Search for the h_c(2P)

Ryan Mitchell, Zhentian Sun Indiana University June 13, 2017

1

Overview of the $h_c(2P)$

The region around 3.9 GeV is unclear... X(3872), X(3915), Y(3940), Z(3930), X(3940)Which are conventional and which aren't?

Finding the $h_c(2P)$ could bring clarification.

Cross sections for $\pi^+\pi^-\psi(1S,2S)$ and $\pi^+\pi^-h_c(1P)$ are on the order of 50 – 100 pb; we probably expect the same for $\pi^+\pi^-h_c(2P)$.

Furthermore, mass and decay width predictions for the $h_c(2P)$ exist:

PHYSICAL REVIEW D 72, 054026 (2005)

Higher charmonia

T. Barnes,^{1,*} S. Godfrey,^{2,†} and E. S. Swanson^{3,‡}

Overview of the $h_c(2P)$

PHYSICAL REVIEW D 72, 054026 (2005)

Higher charmonia

T. Barnes, ^{1,*} S. Godfrey, ^{2,†} and E. S. Swanson^{3,‡}

2P Mass Predictions:

Multiplet	State	Expt.	Input (NR)	Theor.	
				NR	GI
2P	$\chi_2(2^3 P_2)$			3972	3979
	$\chi_1(2^3 P_1)$			3925	3953
	$\chi_0(2^3 P_0)$			3852	3916
	$h_c(2^1 P_1)$			3934	3956

2P DD Decay Width Predictions:

Meson	State	Mode	$\Gamma_{\rm thy}~({\rm MeV})$	Amps. ($GeV^{-1/2}$)
$\chi_2(3972)$	$2^{3}P_{2}$	DD	42	${}^{1}\text{D}_{2} = +0.0992$
/(_ /	_	DD^*	37	${}^{3}D_{2}^{-} = -0.1172$
		$D_s D_s$	0.7	${}^{1}D_{2}^{-} = +0.0202$
		total	80	
$\chi_1(3925)$	$2^{3}P_{1}$	DD^*	165	${}^{3}S_{1} = +0.2883$
				$^{3}D_{1} = -0.0525$
$\chi_0(3852)$	$2^{3}P_{0}$	DD	30	${}^{1}S_{0} = +0.1025$
$h_c(3934)$	$2^{1}P_{1}$	DD*	87	${}^{3}S_{1} = -0.1847$
				$^{3}D_{1} = -0.0851$

Strategy

I. Measure the e⁺e⁻ $\rightarrow \pi^+\pi^-D^+D^{*-}$ cross section.

II. Search for $\pi^+\pi^-h_c(2P)$ with $h_c(2P) \rightarrow D^+D^{*-}$.

III. Compare to $e^+e^- \rightarrow \pi^-\pi^0 D^+ \overline{D}^{*0}$.

Reconstruct $\pi^+\pi^-D^+$ with $D^+ \rightarrow K^-\pi^+\pi^+$ (and charge conjugate, always implied).

Isolate the reaction by finding the D⁺ in K^{- $\pi^+\pi^+$} and looking for the D^{*-} in the (K^{- $\pi^+\pi^+$) $\pi^+\pi^-$ missing mass. Use all combinations.}

Use standard track and angle requirements for all tracks.

Only use PID for the kaon: $P(K) > P(\pi)$ and $P(K) > 10^{-3}$.

Use three classes of data:

SIGNAL MC: Includes $\pi^+\pi^-D^+D^{*-}$ and its charge conjugate. *The charge-conjugate channel is an irreducible background, since* $D^{*+} \rightarrow \pi^0 D^+$.

INCLUSIVE MC: (1) Includes full samples of inclusive DDbar MC at 4.42 and 4.60 GeV (*including important channels of the form πD*D**).
(2) We also add 200 pb each for all charge combinations of the form ππDD* (*which includes signal as well as potential peaking backgrounds*).

DATA: Currently use all of the 2014 data: 4420, 4470, 4530, 4575, 4600 MeV (*but should eventually also include the 4360 data from 2013*).

* Find the D⁺ using the D⁺ \rightarrow K⁻ $\pi^+\pi^+$ mass (*x*-axis).

* Find the D*- using the D+ π + π - recoil mass [RM((K- π + π +)) π + π -) + M(K- π + π +) - M(D+)] (*y*-*axis*).

* Select the D⁺ by requiring Mass(K^{- π + π +) be within 10 MeV of the D⁺ mass.}

* After selecting D⁺ candidates, there is a clear peak for the D^{*-} in the D⁺ $\pi^+\pi^-$ recoil mass. * The "wrong-sign" D⁺ decay to K⁺ $\pi^+\pi^-$ describes the background shape well.

SIGNAL MC

INCLUSIVE MC

DATA

Fits (*current technique*), three free parameters:

- * Take the signal shape from signal MC (there are two components the charge conjugate is an irreducible background, the ratio is fixed).
- * Take the **background shape** from the wrong sign D decay and multiply by a 1st order polynomial (*maybe not necessary*).

SIGNAL MC

INCLUSIVE MC

DATA

Events / 2 MeV/c²

* Find the efficiency and number of observed events from the fits.

(assuming flat cross section for ISR calculation)

- * Get the ISR correction factor from SIGNAL MC.
- * Divide INCLUSIVE MC and DATA by the efficiency, luminosity, D branching fraction, and ISR correction factor to get the Born Cross Section.

SIGNAL MC

(assuming flat cross section for ISR calculation; threshold = 4.2 GeV) **INCLUSIVE MC**

Strategy

I. Measure the e⁺e⁻ $\rightarrow \pi^+\pi^-D^+D^{*-}$ cross section.

The cross section is ~60 pb, consistent with $\pi^+\pi^-\psi(1S,2S)$ and $\pi^+\pi^-h_c(2P)$. Systematic Errors: luminosity; tracking; fitting; ISR.

II. Search for $\pi^+\pi^-h_c(2P)$ with $h_c(2P) \rightarrow D^+D^{*-}$.

III. Compare to $e^+e^- \rightarrow \pi^-\pi^0 D^+ \overline{D}^{*0}$.

II. Search for $\pi^+\pi^-h_c(2P)$ with $h_c(2P) \rightarrow D^+D^{*-}$

Also look at M(D⁺ $\pi^+\pi^-$) (where there could be a D₁(2420)), and $\cos \vartheta_{\pi\pi}$ (which should follow $1 + \cos^2 \vartheta_{\pi\pi}$ for the $h_c(2P)$)...

II. Search for $\pi^+\pi^-h_c(2P)$ with $h_c(2P) \rightarrow D^+D^{*-}$

* Distributions for M(D+D*-), M(D+ π + π -), and cos($\vartheta_{\pi\pi}$).

II. Search for $\pi^+\pi^-h_c(2P)$ with $h_c(2P) \rightarrow D^+D^{*-}$

* Perform simultaneous fits at 4420 and 4600 using Phase Space and D₁+(2420)D*-.

II. Search for $\pi^+\pi^-h_c(2P)$ with $h_c(2P) \rightarrow D^+D^{*-}$

* Use Phase Space and D_1 +(2420) D^* - and $h_c(2P)$ (with parameters from theory).

II. Search for $\pi^+\pi^-h_c(2P)$ with $h_c(2P) \rightarrow D^+D^{*-}$

* Use Phase Space and D_1 +(2420) D^* - and $h_c(2P)$ (with best parameters).

II. Search for $\pi^+\pi^-h_c(2P)$ with $h_c(2P) \rightarrow D^+D^{*-}$

 $h_c(2P)$ Parameter χ^2 Scan

Strategy

I. Measure the e⁺e⁻ $\rightarrow \pi^+\pi^-D^+D^{*-}$ cross section.

The cross section is ~60 pb, consistent with $\pi^+\pi^-\psi(1S,2S)$ and $\pi^+\pi^-h_c(2P)$. Systematic Errors: luminosity; tracking; fitting; ISR.

II. Search for $\pi^+\pi^-h_c(2P)$ with $h_c(2P) \rightarrow D^+D^{*-}$.

Including an h_c(2P) signal describes data better than pure phase space and D₁D*.
 The statistical significance calculation requires more thought.
 The mass and width are consistent with theoretical expectations.
 Systematic Errors: fitting; mass calibration.

III. Compare to $e^+e^- \rightarrow \pi^-\pi^0 D^+ \overline{D}^{*0}$.

Isospin Ratios

$$\begin{array}{c} \text{These ratios always hold:} \\ \pi^{+}\pi^{-}D^{+}D^{*-}:\pi^{+}\pi^{-}D^{0}D^{\bar{*}0} = 1:1 \\ \pi^{-}\pi^{0}D^{+}D^{\bar{*}0}:\pi^{+}\pi^{0}D^{0}D^{*-} = 1:1 \\ \pi^{0}\pi^{0}D^{+}D^{*-}:\pi^{0}\pi^{0}D^{0}D^{\bar{*}0} = 1:1 \\ \pi^{0}\pi^{0}D^{+}D^{*-}:\pi^{0}\pi^{0}D^{0}D^{\bar{*}0} = 1:1 \\ \text{For } (\pi\pi)_{I=0}(D\bar{D}^{\bar{*}})_{I=0}: \\ \pi^{+}\pi^{-}D^{+}D^{*-}:\pi^{-}\pi^{0}D^{+}D^{\bar{*}0}:\pi^{0}\pi^{0}D^{+}D^{*-} = 2:0:1 \\ \text{For } (\pi\pi)_{I-1}(D\bar{D}^{*})_{I-1}: \\ \pi^{+}\pi^{-}D^{+}D^{*-}:\pi^{-}\pi^{0}D^{+}D^{\bar{*}0}:\pi^{0}\pi^{0}D^{+}D^{*-} = 1:2:0 \\ \text{For } (D\pi)_{I-1/2}(D^{*}\pi)_{I-1/2}: \\ \pi^{+}\pi^{-}D^{+}D^{*-}:\pi^{-}\pi^{0}D^{+}D^{\bar{*}0}:\pi^{0}\pi^{0}D^{+}D^{*-} = 4:4:1 \end{array} \right) \xrightarrow{\sigma(\pi^{-}\pi^{0}D^{+}D^{\bar{*}0})} = 1$$

<u>Use almost the same method as before: Reconstruct $\pi^-\pi^0 D^+$ with $D^+ \rightarrow K^-\pi^+\pi^+$ </u>

Isolate the reaction by finding the D⁺ in K^{- $\pi^+\pi^+$} and looking for the D^{*0} in the (K^{- $\pi^+\pi^+$) $\pi^-\pi^0$ missing mass. Use all combinations. Same track selections.}

Perform a 1C fit for the π^0 mass; require $\chi^2 < 3$.

Use four classes of data:

SIGNAL MC: Includes $\pi^-\pi^0 D^+ D^{*0}$ and $\pi^-\pi^0 D^0 D^{*+}$. *The latter is an irreducible background, since* $D^{*+} \rightarrow \pi^0 D^+$.

 $\pi D^* D^* MC$: Since this channel has peaking backgrounds, we generated a larger sample than what is in the DDbar MC. Charge combinations are fixed by isospin.

INCLUSIVE MC: (1) Includes full samples of inclusive DDbar MC at 4.42 and 4.60 GeV (*including important channels of the form πD*D**).
(2) We also add 200 pb each for all charge combinations of the form ππDD* (*which includes signal as well as potential peaking backgrounds*).

DATA: Currently use all of the 2014 data: 4420, 4470, 4530, 4575, 4600 MeV.

* Find the D⁺ using the D⁺ \rightarrow K⁻ π ⁺ π ⁺ mass (*x*-*axis*).

* Find the D*0 using the D+ $\pi^{-}\pi^{0}$ recoil mass [RM((K- $\pi^{+}\pi^{+})\pi^{-}\pi^{0}) + M(K-\pi^{+}\pi^{+}) - M(D^{+})]$ (y-axis).

* There are large peaking backgrounds from different combinations of πD^*D^* .

Use the top to fit the data; then fix the size of the bottom...

Fits (current technique), three free parameters:

- * Get the πD^*D^* background shape from MC; fix its size using data.
- * Use a 1st order polynomial for non-peaking backgrounds.
- * Take the **signal** shape from signal MC (*there are two components* $-\pi^{-}\pi^{0}D^{0}D^{*+}$ *is an irreducible background*).

(these plots don't include c.c.)

(these plots don't include c.c.)

* Find the efficiency and number of observed events from the fits.

(assuming flat cross section for ISR calculation)

- * Get the ISR correction factor from SIGNAL MC.
- * Divide INCLUSIVE MC and DATA by the efficiency, luminosity, D branching fraction, and ISR correction factor to get the Born Cross Section. Add charge conjugate channels.

SIGNAL MC

(assuming flat cross section for ISR calculation; threshold = 4.2 GeV) **INCLUSIVE MC**

DATA

Strategy

I. Measure the e⁺e⁻ $\rightarrow \pi^+\pi^-D^+D^{*-}$ cross section.

The cross section is ~60 pb, consistent with $\pi^+\pi^-\psi(1S,2S)$ and $\pi^+\pi^-h_c(2P)$. Systematic Errors: luminosity; tracking; fitting; ISR.

II. Search for $\pi^+\pi^-h_c(2P)$ with $h_c(2P) \rightarrow D^+D^{*-}$.

Including an h_c(2P) signal describes data better than pure phase space and D₁D*.
 The statistical significance calculation requires more thought.
 The mass and width are consistent with theoretical expectations.
 Systematic Errors: fitting; mass calibration.

III. Compare to $e^+e^- \rightarrow \pi^-\pi^0 D^+ \overline{D}^{*0}$.

The cross section ratio appears to be consistent with predominantly isospin-0 DD* at 4420 MeV and a smaller fraction of isospin-0 at 4600 MeV. *Systematic Errors: luminosity; tracking; fitting; \pi D^*D^* model; ISR.*

The $h_c(2P)$ is suggestive! We are also exploring an alternate method. What else can we do??

Backup: Background Channels (I)

1. $\pi^+\pi^-D^+D^{*-}$	1a. $\pi^+\pi^-D^+(\pi^0D^-)$	2a
	1b. $\pi^+\pi^-D^+(\pi^-D^0)$	
2. $\pi^+\pi^-D^-D^{*+}$	2a. $\pi^+\pi^-D^-(\pi^0D^+)$	1a
	2b. $\pi^+\pi^-D^-(\pi^+D^0)$	
3. $\pi^+\pi^-D^0D^{*0}$	3a. $\pi^+\pi^- D^0(\pi^0 \bar{D^0})$	2b 4a 4b 6b 8b 13b 13d 14b 14d 15d
	3b. $\pi^+\pi^- D^0(\gamma D^0)$	
4. $\pi^+\pi^-\bar{D}^0D^{*0}$	4a. $\pi^+\pi^- \bar{D^0}(\pi^0 D^0)$	1b 3a 3b 6b 8b 13b 13d 14b 14d 15d
	4b. $\pi^{+}\pi^{-}D^{0}(\gamma D^{0})$	
5. $\pi^+ \pi^0 D^- D^{*0}$	5a. $\pi^+ \pi^0 D^- (\pi^0 D^0)$	1a 2a 6a 10b 13a 13c 15b
	5b. $\pi^+ \pi^0 D^- (\gamma D^0)$	
6. $\pi^+ \pi^0 D^0 D^{*-}$	6a. $\pi^+ \pi^0 D^0 (\pi^0 D^-)$	3a 4a 5a 5b 8b 10b 13a 13b 13c 14b 15b 15d
	6b. $\pi^+ \pi^0 D^0 (\pi^- D^0)$	
7. $\pi^{-}\pi^{0}D^{+}D^{*0}$	7a. $\pi^- \pi^0 D^+ (\pi^0 \bar{D^0})$	1a 2a 8a 9b 14a 14c 15c
	7b. $\pi^{-}\pi^{0}D^{+}(\gamma D^{0})$	
8. $\pi^{-}\pi^{0}D^{0}D^{*+}$	8a. $\pi^- \pi^0 D^0(\pi^0 D^+)$	3a 4a 6b 7a 7b 9b 13b 14a 14b 14c 15c 15d
	8b. $\pi^- \pi^0 D^0 (\pi^+ D^0)$	
9. $\pi^0 \pi^0 D^+ D^{*-}$	9a. $\pi^0 \pi^0 D^+ (\pi^0 D^-)$	7a 8a 10a 14a 15a 15c
	9b. $\pi^0 \pi^0 D^+ (\pi^- \bar{D^0})$	
10. $\pi^0 \pi^0 D^- D^{*+}$	10a. $\pi^0 \pi^0 D^- (\pi^0 D^+)$	5a 6a 9a 13a 15a 15b
	10b. $\pi^0 \pi^0 D^- (\pi^+ D^0)$	
11. $\pi^0 \pi^0 D^0 D^{*0}$	11a. $\pi^0 \pi^0 D^0 (\pi^0 D^0)$	5a 6a 10b 12a 12b 13a 15b 16a 16b 16c
	11b. $\pi^0 \pi^0 D^0(\gamma D^0)$	
12. $\pi^0 \pi^0 D^0 D^{*0}$	12a. $\pi^0 \pi^0 D^0 (\pi^0 D^0)$	7a 8a 9b 11a 11b 14a 15c 16a 16b 16c
	12b. $\pi^0 \pi^0 \bar{D}^0 (\gamma D^0)$	

Backup: Background Channels (II)

13. $\pi^+ D^{*-} D^{*0}$	13a. $\pi^+(\pi^0 D^-)(\pi^0 D^0)$	
	13b. $\pi^+(\pi^- \bar{D^0})(\pi^0 D^0)$	
	13c. $\pi^+(\pi^0 D^-)(\gamma D^0)$	
	13d. $\pi^+(\pi^- D^0)(\gamma D^0)$	
14. $\pi^- D^{*+} D^{*0}$	14a. $\pi^{-}(\pi^{0}D^{+})(\pi^{0}D^{0})$	
	14b. $\pi^{-}(\pi^{+}D^{0})(\pi^{0}D^{0})$	
	14c. $\pi^{-}(\pi^{0}D^{+})(\gamma D^{0})$	
	14d. $\pi^{-}(\pi^{+}D^{0})(\gamma D^{0})$	
$15. \pi^0 D^{*+} D^{*-}$	15a. $\pi^0(\pi^0 D^+)(\pi^0 D^-)$	
	15b. $\pi^0(\pi^+ D^0)(\pi^0 D^-)$	
	15c. $\pi^0(\pi^0 D^+)(\pi^- D^0)$	
	15d. $\pi^0(\pi^+ D^0)(\pi^- D^0)$	
16. $\pi^0 D^{*0} D^{*0}$	16a. $\pi^0(\pi^0 D^0)(\pi^0 D^0)$	
	16b. $\pi^0(\gamma D^0)(\pi^0 D^0)$	
	16c. $\pi^0(\pi^0 D^0)(\gamma D^0)$	
	16d. $\pi^0(\gamma D^0)(\gamma D^0)$	