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As we discussed before:
Breit-Wigner is not correct in multi-channel case.
But to get the experimental results, we need the
parameterization to do ISR correction or get

efficiency.

The question is:
How to parameterize the line-shape correctly?
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Introduction

All the XYZ states are observed in exclusive channels.
Open charm should be the most favored decay channels.
Haven't observed for Y(4260),Y(4360) ...
ππJ/ψ in Y(4260) decays is dominant by f0J/ψ, so first
study the final states with ss̄.

...1 At BESIII, the cross sections for exclusive channels will be
measured as much as possible,

...2 After that, how to do parameterization?

...3 Coupled channel effect should be huge around thresholds
and should be considered,

...4 Breit-Wigner is not a correct way to fit the cross sections,

...5 K-matrix can deal with the coupled channel effect.
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Open charm channels

Data sets: XYZ + R-scan data.
More precisely than other experiment's results.

e+e− → DsDs

e+e− → DsD∗
s

e+e− → D∗
sD

∗
s

e+e− → D∗
sDs0(2317),D∗

sDs1(2460),DsDs1(2460)
(thresholds around 4.43 GeV, not included yet)
other channels will be included.
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Born cross section of e+e− → DsDs
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A narrow ψ(4040) from R-scan data.
Dip at 4.23 GeV, more clear from XYZ-data.
Maybe due to the interference between Y(4260)/Y(4220) and
other charmonium states.
And there seems contribution from ψ(4415).

Systematic uncertainty is very large when cross section
changed dramatically due to paramterization.
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Born cross section of e+e− → DsD∗
s
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The cross sections around 4.18 GeV is higher than others'.
There seems contribution from ψ(4415).
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Born cross section of e+e− → D∗
sD

∗
s
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Seems related with Y(4260). And contribution from ψ(4415).
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Simultaneous fit

Cover DsDs , DsD∗
s and D∗

sD
∗
s

Use Flatte for parameterization.

F(s)i =
√
12π · ΓeeΓi

s−m2 − i ·m · (
∑3

i=1 gi · qi)
, (1)

here the i = 1, 2, 3 represent DsDs, DsD∗
s and D∗

sD
∗
s,

qi is momentum of Ds or D∗
s, and Γi = qi · gi.

5 Flatte formulas for each mode.
The phase is different for different mode and different
Flatte.

σ(s)i =
5∑
j=0

ei·ϕij · F(s)j (2)
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Likelihood

Assuming the cross section and error follow Gaussian
distribution.
Symmetric error for each point of DsD∗

s and D∗
sD

∗
s.

G(x, σ, t)i =
1√
2πσ

e−
(x−t)2

2σ2 (3)

Asymmetric error (σlo and σhi) for each point of DsDs.
t < x : G(x, σlo, t)i and t > x : G(x, σhi, t)i (4)

x and σ are cross section and its error.
Minuit to find the minimum of −2 · log(L),
here L = LDsDs ∗ LDsD∗

s
∗ LD∗

sD∗
s
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Fit results
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Five states for three channels.
ψ(4040), ψ(4160),Y(4260), ψ(4415)
and another one X(4500).
Parameters are floated.
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Fit results

Mass (MeV) Γee (eV) gDsDs gDsD∗
s

gD∗
sD∗

s
ϕ

4030.1± 0.6 2.4± 0.3 125± 4 21± 2 0± 0 6.2± 0.01
4200.9± 0.8 13.6± 1.3 5.0± 0.3 172± 4 60± 4 6.3± 0.02
4263.0± 0.5 8.0± 0.8 2.8± 0.2 30± 1 142± 3 5.4± 0.04
4411.8± 1.3 8.9± 0.9 1.0± 0.1 68± 2 89± 4 0.07± 0.02
4500.0± 0.1 9.0± 3.4 0± 0 344± 20 22± 6 0
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K-matrix
S. U. Chung, Ana. Physik 4, 404 (1995).
For a two-body scattering: ab → cd
Cross section:

σfi = (
4π

q2i
)(2J+ 1) | T2

ji(s) |2 (5)

The scatter amplitude that initial state | i > will be found in final
state < f |

: Sfi =< f | S | i > (6)

Unitary for S: SS† = S†S = I
Can be written as: S = I+ 2iT,
So: (T−1 + iI)† = T−1 + iI
define K-matrix:

K−1 = T−1 + iI (7)
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Since S is unitary, K is Hermitian, K† = K,

T =
K

1− iK
. (8)

Re(T) =
K

I+ K2 , (9)

Im(T) =
K2

I+ K2 (10)

The amplitude is the imaginary part.
Kij describe the coupling effect between i and j channels.

Since in strong interaction:
< f | S | i >=< i | S | f >,
so K-matrix is symmetric.
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one way to define K-matrix

The Lorentz invariant:

K̂ij =
∑
α

gαi(s)gαj(s)
(m2

α − s)(√ρiρj)
(11)

T̂ = K̂+ iK̂ρT̂ (12)

phase space matrix: ρ =

(
ρ0 0
0 ρ1

)
s-wave two-body: ρ1 = 2q1/m
partial decay width: Γαi =

g2αi(s)
mα

,
i, j means different channels, α represent poles.
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Resonance

One decay channel (S-wave) for a resonance:

K =
m0Γ(s)
m2

0 − s
(13)

T̂ = [
m0Γ0

m2
0 − s− im0Γ(m)

](
ρ

ρ0
) (14)

A normal relativistic Breit-Wigner.
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Resonance
Two decay channel (S-wave) for a resonance:
K̂11 =

g21
m2

0−s ,

K̂22 =
g22

m2
0−s ,

K̂12 = K̂21 =
g1g2
m2

0−s ,

T̂ =
1

1− ρ1ρ2D− i(ρ1K̂11 + ρ2K̂22)

(
K̂11 − iρ2D K̂12

K̂21 K̂22 − iρ1D

)
(15)

D = K̂11K̂22 − K̂12
2
,

T̂ =
1

m2
0 − s− i(ρ1g21 + ρ2g22)

(
g21 g1g2
g1g2 g22

)
(16)

branching fraction Bi =
gi√
m0Γ0

The Flatte formula for f0(980) → π+π−/K+K0
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Comparison between BW and K-matrix
A. Wiranata et.al arXiv:1307.4681.
Argand diagrams

Two resonances are separated well (left), and have large
overlapping (right).
BW can not preserve unitary, but K-matrix can.
BW: | BW1 + BW2 |2, K-matrix: Kij =

gigj
m2

1−s +
gigj

m2
2−s
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Problem in K-matrix

Below threshold,

p =

√
(s− (m1 +m2)2)(s− (m1−m2)2)

2
√
s

(17)

is imaginary number.
Phase space factor p2L+1

L = 0, ip, L = 1,−ip3,
change the sign to real part in denominator m2

0 − s− i · p2L+1.
change the pole position.
Thanks Guangyi Tang and A. Nefediev for explains

How to deal with the P-wave in K-matrix?
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One approximation

T. V. Uglov et. al. arXiv: 1611.07582.
Assume:

Kij =
∑
α

Giα(s)
1

m2
α − s

Gjα(s) (18)

and

G2
iα(s) = g2iα

p2L+1
i√
s
θ(s− si) (19)

θ(s− si) is a step function. So no problem below threshold, but
not exactly correct.

Any better solution?
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Another way

Dispersion relation:
f(z) = 1

π

∫∞
zR

dz′ Im(f(z′))
z′−z

When | z |→ ∞, | f(z)
z |→ 0,

first order substraction:
f(z)−f(z0)

z−z0 :
f(z) =
f(z0) + z−z0

π

∫∞
zR

dz′ Im(f(z′))
(z′−z0)(z′−z)

second order substraction:
f′(z)−f′(z0)

z−z0 ...

In this case:
f(z = s) = Im(Phsp(s))

S-wave phase space p1:
first order substraction.
P-wave phase space p3:
f(z) = f(z0) + (z− z0)f′(z0) +
(z−z0)2

π

∫∞
zR

dz′ f(z′)
(z′−z0)2(z′−z)
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Phase space

P-wave phase space for D+
s D

−
s ,

D∗+
s D−

s and D∗+
s D∗−

s .
An extra linear part: c · s.
Take the threshold as
substraction point.
Real part (blue): mass
renormalization.
Imaginary part (brown): width.
Denominator in normal BW:
(m2 − s) + Im(Phsp(s))

22 / 26



A naive fit

Use
Kij =

∑
α

Giα(s)
1

m2
α − s

Gjα(s) (20)

and
G2
iα(s) = g2iαρi (21)

Then the cross section:

σi(s) =
4πα

s
(ρi) |

∑
α,β

geαPαβ(s)giβ |2 (22)

P−1 = (m2
α − s)δαβ − i

∑
mGmαGmβ

Electronic width: partial decay width:
Γeα =

αg2eα
3m3

α
, Γiα =

g2iαρi
M2

α
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Very preliminary fit result
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Five resonances.
The e+e− → D∗

sDs and D∗
sD

∗
s

can be fitted.
This method works.
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More channels
CPU time: only 13.4s for three channels, so we can include
more channels.
Assume no difference between isospin channels, 9 open-charm
in total:

Three strange-charmed meson DsDs (D
(∗)
s D(∗)

s ) channels,
Three DD (D0(∗)D0(∗)/D+(∗)D−(∗)) channels,
Three πDD channels, separate S and P wave,

Add hidden-charm channels, about 10:
π+π−(η, η′)J/ψ, π+π−hc, γ(ω, ϕ)χcJ, γ(ρ)ηc ... Above 4.0 GeV,

20 channels in total, parameters:
210 coupling constants, 20 phase space,
several poles: masses, electronic widths.
∼300 parameters in total, operable.
Precise measurements should be provided.
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Summary and questions

How to explain the cross sections of open-charm channels
(DsDs,D∗

sDs,D∗
sD

∗
s)?

Breit-Wigner and Flatte functions are not suitable above
open-charm threshold.
K-matrix seems better, still has problems.
The p-wave phase space can be calculated and fitted.

With the precise measurements, maybe we can find all the
charmonium(-like) states and all the branching fractions.

Thanks very much for your comments
and suggestions.
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