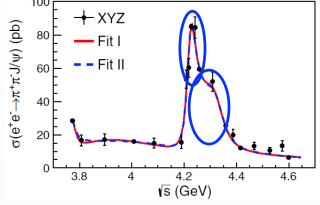
Measurement of cross section of

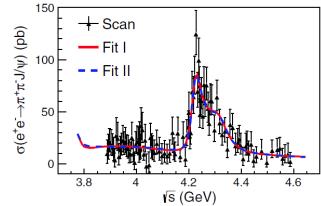
$$e^+e^- \rightarrow \pi^0\pi^0 J/\psi$$
 for XYZ data

Li Peilian, Li Xuhong, Peng Haiping
University of Science and Technology of China

Charmonium Group Meeting
May 23, 2017

Outline


- Motivation
- Data sets
- Events selection
- Background study
- Fit to invariant mass of leptons
- Cross section
- Next to do


Motivation

- Recently, a series of Y states have been observed by Belle, BaBar and BESIII experiments, the observation of Y states has stimulated substantial theoretical discussions on their nature.
- ➤ The Y(4260) state was once considered as a good hybrid candidate, anti-diquark tetraquark, meson molecule, and hadrocharmonium etc.
- ➤ To be better identify the nature of the Y states and distinguish various models, more precise experimental measurements, including the production cross section and the mass and width of the Y states, are essential.

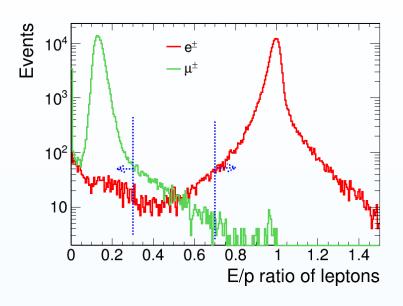
Motivation

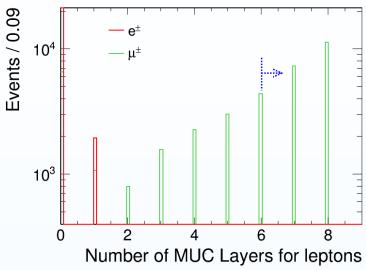
► BESIII has measured the cross section for the process $e^+e^- \rightarrow \pi^+\pi^-$ J/ψ precisely, and two resonant structures are observed in a fit to the cross section.

- ► Measuring the $e^+e^- \rightarrow \pi^0\pi^0$ J/ψ cross section line shape will be helpful to understand the resonances around 4.220 GeV and 4.320 GeV.
- Meanwhile, the ratio of cross section for neutral and charged processes of e^+e^- → $\pi\pi J/\psi$ will be given.

Data sets

- **>** Decay channel: $e^+e^- \rightarrow \pi^0\pi^0 J/\psi$, $J/\psi \rightarrow e^+ e^-/\mu^+\mu^-$
- Boss version: 702p01 + 664p01
- Signal MC: 100K for each decay channel at each energy point
- Inclusive MC: generated at 4.260 GeV
 (bhabha, di-γ, di-μ, di-τ, resDD, two-γ, hadron, ISR, qqbar, γXYZ)
- Data: 3.810~4.600 GeV old XYZ data
 - + new XYZ data (~4.2GeV)

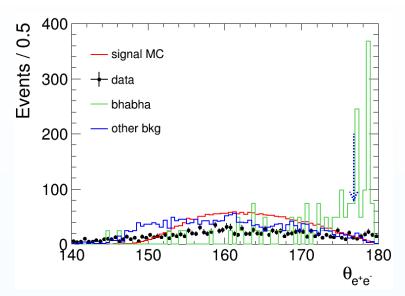

Events selection


- Only two Good tracks with total charge =0
 - Electron: E/p>0.7 for both tracks, $\theta_{e^+e^-} < 177^\circ$ if $\cos\theta_{e^+} > 0.5$ or $\cos\theta_{e^-} < -0.5$
 - Muon: E/p<0.3 for both tracks, at least one matches more than 6 MUC layers
- At least 4 good photons
 - Barrel: E>0.025GeV && |cosθ|<0.8
 - Endcap: E>0.05GeV && 0.86<|cosθ|<0.92
 - Time: $0 < t < 14 (\times 50 \text{ns})$
 - $-\theta_{chgTrk}>5^{\circ}$
- $N_{\pi^0\pi^0}$ <=2 for $M_{\gamma\gamma} \in (0.11, 0.15) \text{GeV/c}^2$
- 4C + 1C(two π^0 s) fit to select two π^0 s with minimal $\chi^2=\chi^2_{4C}+\chi^2_{1C}+\chi^2_{1C}$, χ^2_{4C} < 90
- Mass window requirement: $M_{\pi^0} \in (0.11, 0.15) \text{GeV}/c^2$

Events selections

Signal MC

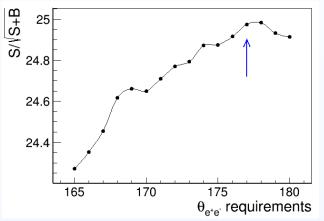
- E/p ratio for leptons @4180
- Number of MUC layers @4180

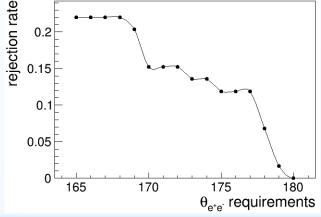


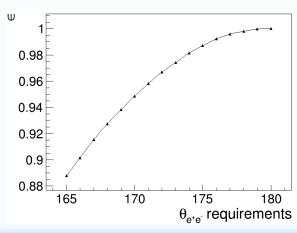
- Electron: E/p>0.7 for both tracks
- Muon: E/p<0.3 for both tracks, at least one matches more than 6
 MUC layers

Optimization of events selection

@4.260 GeV

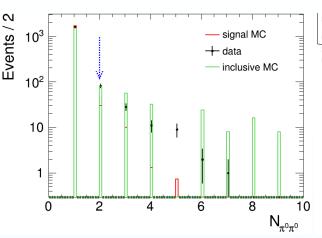

- Electron: $\theta_e^+e^-$ <177° if $\cos\theta_e^+$ >0.5 or $\cos\theta_e^-$ <0.5

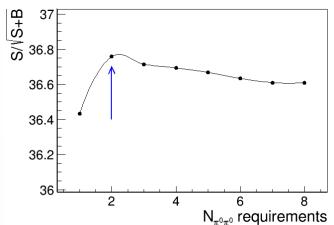


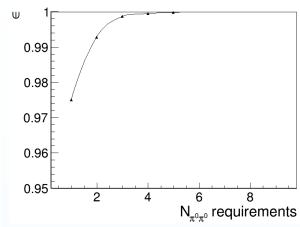

Use inclusive MC to optimize the requirements with the form of merit

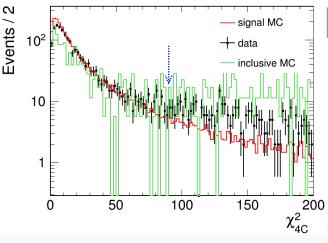
$$S/\sqrt{S+B}$$

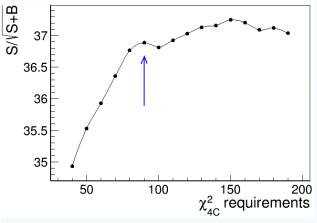
The requirement causes the loss of efficiency about 1%.

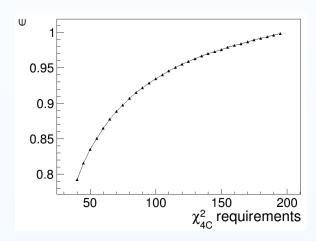





Optimization of Events selection


@4.260 Gev



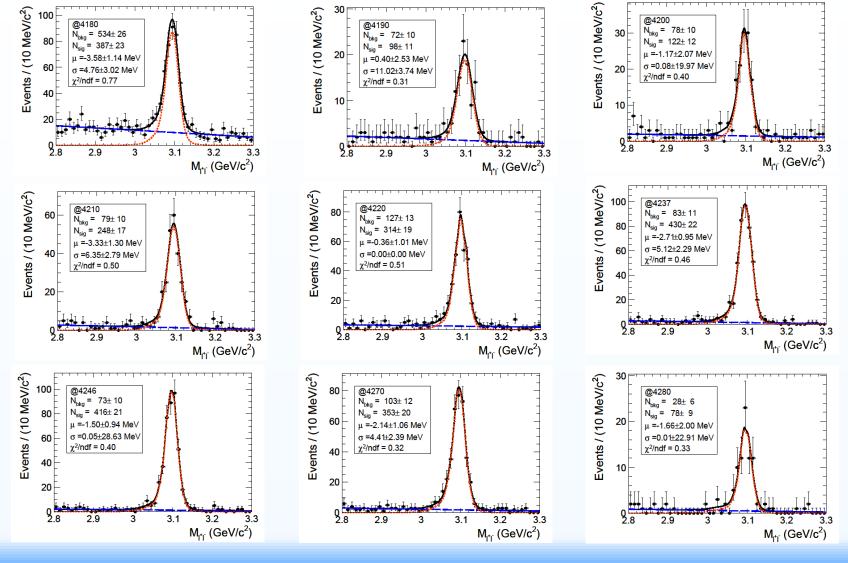


$$-\chi_{4C}^2 < 90$$

Background analysis (Inclusive MC)

• 4260-hadrons $(e^+e^- \to X(\eta, \eta\eta ...)J/\psi$ will be considered in systematic)

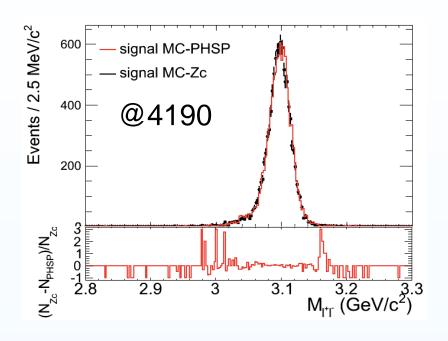
No.	decay chain	final states	iTopology	nEvt	nTot
0	$\psi(4260) \rightarrow \pi^0 \pi^0 J/\psi, J/\psi \rightarrow \mu^+ \mu^-$	$\mu^{+}\pi^{0}\pi^{0}\mu^{-}$	0	688	688
1	$\psi(4260) \rightarrow \pi^0 \pi^0 J/\psi, J/\psi \rightarrow e^+ e^-$	$e^{+}e^{-}\pi^{0}\pi^{0}$	1	537	1225
2	$\psi(4260) \rightarrow \pi^0 \pi^0 J/\psi, J/\psi \rightarrow e^+ e^- \gamma_{FSR}$	$e^{+}e^{-}\pi^{0}\pi^{0}$	4	60	1285
3	$\psi(4260) \rightarrow \pi^0 \pi^0 J/\psi, J/\psi \rightarrow \mu^+ \mu^- \gamma_{FSR}$	$\mu^{+}\pi^{0}\pi^{0}\mu^{-}$	5	21	1306
4	$\psi(4260) \to \eta \eta J/\psi, \eta \to \gamma \gamma, \eta \to \gamma \gamma, J/\psi \to \mu^+ \mu^-$	$\mu^{+}\mu^{-}\gamma\gamma\gamma\gamma$	3	8	1314
5	$\psi(4260) \to \eta J/\psi, \eta \to \pi^0 \pi^0 \pi^0, J/\psi \to \mu^+ \mu^-$	$\mu^{+}\pi^{0}\pi^{0}\pi^{0}\mu^{-}$	7	5	1319
6	$\psi(4260) \to \pi^0 \pi^0 J/\psi, J/\psi \to e^+ e^- \gamma_{FSR} \gamma_{FSR}$	$e^{+}e^{-}\pi^{0}\pi^{0}$	8	4	1323
7	$\psi(4260) \to \eta \eta J/\psi, \eta \to \gamma \gamma, \eta \to \gamma \gamma, J/\psi \to e^+e^-$	$e^+e^-\gamma\gamma\gamma\gamma$	6	3	1326
8	$\psi(4260) \rightarrow \eta J/\psi, \eta \rightarrow \pi^0 \pi^0 \pi^0, J/\psi \rightarrow e^+ e^-$	$e^{+}e^{-}\pi^{0}\pi^{0}\pi^{0}$	9	2	1328
9	$\psi(4260) \to \eta \eta J/\psi, \eta \to \gamma \gamma, \eta \to \gamma \gamma, J/\psi \to e^+ e^- \gamma_{FSR}$	$e^+e^-\gamma\gamma\gamma\gamma$	2	1	1329

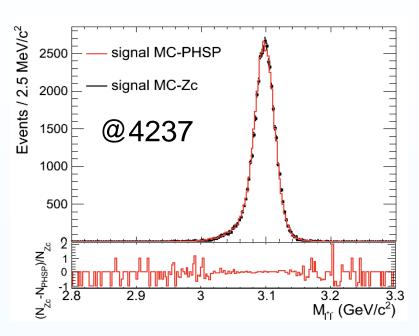

4260-qqbar

No.	decay chain	final states	iTopology	nEvt	nTot
0	$string \rightarrow \rho^+\pi^0\pi^-, \rho^+ \rightarrow \pi^+\pi^0$	$\pi^{-}\pi^{0}\pi^{0}\pi^{+}$	0	5	5
1	$string \rightarrow \pi^+\pi^0\rho^-, \rho^- \rightarrow \pi^-\pi^0$	$\pi^{-}\pi^{0}\pi^{0}\pi^{+}$	2	3	8
2	$string \rightarrow \rho^{+}\pi^{-}\pi^{0}, \rho^{+} \rightarrow \pi^{+}\pi^{0}\gamma$	$\pi^{-}\pi^{0}\pi^{0}\pi^{+}\gamma$	1	1	9
3	$string \to K_2^{*+}K^-\pi^0, K_2^{*+} \to K^+\pi^0$	$K^{-}\pi^{0}\pi^{0}K^{+}$	3	1	10

Modes	ISR	Bhabha	Dimu	Ditau	resDD
Number of event	5	8	0	0	0

Fit to invariant mass M(I+I-)


MC shape⊗Gaussian +1st polynomial



MC comparison

Two kinds of signal MC:

- With intermediate Zc(3900) - PHSP

- Two kinds of MC have comparable resolution for invariant mass distribution M(I+I-)
- PSPH MC shape convolute with Gaussian to describe signal
- The weighted efficiency will be calculated by weighting the 2-D spectrum of $M(\pi^0J/\psi)$ and $M(\pi^0\pi^0)$ from PHSP to data .

Cross section

$$\sigma^{B} = \frac{N_{obs}}{\mathcal{L}_{int}(1 + \delta^{r})(1 + \delta^{v})\epsilon \mathcal{B}r}$$

 $-N^{obs}$ is observed events from data

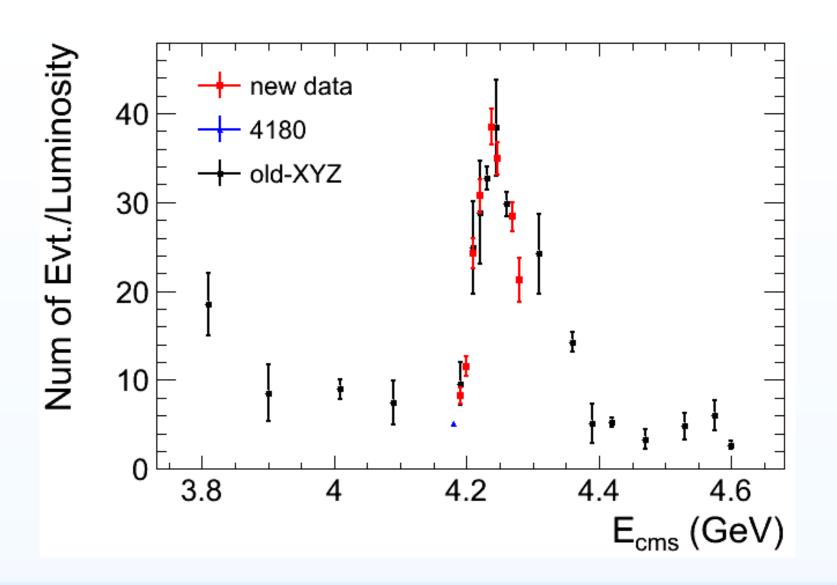
- ε is selection efficiency calculated from the MC samples

-Br stands for the branching ratio of $J/\psi \to e^+e^-(\mu^+\mu^-)$

- $(1 + \delta^v)$ is vacuum polarization factor taken from QED

 $-(1+\delta^r)$ is the radiative correction factor

For new data

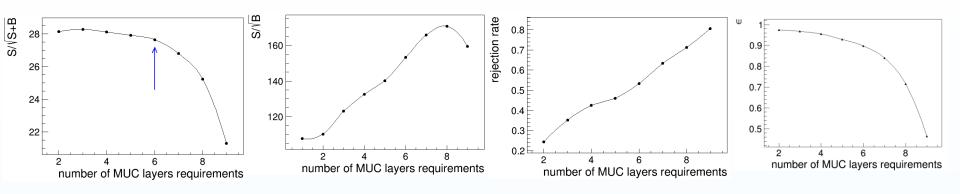

Energy (MeV)	\mathcal{L} (pb ⁻¹)	$\varepsilon_{\pi^0\pi^0J/\psi}^{PHSP}(\%)$	$N_{\pi^0\pi^0J/\psi}^{obs}$	$1+\delta^r$	$1+\delta^{vac}$	$\sigma^{Born}(\mathrm{pb})$
4180	3162.8 ± 0.0	20.396	387 ± 23	0.933	1.055	5.13 ± 0.31
4190	493.14 ± 0.0	22.021	98 ± 11	0.877	1.056	8.20 ± 0.92
4200	497.03 ± 0.0	20.841	122 ± 12	0.812	1.057	11.55 ± 1.14
4210	496.84 ± 0.0	21.723	$248 {\pm} 17$	0.756	1.057	24.21 ± 1.68
4220	498.32 ± 0.0	22.417	314 ± 19	0.728	1.057	30.75 ± 1.89
4237	505.71 ± 0.0	22.773	430 ± 22	0.773	1.056	38.50 ± 2.01
4246	499.83 ± 0.0	23.175	416 ± 21	0.820	1.055	34.94 ± 1.80
4270	498.51 ± 0.0	22.731	353 ± 20	0.878	1.053	28.36 ± 1.63
4280	146.57 ± 0.0	22.732	78 ± 9	0.879	1.053	21.29 ± 2.47

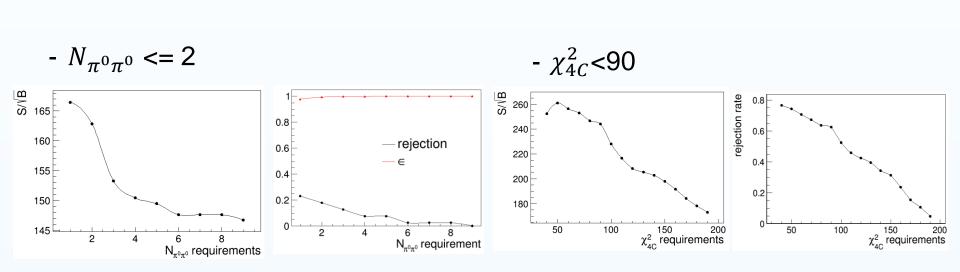
Cross section

For old data

Energy (MeV)	\mathcal{L} (pb ⁻¹)	$\varepsilon_{\pi^0\pi^0J/\psi}^{PHSP}(\%)$	$N_{\pi^0\pi^0J/\psi}^{obs}$	$1+\delta^r$	$1+\delta^{vac}$	$\sigma^{Born}(\mathrm{pb})$
3810	50.5 ± 0.5	20.642	21 ± 4	0.869	1.056	18.48 ± 3.53
3900	52.6 ± 0.5	16.408	8 ± 3	0.870	1.049	8.55 ± 3.21
4009	482.0 ± 4.8	18.781	92 ± 11	0.913	1.044	8.98 ± 1.08
4090	52.6 ± 0.5	0.156	9 ± 3	0.958	1.052	7.42 ± 2.47
4190	493.14 ± 0.0	22.021	98 ± 11	0.877	1.056	9.59 ± 2.46
4210	54.55 ± 0.03	21.723	28 ± 6	0.756	1.057	24.89 ± 5.19
4220	54.13 ± 0.03	22.417	32 ± 6	0.728	1.057	28.84 ± 5.77
4230	1091.7 ± 10.9	22.788	821 ± 30	0.805	1.056	32.68 ± 1.28
4245	55.59 ± 0.04	23.175	50 ± 7	0.806	1.056	38.38 ± 5.39
4260	825.7 ± 8.2	22.448	564 ± 25	0.815	1.054	29.82 ± 1.39
4310	44.9 ± 0.4	21.677	27 ± 5	0.916	1.052	24.23 ± 4.50
4360	539.8 ± 5.4	19.247	192 ± 15	1.038	1.051	14.26 ± 1.13
4390	55.2 ± 0.5	17.392	7 ± 3	1.132	1.051	5.16 ± 2.21
4420	1073.6 ± 10.7	15.420	142 ± 13	1.309	1.053	5.24 ± 0.49
4470	109.9 ± 1.1	14.646	9 ± 3	1.348	1.055	3.31 ± 1.10
4530	110.0 ± 1.1	14.582	13 ± 4	1.341	1.055	4.82 ± 1.49
4575	47.7 ± 0.4	14.785	7 ± 2	1.325	1.055	5.98 ± 1.71
4600	566.9 ± 5.7	14.785	38 ± 7	1.343	1.055	2.69 ± 0.49

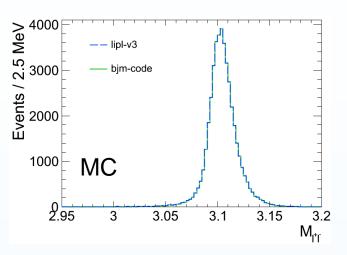
Cross section

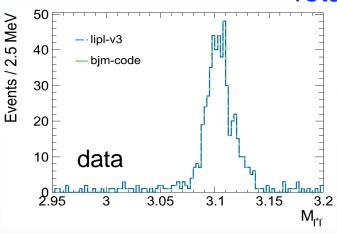

Next to do


- > Efficiency correction
- Calculate the Born Cross section
- Fit to cross section and iteration (put cross section line shape of $e^+e^- \to \pi^+\pi^- J/\psi$ as input)
- Systematic uncertainties

Thanks for your attention!

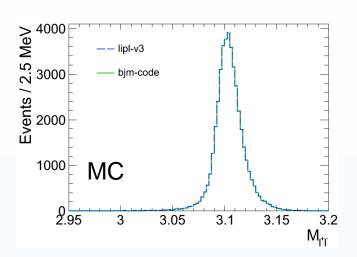
Back up

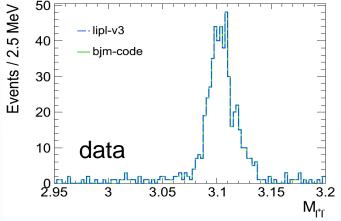

- Optimization for MUC layer requirement



Back up

- Compare with BianJM's codes using same events selection to check our procedure
 - M(I⁺I⁻) @4260




- Updates in our analysis
- E/p (p): mdcKalTrk(pion)->mdcTrk
- Good photon: θ_{chqTrk}>5°
- reserve $J/\psi \to \mu^+\mu^-$ candidates without energy deposited in EMC (E_{emc} =0)
- 1C & 4C kinematic fit: set same vertex information from charged tracks vtxfit
- Using inclusive MC @4.260GeV to some optimisations

Back up

- Compare with BianJM's codes using same events selection to check our procedure
 - M(I+I-) @4260

Totally same | Solution | Control |

-PhysRevLett.115.112003 (BianJM's work)

$E_{\rm cm}$	L	$\epsilon(Z_c^0)$	$\epsilon^{\pi^0\pi^0J/\psi}(\pi^0\pi^0J/\psi)$	$\epsilon^{Z_c^0}(\pi^0\pi^0J/\psi)$	$\epsilon(\pi^0\pi^0J/\psi)$	$N(Z_c^0)$	$N(\pi^0\pi^0J/\psi)$	R	$1 + \delta$	$1 + \delta^{vac}$	σ_{Born} (pb)
(GeV)	(pb^{-1})	(%)	(%)	(%)	(%)	(90% confidence level)	, , , ,	(90% confidence level)			(- /
4.190	43.1	20.8	20.4	20.1	20.2	< 11.1	8.2 ± 3.0	< 1.00	0.828	1.056	$9.0 \pm 3.3 \pm 0.6$
4.210	54.6	21.5	21.0	20.8	20.9	< 18.9	26.6 ± 5.4	< 0.72	0.813	1.057	$22.7 \pm 4.6 \pm 1.5$
4.220	54.1	21.6	21.2	20.8	21.1	< 12.6	31.9 ± 5.7	< 0.41	0.810	1.057	$27.4 \pm 4.9 \pm 1.8$
4.230	1091.7	22.0	21.1	21.0	21.0	236.8 ± 25.0	825.1 ± 29.8	$0.28 \pm 0.03 \pm 0.02$	0.805	1.056	$35.4 \pm 1.3 \pm 2.2$
4.245	55.6	22.3	21.6	21.1	21.5	< 15.2	49.0 ± 7.1	< 0.32	0.806	1.056	$40.3 \pm 5.8 \pm 2.7$
4.260	825.7	22.6	21.2	21.4	21.2	73.1 ± 16.5	507.3 ± 23.4	$0.14 \pm 0.03 \pm 0.01$	0.815	1.054	$28.3 \pm 1.3 \pm 1.8$
4.310	44.9	22.5	20.4	20.7	20.5	< 7.9	25.5 ± 5.1	< 0.29	0.916	1.052	$24.1 \pm 4.9 \pm 1.6$
4.360	539.8	21.5	18.8	19.1	18.9	41.8 ± 10.8	182.8 ± 14.2	$0.20 \pm 0.05 \pm 0.02$	1.038	1.051	$13.8 \pm 1.1 \pm 0.9$
4.390	55.2	21.4	17.7	18.4	17.7	< 5.2	6.2 ± 2.6	< 0.71	1.088	1.051	$4.7 \pm 1.9 \pm 0.3$
4.420	44.7	21.7	16.8	17.9	16.8	< 3.8	2.9 ± 2.1	< 1.00	1.132	1.053	$2.7 \pm 1.9 \pm 0.2$