€SI

RUB

Cross Section Measurement of Open Charm Final States

Andreas Pitka

Charmonium Meeting 5.4.17

Charmonium Meeting 5.4.17

4

Overview

Basic Event Reconstruction

2 Fitting Procedure

3 Consistency Checks of Fitting Method

Basic Event Reconstruction

Basic Event Reconstruction

Event Topology

Simulation and Analysis with BOSS 6.6.5.p01 and 7.0.2.p02

Use double *D*-Tags

$$e^+e^- \longrightarrow (\pi) D^{(*)} \bar{D}^{(*)}$$

red:

Measurement via missing fourmomentum or exclusively.

D ⁰ Decay Channels							
$D^0 \rightarrow$	$K^{-}\pi^{+}$	(Br = 3.88%)					
$D^0 \rightarrow$	$K^{-}\pi^{+}\pi^{0}$	(Br = 13.9%)					
$D^0 \rightarrow$	$K^{-}2\pi^{+}\pi^{-}$	(Br = 8.08%)					
$D^0 \rightarrow$	$K^- 2\pi^+ \pi^- \pi^0$	(Br = 4.2%)					
$\sum Br_i = 30.06 \%$							

Basic Event Reconstruction

Basic Event Selection

Good Tracks

- Cut on interaction region: $R_{xy} < 1 \,\mathrm{cm}$, $R_z < 10 \,\mathrm{cm}$.
- Cut on direction: $|\cos \vartheta| < 0.93$.

π^{\pm} from $K_{ m S}$ Decays

- Cut on interaction region: $R_{xy} < 20 \,\mathrm{cm}$, $R_z < 20 \,\mathrm{cm}$.
- Cut on direction: $|\cos \vartheta| < 0.93$.

Good Photons

- $0 < t < 700 \,\mathrm{ns}.$
- Barrel ($|\cos \theta| < 0.8$): $E_{\gamma} > 25 \,\mathrm{MeV}$.
- Endcap (0.84 < $|\cos \theta| < 0.92$): $E_{\gamma} > 50 \text{ MeV}.$

Kinematic fit

- Selection of topology by best \mathcal{P} -Value.
- $\chi^2 < 80.$

PID Pions (dE/dx, ToF1 and ToF2) $L(\pi) > L(K)$. Cut on π^0 mass

 $115 \,\mathrm{MeV} < m_{\gamma\gamma}c^2 < 150 \,\mathrm{MeV}.$

Cut on $K_{\rm S}$ mass

 $487 \,\mathrm{MeV} < m_{\pi^+\pi^-} c^2 < 511 \,\mathrm{MeV}.$

Cut on $K_{\rm S}$ decay length $L/\sigma_L > 2$.

PID Kaons (dE/dx, ToF1 and ToF2) $L(K) > L(\pi)$.

Fitting Procedure

Open Charm Channels

Туре	Channel							
DD	D^+D^-	$D^0 \bar{D}^0$						
DD^*	$D^0 ar{D}^{*0}$	$D^+ \bar{D}^{*-}$						
D^*D^*	$D^{*0}\bar{D}^{*0}$	$D^{*+}\bar{D}^{*-}$						
πDD	$\pi^+ D^0 D^-$	$\pi^0 D^+ D^-$	$\pi^0 D^0 ar D^0$					
πDD^*	$\pi^{+}D^{0}D^{*-}$	$\pi^{+}D^{*0}D^{-}$	$\pi^0 D^0 ar D^{*0}$	$\pi^{0}D^{+}D^{*-}$				
$\pi D^* D^*$	$\pi^+ D^{*0} D^{*-}$	$\pi^0 D^{*+} D^{*-}$	$\pi^0 D^{*0} \bar{D}^{*0}$					

- There are 16 channels of type $e^+e^- \rightarrow (\pi)D^{(*)}\bar{D}^{(*)}$.
- 11 channels include one or more D^* mesons $(DD^*, D^*D^*, \pi DD^*, \pi D^*D^*)$.
- 5 channels are without D^* mesons (DD, πDD).

5 channels without D^* mesons

Use exclusive reconstruction.

11 channels with one or more D^* mesons

- Use inclusive reconstruction.
- Exclusive reconstruction as cross check.
- Why? Low efficiency for exclusive reconstruction.

Fitting Procedure

Kinematic Fit

- Perform a kinematic for all event topologies allowed by final state particles.
- Save all fit results for converging fits.
- For multiple converging fits of the same topology (e.g. $e^+e^- \rightarrow \pi^+ D^0 D^{*-}$ with $D^{*-} \rightarrow \bar{D}^0 \pi^-$, $\bar{D}^0 \rightarrow K^+ \pi^-$, $D^0 \rightarrow K^- \pi^+ \pi^0$) save the fit with best \mathcal{P} -value.

Charmonium Meeting 5.4.17

Selection

- $\bullet\,$ Select best event topology by highest $\mathcal{P}\text{-value}.$
- Use either inclusive or exclusive reconstruction, never mix.

Consistency Check

Consistency Checks of Fitting Method

Consistency Check: Inclusive Reconstruction

• Check χ^2 distribution for different channels.

• Technically: use inclusive sample and sort by Monte Carlo Truth.

• Here: $\sqrt{s} = 4.42 \,\mathrm{GeV}$.

Charmonium Meeting 5.4.17

Consistency Checks of Fitting Method

Consistency Check: Exclusive Reconstruction

• Check χ^2 distribution for different channels.

• Technically: use exclusive sample and sort by Monte Carlo Truth.

• Here: $\sqrt{s} = 4.42 \,\mathrm{GeV}$.

Charmonium Meeting 5.4.17

Consistency Checks of Fitting Method

Cross Feed with Inclusive Reconstruction

Rec \MC	$D^{*0} \overline{D}^{*0}$	$D^{*+}D^{*-}$	$D^0 \bar{D}^{*0}$	$D^{+}D^{*-}$	$\pi^0 D^{*0} \overline{D}^{*0}$	$\pi^0 D^{*+} D^{*-}$	$\pi^+ D^{*0} D^{*-}$	$\pi^0 D^0 D^{*0}$	$\pi^0 D^+ D^{*-}$	$\pi^+ D^0 D^{*-}$	$\pi^+ D^- D^{*0}$
$D^{*0}D^{*0}$	1932	4	2	0	0	1	0	53	1	2	0
$D^{*+}D^{*-}$	0	1009	0	0	0	0	0	0	13	10	0
$D^0 D^{*0}$	5	2	8486	0	0	0	1	2	0	1	1
$D^{+}D^{*-}$	1	0	2	6675	0	0	0	0	0	0	1
$\pi^0 D^{*0} D^{*0}$	1	0	0	0	1027	20	8	60	0	1	0
$\pi^0 D^{*+} D^{*-}$	0	0	0	0	1	391	2	1	0	0	0
$\pi^+ D^{*0} D^{*-}$	0	0	0	0	4	5	2548	1	0	2	0
$\pi^{0}D^{0}D^{*0}$	684	7	3	0	20	0	9	3534	7	7	7
$\pi^{0}D^{+}D^{*-}$	0	243	0	1	0	1	8	1	2588	12	24
$\pi^{+}D^{0}D^{*-}$	2	555	1	1	0	2	11	4	25	5530	209
$\pi^+ D^- D^{*0}$	1	5	2	0	0	0	4	23	19	142	5202

- Check for analysis algorithm: matrix almost diagonal.
- Large Cross feed between $D^{*0}\overline{D}^{*0}$ and $\pi^0 D^0 \overline{D}^{*0}$ $(D^{*0} \to D^0 \pi^0)$.
- Large Cross feed between $D^{*+}D^{*-}$ and $\pi^+D^0D^{*-}$ $(D^{*+} \rightarrow D^0\pi^+)$.
- Large Cross feed between $\pi^+ D^0 D^{*-}$ and $\pi^+ D^- D^{*0}$ (same final state for $D^{*-} \rightarrow D^- \pi^0$ and $D^{*0} \rightarrow D^0 \pi^0$).
- Here: $\sqrt{s} = 4.42 \,\mathrm{GeV}$.

Preliminary Cross Section Measurement

Deconvolution of Cross Feed

For a single channel

Example for two channels

Calculation of Cross Sections

- Including cross feed leads to a linear equation system that can be solved approximately for σ .
- Method works beacause background to open charm channels are other open charm channels.
- Second: All open charm channels relevant to the problem are measured.

Cross Section Measurement

Preliminary Result for Cross Sections

- For time reasons: the efficiency matrix was determined at $\sqrt{s}=4.42\,{\rm GeV}$ and used for all $\sqrt{s}.$
- For channels πDD^* , D^*D^* dip at Y(4260).
- No dip for πD^*D^* and DD^* .

Summary

What has been done

- As sideproduct of the background analysis of the channels $\pi^+ D^0 D^{*-}$ and $\pi^+ D^- D^{*0}$ a method was developed to reconstruct all open charm channels of type $(\pi)D^{(*)}D^{(*)}$.
- The method allows to extract all 16 cross sections of type $(\pi)D^{(*)}D^{(*)}$ from data.

Some questions

- Is the ansatz with the efficiency matrix justified?
- Is a method relying so heavily on kinematic fitting suitable for a cross section measurement?