INFN - Sezione di Ferrara Università degli Studi di Ferrara

Inclusive Measurements of $h_c(^{1}P_1)$ in $\Psi(2S)$ Decay

Marco Scodeggio

Diego Bettoni & Gianluigi Cibinetto

Giulio Mezzadri & Isabella Garzia

Outline:

- The Goal of The Analysis;
- General Information;
- General Selection Criteria;
- Event Selection:
 - Inclusive;
 - E1 Tagged;
- Next Steps.

The Goal of The Analysis

Measure M and Γ of the h_c(¹P₁) with higher precision wrt Phys. Rev. Lett. 104, 132002 (2010) [BAM-00001]:

 $\frac{M(h_c) = 3525.40 \pm 0.13 \pm 0.18 \text{ MeV}}{\Gamma(h_c) = 0.73 \pm 0.45 \pm 0.28 \text{ MeV}}$

Measurements of branching ratios ($\Psi' \longrightarrow \pi^0 h_c$, $h_c \longrightarrow \gamma \eta_c$) will be performed too.

<u>Previous Analysis: 106M of Ψ(2S) events</u> <u>This Analysis: 500M of Ψ(2S) events</u>

Enhancement in the knowledge of $M(h_c)$ could lead to better knowledge in the hyperfine (spin-spin) mass splitting among $\chi(1 \ {}^{3}P_{1})$ and h_{c} :

From https://arxiv.org/pdf/1508.02178.pdf (T. Kawanai & S. Sasaki): "In the current experiments, however, the splitting $M_{hyp}(^{1}P) = M (1 \ ^{3}P_{1}) - M(h_{c})$ for 1P -charmonium states is not appreciably observed within experimental error".

 $\Delta M_{hyp} = M(1 \ ^{3}P_{1}) - M(h_{c}) = -0.10 \pm 0.13 \pm 0.18 \ MeV$

General Informations

Decay Psi(2S) 1.0000 h_c π₀ PHSP;

Decay h_c 1.0000 $\gamma\eta_c$ PHSP;

- Signal MC Run;
- 80000 events;
- Release: 6.6.4.p03.

Inclusive Decay: $\Psi' \longrightarrow \pi^0 h_c$

E1 Tagged Decay: $h_c \longrightarrow \gamma \eta_c$

General Selection Criteria Charged Tracks

At least 2 charged tracks with at least 1 good

General Selection Criteria

Photons

Inclusive Analysis

Cuts in a nutshell

Charged Tracks

Vertex: $R_{xy} < 1$ cm & $R_z < 10$ cm;

Polar angle: lcos θ l < 0.93;

Momentum: p < 2.0 GeV;

At least 2 with at least 1 good.

Photons

 γ -charged track angle > 10°;

EMC Time Cut: $T \le 14$;

 $E(\gamma) > 25$ MeV in the Barrel;

 $E(\gamma) > 50$ MeV in the Endcaps;

 $\psi(2S) \rightarrow \pi_0 h_c$: At least 2 good; $h_c \rightarrow \gamma \eta_c$: At least 3 good.

Inclusive Analysis

- Eγ(π0) > 40 MeV;
- 90 MeV < Mγγ < 180 MeV;
- The two photons in the barrel;
- Daughter photons from the signal should not belong to other π0; (e.g. photon from the signal can combined with another good photon -> BAD)
- Invariant mass constrained to the π 0 nominal mass by a 1-C kinematic fit; no χ 2 cut .

Inclusive Analysis

What if we loosen the π⁰ constraint?

Inclusive Analysis

- Eγ(π0) > 40 MeV;
- 90 MeV < Mγγ < 180 MeV;
- The two photons in the barrel;
- MC cut;
- Invariant mass constrained to the π 0 nominal mass by a 1-C kinematic fit; no χ 2 cut .

Event Selection Comparison

E1 Tagged Analysis

- At least three good photons (other criteria same to the inclusive);
- If the daughter photon of one $\pi 0$ can combine more than one $\pi 0$, minimum $\chi 2$ is selected;
- If invariant mass of E1 photon and any other good photon is compatible with a π0, the E1 photon candidate is rejected.

Next Steps

- Run on Inclusive & Data (<u>Workshop at Guangzhou</u>);
- Run on Continuum;
- Re-check the cuts (especially the new one proposed) with S/√(S+B) as a FoM;
- Background suppression:
 - π+ π- J/ψ;
 - π0 π0 J/ψ.

