Measurement of cross section of $$e^+e^- \rightarrow \pi^0\pi^0 J/\psi$$ for XYZ data Li Peilian, Li Xuhong, Peng Haiping University of Science and Technology of China Charmonium Group Meeting May 23, 2017 ## **Outline** - Motivation - Data sets - Events selection - Background study - Fit to invariant mass of leptons - Cross section - Next to do ## **Motivation** - Recently, a series of Y states have been observed by Belle, BaBar and BESIII experiments, the observation of Y states has stimulated substantial theoretical discussions on their nature. - ➤ The Y(4260) state was once considered as a good hybrid candidate, anti-diquark tetraquark, meson molecule, and hadrocharmonium etc. - ➤ To be better identify the nature of the Y states and distinguish various models, more precise experimental measurements, including the production cross section and the mass and width of the Y states, are essential. ## **Motivation** ► BESIII has measured the cross section for the process $e^+e^- \rightarrow \pi^+\pi^-$ J/ψ precisely, and two resonant structures are observed in a fit to the cross section. - ► Measuring the $e^+e^- \rightarrow \pi^0\pi^0$ J/ψ cross section line shape will be helpful to understand the resonances around 4.220 GeV and 4.320 GeV. - Meanwhile, the ratio of cross section for neutral and charged processes of e^+e^- → $\pi\pi J/\psi$ will be given. ## Data sets - **>** Decay channel: $e^+e^- \rightarrow \pi^0\pi^0 J/\psi$, $J/\psi \rightarrow e^+ e^-/\mu^+\mu^-$ - Boss version: 702p01 + 664p01 - Signal MC: 100K for each decay channel at each energy point - Inclusive MC: generated at 4.260 GeV (bhabha, di-γ, di-μ, di-τ, resDD, two-γ, hadron, ISR, qqbar, γXYZ) - Data: 3.810~4.600 GeV old XYZ data - + new XYZ data (~4.2GeV) ## **Events selection** - Only two Good tracks with total charge =0 - Electron: E/p>0.7 for both tracks, $\theta_{e^+e^-} < 177^\circ$ if $\cos\theta_{e^+} > 0.5$ or $\cos\theta_{e^-} < -0.5$ - Muon: E/p<0.3 for both tracks, at least one matches more than 6 MUC layers - At least 4 good photons - Barrel: E>0.025GeV && |cosθ|<0.8 - Endcap: E>0.05GeV && 0.86<|cosθ|<0.92 - Time: $0 < t < 14 (\times 50 \text{ns})$ - $-\theta_{chgTrk}>5^{\circ}$ - $N_{\pi^0\pi^0}$ <=2 for $M_{\gamma\gamma} \in (0.11, 0.15) \text{GeV/c}^2$ - 4C + 1C(two π^0 s) fit to select two π^0 s with minimal $\chi^2=\chi^2_{4C}+\chi^2_{1C}+\chi^2_{1C}$, χ^2_{4C} < 90 - Mass window requirement: $M_{\pi^0} \in (0.11, 0.15) \text{GeV}/c^2$ ## **Events selections** #### Signal MC - E/p ratio for leptons @4180 - Number of MUC layers @4180 - Electron: E/p>0.7 for both tracks - Muon: E/p<0.3 for both tracks, at least one matches more than 6 MUC layers # Optimization of events selection @4.260 GeV - Electron: $\theta_e^+e^-$ <177° if $\cos\theta_e^+$ >0.5 or $\cos\theta_e^-$ <0.5 Use inclusive MC to optimize the requirements with the form of merit $$S/\sqrt{S+B}$$ The requirement causes the loss of efficiency about 1%. # Optimization of Events selection @4.260 Gev $$-\chi_{4C}^2 < 90$$ # Background analysis (Inclusive MC) • 4260-hadrons $(e^+e^- \to X(\eta, \eta\eta ...)J/\psi$ will be considered in systematic) | No. | decay chain | final states | iTopology | nEvt | nTot | |-----|--|--|-----------|------|------| | 0 | $\psi(4260) \rightarrow \pi^0 \pi^0 J/\psi, J/\psi \rightarrow \mu^+ \mu^-$ | $\mu^{+}\pi^{0}\pi^{0}\mu^{-}$ | 0 | 688 | 688 | | 1 | $\psi(4260) \rightarrow \pi^0 \pi^0 J/\psi, J/\psi \rightarrow e^+ e^-$ | $e^{+}e^{-}\pi^{0}\pi^{0}$ | 1 | 537 | 1225 | | 2 | $\psi(4260) \rightarrow \pi^0 \pi^0 J/\psi, J/\psi \rightarrow e^+ e^- \gamma_{FSR}$ | $e^{+}e^{-}\pi^{0}\pi^{0}$ | 4 | 60 | 1285 | | 3 | $\psi(4260) \rightarrow \pi^0 \pi^0 J/\psi, J/\psi \rightarrow \mu^+ \mu^- \gamma_{FSR}$ | $\mu^{+}\pi^{0}\pi^{0}\mu^{-}$ | 5 | 21 | 1306 | | 4 | $\psi(4260) \to \eta \eta J/\psi, \eta \to \gamma \gamma, \eta \to \gamma \gamma, J/\psi \to \mu^+ \mu^-$ | $\mu^{+}\mu^{-}\gamma\gamma\gamma\gamma$ | 3 | 8 | 1314 | | 5 | $\psi(4260) \to \eta J/\psi, \eta \to \pi^0 \pi^0 \pi^0, J/\psi \to \mu^+ \mu^-$ | $\mu^{+}\pi^{0}\pi^{0}\pi^{0}\mu^{-}$ | 7 | 5 | 1319 | | 6 | $\psi(4260) \to \pi^0 \pi^0 J/\psi, J/\psi \to e^+ e^- \gamma_{FSR} \gamma_{FSR}$ | $e^{+}e^{-}\pi^{0}\pi^{0}$ | 8 | 4 | 1323 | | 7 | $\psi(4260) \to \eta \eta J/\psi, \eta \to \gamma \gamma, \eta \to \gamma \gamma, J/\psi \to e^+e^-$ | $e^+e^-\gamma\gamma\gamma\gamma$ | 6 | 3 | 1326 | | 8 | $\psi(4260) \rightarrow \eta J/\psi, \eta \rightarrow \pi^0 \pi^0 \pi^0, J/\psi \rightarrow e^+ e^-$ | $e^{+}e^{-}\pi^{0}\pi^{0}\pi^{0}$ | 9 | 2 | 1328 | | 9 | $\psi(4260) \to \eta \eta J/\psi, \eta \to \gamma \gamma, \eta \to \gamma \gamma, J/\psi \to e^+ e^- \gamma_{FSR}$ | $e^+e^-\gamma\gamma\gamma\gamma$ | 2 | 1 | 1329 | #### 4260-qqbar | No. | decay chain | final states | iTopology | nEvt | nTot | |-----|--|--------------------------------------|-----------|------|------| | 0 | $string \rightarrow \rho^+\pi^0\pi^-, \rho^+ \rightarrow \pi^+\pi^0$ | $\pi^{-}\pi^{0}\pi^{0}\pi^{+}$ | 0 | 5 | 5 | | 1 | $string \rightarrow \pi^+\pi^0\rho^-, \rho^- \rightarrow \pi^-\pi^0$ | $\pi^{-}\pi^{0}\pi^{0}\pi^{+}$ | 2 | 3 | 8 | | 2 | $string \rightarrow \rho^{+}\pi^{-}\pi^{0}, \rho^{+} \rightarrow \pi^{+}\pi^{0}\gamma$ | $\pi^{-}\pi^{0}\pi^{0}\pi^{+}\gamma$ | 1 | 1 | 9 | | 3 | $string \to K_2^{*+}K^-\pi^0, K_2^{*+} \to K^+\pi^0$ | $K^{-}\pi^{0}\pi^{0}K^{+}$ | 3 | 1 | 10 | | Modes | ISR | Bhabha | Dimu | Ditau | resDD | |-----------------|-----|--------|------|-------|-------| | Number of event | 5 | 8 | 0 | 0 | 0 | # Fit to invariant mass M(I+I-) MC shape⊗Gaussian +1st polynomial # MC comparison #### Two kinds of signal MC: - With intermediate Zc(3900) - PHSP - Two kinds of MC have comparable resolution for invariant mass distribution M(I+I-) - PSPH MC shape convolute with Gaussian to describe signal - The weighted efficiency will be calculated by weighting the 2-D spectrum of $M(\pi^0J/\psi)$ and $M(\pi^0\pi^0)$ from PHSP to data . ## Cross section $$\sigma^{B} = \frac{N_{obs}}{\mathcal{L}_{int}(1 + \delta^{r})(1 + \delta^{v})\epsilon \mathcal{B}r}$$ $-N^{obs}$ is observed events from data - ε is selection efficiency calculated from the MC samples -Br stands for the branching ratio of $J/\psi \to e^+e^-(\mu^+\mu^-)$ - $(1 + \delta^v)$ is vacuum polarization factor taken from QED $-(1+\delta^r)$ is the radiative correction factor #### For new data | Energy (MeV) | \mathcal{L} (pb ⁻¹) | $\varepsilon_{\pi^0\pi^0J/\psi}^{PHSP}(\%)$ | $N_{\pi^0\pi^0J/\psi}^{obs}$ | $1+\delta^r$ | $1+\delta^{vac}$ | $\sigma^{Born}(\mathrm{pb})$ | |--------------|-----------------------------------|---|------------------------------|--------------|------------------|------------------------------| | 4180 | 3162.8 ± 0.0 | 20.396 | 387 ± 23 | 0.933 | 1.055 | 5.13 ± 0.31 | | 4190 | 493.14 ± 0.0 | 22.021 | 98 ± 11 | 0.877 | 1.056 | 8.20 ± 0.92 | | 4200 | 497.03 ± 0.0 | 20.841 | 122 ± 12 | 0.812 | 1.057 | 11.55 ± 1.14 | | 4210 | 496.84 ± 0.0 | 21.723 | $248 {\pm} 17$ | 0.756 | 1.057 | 24.21 ± 1.68 | | 4220 | 498.32 ± 0.0 | 22.417 | 314 ± 19 | 0.728 | 1.057 | 30.75 ± 1.89 | | 4237 | 505.71 ± 0.0 | 22.773 | 430 ± 22 | 0.773 | 1.056 | 38.50 ± 2.01 | | 4246 | 499.83 ± 0.0 | 23.175 | 416 ± 21 | 0.820 | 1.055 | 34.94 ± 1.80 | | 4270 | 498.51 ± 0.0 | 22.731 | 353 ± 20 | 0.878 | 1.053 | 28.36 ± 1.63 | | 4280 | 146.57 ± 0.0 | 22.732 | 78 ± 9 | 0.879 | 1.053 | 21.29 ± 2.47 | # **Cross section** #### For old data | Energy (MeV) | \mathcal{L} (pb ⁻¹) | $\varepsilon_{\pi^0\pi^0J/\psi}^{PHSP}(\%)$ | $N_{\pi^0\pi^0J/\psi}^{obs}$ | $1+\delta^r$ | $1+\delta^{vac}$ | $\sigma^{Born}(\mathrm{pb})$ | |--------------|-----------------------------------|---|------------------------------|--------------|------------------|------------------------------| | 3810 | 50.5 ± 0.5 | 20.642 | 21 ± 4 | 0.869 | 1.056 | 18.48 ± 3.53 | | 3900 | 52.6 ± 0.5 | 16.408 | 8 ± 3 | 0.870 | 1.049 | 8.55 ± 3.21 | | 4009 | 482.0 ± 4.8 | 18.781 | 92 ± 11 | 0.913 | 1.044 | 8.98 ± 1.08 | | 4090 | 52.6 ± 0.5 | 0.156 | 9 ± 3 | 0.958 | 1.052 | 7.42 ± 2.47 | | 4190 | 493.14 ± 0.0 | 22.021 | 98 ± 11 | 0.877 | 1.056 | 9.59 ± 2.46 | | 4210 | 54.55 ± 0.03 | 21.723 | 28 ± 6 | 0.756 | 1.057 | 24.89 ± 5.19 | | 4220 | 54.13 ± 0.03 | 22.417 | 32 ± 6 | 0.728 | 1.057 | 28.84 ± 5.77 | | 4230 | 1091.7 ± 10.9 | 22.788 | 821 ± 30 | 0.805 | 1.056 | 32.68 ± 1.28 | | 4245 | 55.59 ± 0.04 | 23.175 | 50 ± 7 | 0.806 | 1.056 | 38.38 ± 5.39 | | 4260 | 825.7 ± 8.2 | 22.448 | 564 ± 25 | 0.815 | 1.054 | 29.82 ± 1.39 | | 4310 | 44.9 ± 0.4 | 21.677 | 27 ± 5 | 0.916 | 1.052 | 24.23 ± 4.50 | | 4360 | 539.8 ± 5.4 | 19.247 | 192 ± 15 | 1.038 | 1.051 | 14.26 ± 1.13 | | 4390 | 55.2 ± 0.5 | 17.392 | 7 ± 3 | 1.132 | 1.051 | 5.16 ± 2.21 | | 4420 | 1073.6 ± 10.7 | 15.420 | 142 ± 13 | 1.309 | 1.053 | 5.24 ± 0.49 | | 4470 | 109.9 ± 1.1 | 14.646 | 9 ± 3 | 1.348 | 1.055 | 3.31 ± 1.10 | | 4530 | 110.0 ± 1.1 | 14.582 | 13 ± 4 | 1.341 | 1.055 | 4.82 ± 1.49 | | 4575 | 47.7 ± 0.4 | 14.785 | 7 ± 2 | 1.325 | 1.055 | 5.98 ± 1.71 | | 4600 | 566.9 ± 5.7 | 14.785 | 38 ± 7 | 1.343 | 1.055 | 2.69 ± 0.49 | ## Cross section ## Next to do - > Efficiency correction - Calculate the Born Cross section - Fit to cross section and iteration (put cross section line shape of $e^+e^- \to \pi^+\pi^- J/\psi$ as input) - Systematic uncertainties ## Thanks for your attention! # Back up #### - Optimization for MUC layer requirement # Back up - Compare with BianJM's codes using same events selection to check our procedure - M(I⁺I⁻) @4260 - Updates in our analysis - E/p (p): mdcKalTrk(pion)->mdcTrk - Good photon: θ_{chqTrk}>5° - reserve $J/\psi \to \mu^+\mu^-$ candidates without energy deposited in EMC (E_{emc} =0) - 1C & 4C kinematic fit: set same vertex information from charged tracks vtxfit - Using inclusive MC @4.260GeV to some optimisations # Back up - Compare with BianJM's codes using same events selection to check our procedure - M(I+I-) @4260 # Totally same | Solution | Control #### -PhysRevLett.115.112003 (BianJM's work) | $E_{\rm cm}$ | L | $\epsilon(Z_c^0)$ | $\epsilon^{\pi^0\pi^0J/\psi}(\pi^0\pi^0J/\psi)$ | $\epsilon^{Z_c^0}(\pi^0\pi^0J/\psi)$ | $\epsilon(\pi^0\pi^0J/\psi)$ | $N(Z_c^0)$ | $N(\pi^0\pi^0J/\psi)$ | R | $1 + \delta$ | $1 + \delta^{vac}$ | σ_{Born} (pb) | |--------------|-------------|-------------------|---|--------------------------------------|------------------------------|------------------------|-----------------------|--------------------------|--------------|--------------------|------------------------| | (GeV) | (pb^{-1}) | (%) | (%) | (%) | (%) | (90% confidence level) | , , , , | (90% confidence level) | | | (- / | | 4.190 | 43.1 | 20.8 | 20.4 | 20.1 | 20.2 | < 11.1 | 8.2 ± 3.0 | < 1.00 | 0.828 | 1.056 | $9.0 \pm 3.3 \pm 0.6$ | | 4.210 | 54.6 | 21.5 | 21.0 | 20.8 | 20.9 | < 18.9 | 26.6 ± 5.4 | < 0.72 | 0.813 | 1.057 | $22.7 \pm 4.6 \pm 1.5$ | | 4.220 | 54.1 | 21.6 | 21.2 | 20.8 | 21.1 | < 12.6 | 31.9 ± 5.7 | < 0.41 | 0.810 | 1.057 | $27.4 \pm 4.9 \pm 1.8$ | | 4.230 | 1091.7 | 22.0 | 21.1 | 21.0 | 21.0 | 236.8 ± 25.0 | 825.1 ± 29.8 | $0.28 \pm 0.03 \pm 0.02$ | 0.805 | 1.056 | $35.4 \pm 1.3 \pm 2.2$ | | 4.245 | 55.6 | 22.3 | 21.6 | 21.1 | 21.5 | < 15.2 | 49.0 ± 7.1 | < 0.32 | 0.806 | 1.056 | $40.3 \pm 5.8 \pm 2.7$ | | 4.260 | 825.7 | 22.6 | 21.2 | 21.4 | 21.2 | 73.1 ± 16.5 | 507.3 ± 23.4 | $0.14 \pm 0.03 \pm 0.01$ | 0.815 | 1.054 | $28.3 \pm 1.3 \pm 1.8$ | | 4.310 | 44.9 | 22.5 | 20.4 | 20.7 | 20.5 | < 7.9 | 25.5 ± 5.1 | < 0.29 | 0.916 | 1.052 | $24.1 \pm 4.9 \pm 1.6$ | | 4.360 | 539.8 | 21.5 | 18.8 | 19.1 | 18.9 | 41.8 ± 10.8 | 182.8 ± 14.2 | $0.20 \pm 0.05 \pm 0.02$ | 1.038 | 1.051 | $13.8 \pm 1.1 \pm 0.9$ | | 4.390 | 55.2 | 21.4 | 17.7 | 18.4 | 17.7 | < 5.2 | 6.2 ± 2.6 | < 0.71 | 1.088 | 1.051 | $4.7 \pm 1.9 \pm 0.3$ | | 4.420 | 44.7 | 21.7 | 16.8 | 17.9 | 16.8 | < 3.8 | 2.9 ± 2.1 | < 1.00 | 1.132 | 1.053 | $2.7 \pm 1.9 \pm 0.2$ |