ f(\textbf{z}) = \end{array}$$

$$f(z_0) + rac{z-z_0}{\pi} \int_{z_R}^{\infty} dz' rac{Im(f(z'))}{(z'-z_0)(z'-z)}$$
 second order substraction: $rac{f'(z)-f'(z_0)}{z} \dots$

In this case:

$$\mathit{f}(\mathit{z}=\mathit{s}) = \mathit{Im}(\mathit{Phsp}(\mathit{s}))$$

S-wave phase space p^1 : first order substraction. P-wave phase space p^3 : $f(z) = f(z_0) + (z - z_0)f(z_0) + \frac{(z-z_0)^2}{\pi} \int_{z_R}^{\infty} dz' \frac{f(z')}{(z'-z_0)^2(z'-z)}$

Phase space

P-wave phase space for $D_s^+D_s^-$, $D_s^{*+}D_s^-$ and $D_s^{*+}D_s^{*-}$. An extra linear part: $c \cdot s$. Take the threshold as substraction point. Real part (blue): mass renormalization. Imaginary part (brown): width. Denominator in normal BW: $(m^2 - s) + Im(Phsp(s))$

A naive fit

Use

$$K_{ij} = \sum_{\alpha} G_{i\alpha}(\mathbf{s}) \frac{1}{m_{\alpha}^2 - \mathbf{s}} G_{j\alpha}(\mathbf{s})$$
 (20)

and

$$G_{i\alpha}^2(s) = g_{i\alpha}^2 \rho_i \tag{21}$$

Then the cross section:

$$\sigma_i(\mathbf{s}) = \frac{4\pi\alpha}{\mathbf{s}}(\rho_i) \mid \sum_{\alpha,\beta} \mathbf{g}_{\mathbf{e}\alpha} \mathbf{P}_{\alpha\beta}(\mathbf{s}) \mathbf{g}_{i\beta} \mid^2$$
 (22)

$$\mathbf{P}^{-1} = (\mathbf{m}_{lpha}^2 - \mathbf{s})\delta_{lphaeta} - \mathbf{i}\sum_{\mathbf{m}}\mathbf{G}_{\mathbf{m}lpha}\mathbf{G}_{\mathbf{m}eta}$$

Electronic width: partial decay width:

$$\Gamma_{\mathbf{e}\alpha} = \frac{\alpha \mathbf{g}_{\mathbf{e}\alpha}^2}{3\mathbf{m}_{\alpha}^3}, \qquad \qquad \Gamma_{i\alpha} = \frac{\mathbf{g}_{i\alpha}^2 \rho_i}{\mathbf{M}_{\alpha}^2}$$

Very preliminary fit result

Five resonances. The $e^+e^- \rightarrow D_s^*D_s$ and $D_s^*D_s^*$ can be fitted. This method works.

More channels

CPU time: only 13.4s for three channels, so we can include more channels.

Assume no difference between isospin channels, 9 open-charm in total:

- Three strange-charmed meson D_sD_s ($D_s^{(*)}D_s^{(*)}$) channels,
- Three $DD (D^{0(*)}D^{0(*)}/D^{+(*)}D^{-(*)})$ channels,
- Three πDD channels, separate S and P wave,

Add hidden-charm channels, about 10:

$$\pi^+\pi^-(\eta,\eta') {\it J/\psi},\, \pi^+\pi^-{\it h_c},\, \gamma(\omega,\phi)\chi_{\it cJ},\, \gamma(\rho)\eta_{\it c}\,\dots \, {\rm Above} \, 4.0 \,\, {\rm GeV},$$

20 channels in total, parameters:

210 coupling constants, 20 phase space, several poles: masses, electronic widths.

 \sim 300 parameters in total, operable.

Precise measurements should be provided.

Summary and questions

- How to explain the cross sections of open-charm channels $(D_sD_s, D_s^*D_s, D_s^*D_s^*)$?
- Breit-Wigner and Flatte functions are not suitable above open-charm threshold.
- K-matrix seems better, still has problems.
- The *p*-wave phase space can be calculated and fitted.

With the precise measurements, maybe we can find all the charmonium(-like) states and all the branching fractions.

Thanks very much for your comments and suggestions.