Charmonium Proposal for a High-Statistics Scan from 4.3 to 4.4 GeV

Ryan Mitchell
for the Charmonium Group

BESIII Collaboration Meeting
March 15, 2017

Overview of XYZ Physics at BESIII

Goal:

Investigate the "XYZ" states that do not fit into the conventional quark model of charmonium.

Data Sets:

$$
\begin{aligned}
& \text { 2011: } 482 \mathrm{pb}^{-1} \text { at } 4.01 \mathbf{~ G e V} \\
& \text { 2013: } 1092 \mathrm{pb}^{-1} \text { at } 4.23 \mathbf{~ G e V} \\
& 826 \mathrm{pb}^{-1} \text { at } 4.26 \mathrm{GeV} \\
& 540 \mathrm{pb}^{-1} \text { at } 4.36 \mathrm{GeV} \\
& \sim 50 \mathrm{pb}^{-1} \text { at 3.81, 3.90, 4.09, 4.19, 4.21, } \\
& 4.22,4.245,4.31,4.39,4.42 \mathrm{GeV}
\end{aligned}
$$

2014: $1029 \mathrm{pb}^{-1}$ at 4.42 GeV $110 \mathrm{pb}^{-1}$ at 4.47 GeV $110 \mathrm{pb}^{-1}$ at $\mathbf{4 . 5 3 ~ G e V}$ $48 \mathrm{pb}^{-1}$ at 4.575 GeV $567 \mathrm{pb}^{-1}$ at $4.6 \mathbf{~ G e V}$
2017(?): $10 \times 500 \mathrm{pb}^{-1}$ between 4.19 and 4.30 GeV

This Proposal:

$10 \times 500 \mathrm{pb}^{-1}$ between 4.31 and 4.41 GeV

A Few Physics Highlights:

discovery of $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \boldsymbol{\gamma} \mathbf{X}(\mathbf{3 8 7 2})$
discovery of complicated \mathbf{Y}-like structure discovery of the $\mathbf{Z}_{\mathbf{c}}(\mathbf{3 9 0 0})$ and $\mathbf{Z}_{\mathbf{c}}(\mathbf{4 0 2 0})$

Overview of XYZ Physics at BESIII

Goal:

Investigate the "XYZ" states that do not fit into the conventional quark model of charmonium.

Data Sets:

2011: $482 \mathrm{pb}^{-1}$ at $4.01 \mathbf{~ G e V}$
2013: $1092 \mathrm{pb}^{-1}$ at $4.23 \mathbf{G e V}$
$826 \mathrm{pb}^{-1}$ at 4.26 GeV
$540 \mathrm{pb}^{-1}$ at $4.36 \mathbf{~ G e V}$
$\sim 50 \mathrm{pb}^{-1}$ at 3.81, 3.90, 4.09, 4.19, 4.21,
4.22, 4.245, 4.31, 4.39, 4.42 GeV

2014: $1029 \mathrm{pb}^{-1}$ at $4.42 \mathbf{~ G e V}$ $110 \mathrm{pb}^{-1}$ at 4.47 GeV $110 \mathrm{pb}^{-1}$ at 4.53 GeV $48 \mathrm{pb}^{-1}$ at $4.575 \mathbf{~ G e V}$ $567 \mathrm{pb}^{-1}$ at 4.6 GeV
2017(?): $10 \times 500 \mathrm{pb}^{-1}$ between 4.19 and $4.30 \mathbf{G e V}$

This Proposal:

$10 \times 500 \mathrm{pb}^{-1}$ between 4.31 and 4.41 GeV

A Few Physics Highlights:
discovery of $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \gamma \mathbf{X}(\mathbf{3 8 7 2})$
discovery of complicated \mathbf{Y}-like structure discovery of the $\mathbf{Z}_{\mathbf{c}}(\mathbf{3 9 0 0})$ and $\mathbf{Z}_{\mathbf{c}}(\mathbf{4 0 2 0})$

Overview of XYZ Physics at BESIII

Goal:

Investigate the "XYZ" states that do not fit into the conventional quark model of charmonium.

Data Sets:

$$
\begin{aligned}
& \text { 2011: } 482 \mathrm{pb}^{-1} \text { at } 4.01 \mathbf{~ G e V} \\
& \text { 2013: } 1092 \mathrm{pb}^{-1} \text { at } \mathbf{4 . 2 3} \mathbf{~ G e V} \\
& 826 \mathrm{pb}^{-1} \text { at } 4.26 \mathrm{GeV} \\
& 540 \mathrm{pb}^{-1} \text { at } 4.36 \mathrm{GeV} \\
& \sim 50 \mathrm{pb}^{-1} \text { at 3.81, 3.90, 4.09, 4.19, 4.21, } \\
& \text { 4.22, 4.245, 4.31, 4.39, } 4.42 \mathrm{GeV}
\end{aligned}
$$

2014: $1029 \mathrm{pb}^{-1}$ at 4.42 GeV $110 \mathrm{pb}^{-1}$ at 4.47 GeV $110 \mathrm{pb}^{-1}$ at $\mathbf{4 . 5 3 ~ G e V}$ $48 \mathrm{pb}^{-1}$ at $4.575 \mathbf{~ G e V}$ $567 \mathrm{pb}^{-1}$ at $4.6 \mathbf{~ G e V}$
2017(?): $10 \times 500 \mathrm{pb}^{-1}$ between 4.19 and 4.30 GeV

This Proposal:

$10 \times 500 \mathrm{pb}^{-1}$ between 4.31 and 4.41 GeV

A Few Physics Highlights:

discovery of $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \boldsymbol{\gamma} \mathbf{X}(\mathbf{3 8 7 2})$
discovery of complicated \mathbf{Y}-like structure discovery of the $\mathbf{Z}_{\mathbf{c}}(\mathbf{3 9 0 0})$ and $\mathbf{Z}_{\mathbf{c}}(\mathbf{4 0 2 0})$

Overview of XYZ Physics at BESIII

This Proposal:

$10 \times 500 \mathrm{pb}^{-1}$ between 4.31 and $4.41 \mathbf{G e V}$

A Few Physics Highlights:

discovery of $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \gamma \mathbf{X}(\mathbf{3 8 7 2})$
discovery of complicated \mathbf{Y}-like structure discovery of the $\mathbf{Z}_{\mathbf{c}}(\mathbf{3 9 0 0})$ and $\mathbf{Z}_{\mathbf{c}}(\mathbf{4 0 2 0})$

Overview of XYZ Physics at BESIII

Discovery of complex structure in $\pi^{+} \pi^{-} J / \psi$
PRL 118, 092001 (2017)

narrow peak at 4220; wide peak at 4320 MeV

This Proposal:

$10 \times 500 \mathrm{pb}^{-1}$ between 4.31 and $4.41 \mathbf{G e V}$
A Few Physics Highlights:
discovery of $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \boldsymbol{\gamma} \mathbf{X}(\mathbf{3 8 7 2})$
discovery of complicated \mathbf{Y}-like structure
discovery of the $\mathbf{Z}_{\mathbf{c}}(\mathbf{3 9 0 0})$ and $\mathbf{Z}_{\mathbf{c}}(\mathbf{4 0 2 0})$

Overview of XYZ Physics at BESIII

Discovery of complex structure in $\boldsymbol{\pi}^{+} \boldsymbol{\pi} \mathbf{h}_{\mathbf{c}}$
PRL 118, 092002 (2017)

narrow peak at 4220; wide peak at 4390 MeV

Discovery of complex structure in $\pi^{+} \pi \mathbf{J} / \psi$
PRL 118, 092001 (2017)

narrow peak at 4220; wide peak at 4320 MeV

This Proposal:

$10 \times 500 \mathrm{pb}^{-1}$ between 4.31 and $4.41 \mathbf{G e V}$
A Few Physics Highlights:
discovery of $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \boldsymbol{\gamma} \mathbf{X}(\mathbf{3 8 7 2})$
discovery of complicated \mathbf{Y}-like structure discovery of the $\mathbf{Z}_{\mathbf{c}} \mathbf{(3 9 0 0)}$ and $\mathbf{Z}_{\mathbf{c}}(\mathbf{4 0 2 0})$

Overview of XYZ Physics at BESIII

Discovery of the $\mathbf{Z}_{\mathbf{c}}(\mathbf{3 9 0 0})$ in $\pi^{+} \pi-J / \psi$
PRL 110, 252001 (2013)

(461 citations as of 3/12/17)

This Proposal:

$10 \times 500 \mathrm{pb}^{-1}$ between 4.31 and $4.41 \mathbf{G e V}$
A Few Physics Highlights:
discovery of $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \gamma \mathbf{X}(\mathbf{3 8 7 2})$
discovery of complicated \mathbf{Y}-like structure discovery of the $\mathbf{Z}_{\mathbf{c}}(\mathbf{3 9 0 0})$ and $\mathbf{Z}_{\mathbf{c}}(\mathbf{4 0 2 0})$

Discovery of the $\mathbf{Z}_{\mathbf{c}}(4020)$ in $\boldsymbol{\pi}^{ \pm}\left(\mathrm{D}^{*} \mathrm{D}^{*}\right) \mp$
PRL 112, 132001 (2014)

(208 citations as of 3/12/17)

Discovery of the $\mathbf{Z}_{\mathbf{c}}(\mathbf{3 9 0 0})$ in $\pi^{ \pm}\left(D^{*} \mathbf{D}\right) \mp$ PRL 112, 022001 (2014)

(174 citations as of 3/12/17)

The "Y Problem" and the "Z Problem"

1. The Y Problem:

$\mathrm{e}^{+} \mathrm{e}^{-}$cross sections as a function of E_{CM} have become increasingly complex.

- Even the $\mathrm{Y}(4260)$ in $\pi \pi J / \psi$ no longer looks like a simple peak.
- The $\pi \tau h_{c}$ cross section is clearly inconsistent with $\pi \tau J / \psi$.
- Open charm cross sections are even more intriguing.
\Rightarrow A fine high-statistics energy scan is needed for a more systematic approach.

2. The Z Problem:

At 4.23 and 4.26 GeV , we found evidence for the $\mathrm{Z}_{\mathrm{c}}(3900)$ and the $\mathrm{Z}_{\mathrm{c}}(4020)$, but at 4.42 GeV the Dalitz plots are generally more complex.
$-\pi \pi J / \psi$ shows a strange diagonal structure in the Dalitz plot (progress has been made!).

- $\pi л \psi(2 S)$ shows a structure at 4040 (but we can't easily fit it)???
\Rightarrow Amplitude analyses at multiple energies would probe threshold behaviors.

Next Proposal:

Building on the ongoing 2017 scan, continue to scan from 4.31 to 4.41 GeV . 2017: $500 \mathrm{pb}^{-1}$ at 4.19, 4.20, 4.21, 4.22, 4.24, 4.25, 4.27, 4.28, 4.29, 4.30 GeV NEXT: 500pb ${ }^{-1}$ at $4.31,4.32,4.33,4.34,4.35,4.37,4.38,4.39,4.40,4.41 \mathrm{GeV}$
(going to 4.41 GeV connects us to our large data set at 4.42 GeV)

The "Y Problem" and the "Z Problem"

1. The Y Problem:
$\mathrm{e}^{+} \mathrm{e}^{-}$cross sections as a function of E_{CM} have become increasingly complex.

- Even the $\mathrm{Y}(4260)$ in $\pi \pi J / \psi$ no longer looks like a simple peak.
- The $\pi \tau h_{c}$ cross section is clearly inconsistent with $\pi \tau J / \psi$.
- Open charm cross sections are even more intriguing.
\Rightarrow A fine high-statistics energy scan is needed for a more systematic approach.

The "Y Problem" and the "Z Problem"

1. The Y Problem:

$\mathrm{e}^{+} \mathrm{e}^{-}$cross sections as a function of E_{CM} have become increasingly complex.

- Even the $\mathrm{Y}(4260)$ in $\pi \pi J / \psi$ no longer looks like a simple peak.
- The $\pi \pi h_{c}$ cross section is clearly inconsistent with $\pi \pi J / \psi$.
- Open charm cross sections are even more intriguing.
\Rightarrow A fine high-statistics energy scan is needed for a more systematic approach.

The "Y Problem" and the "Z Problem"

1. The Y Problem:

$\mathrm{e}^{+} \mathrm{e}^{-}$cross sections as a function of E_{CM} have become increasingly complex.

- Even the $\mathrm{Y}(4260)$ in $\pi \pi J / \psi$ no longer looks like a simple peak.
- The $\pi \pi h_{c}$ cross section is clearly inconsistent with $\pi \pi J / \psi$.
- Open charm cross sections are even more intriguing.
\Rightarrow A fine high-statistics energy scan is needed for a more systematic approach.

The "Y Problem" and the "Z Problem"

1. The Y Problem:

The "Y Problem" and the "Z Problem"

1. The Y Problem:

2017: 500pb ${ }^{-1}$ at 4.19, 4.20, 4.21, 4.22, 4.24, 4.25, 4.27, 4.28, 4.29, 4.30 GeV NEXT: 500pb ${ }^{-1}$ at $4.31,4.32,4.33,4.34,4.35,4.37,4.38,4.39,4.40,4.41 \mathrm{GeV}$ (going to 4.41 GeV connects us to our large data set at 4.42 GeV)

The "Y Problem" and the "Z Problem"

1. The Y Problem:

The "Y Problem" and the "Z Problem"

1. The Y Problem:

2017: $500 \mathrm{pb}^{-1}$ at 4.19, 4.20, 4.21, 4.22, 4.24, 4.25, 4.27, 4.28, 4.29, 4.30 GeV NEXT: 500pb ${ }^{-1}$ at $4.31,4.32,4.33,4.34,4.35,4.37,4.38,4.39,4.40,4.41 \mathrm{GeV}$
(going to 4.41 GeV connects us to our large data set at 4.42 GeV)

The "Y Problem" and the "Z Problem"

1. The Y Problem:

The "Y Problem" and the "Z Problem"

1. The Y Problem:

2017: $500 \mathrm{pb}^{-1}$ at 4.19, 4.20, 4.21, 4.22, 4.24, 4.25, 4.27, 4.28, 4.29, 4.30 GeV NEXT: 500pb ${ }^{-1}$ at $4.31,4.32,4.33,4.34,4.35,4.37,4.38,4.39,4.40,4.41 \mathrm{GeV}$
(going to 4.41 GeV connects us to our large data set at 4.42 GeV)

The "Y Problem" and the "Z Problem"

1. The Y Problem:

$\mathrm{e}^{+} \mathrm{e}^{-}$cross sections as a fun

- Even the Y(4260) in $\pi л$
- The $\pi \pi h_{c}$ cross section
- Open charm cross secti
\Rightarrow A fine high-statistics 6

2. The Z Problem:

At 4.23 and 4.26 GeV , we but at 4.42 GeV the Dalitz

- $\pi \pi J / \psi$ shows a strange
$-\pi \tau \psi(2 S)$ shows a struct
\Rightarrow Amplitude analyses a

Next Proposal:

Building on the ongoing 20 2017: $500 \mathrm{pb}^{-1}$ at 4.19, 4. NEXT: 500pb ${ }^{-1}$ at 4.31, (going to 4.41 GeV conned

Other $\mathbf{e}^{+} \mathbf{e}^{-}$Cross Sections (selection)

* all open charm cross sections:
- investigate coupled channels.
* $\omega \chi_{\mathrm{c} 1}$ and $\omega \chi_{\mathrm{c} 2}$:
- enhancements at threshold like $\omega \chi_{\mathrm{c} 0}$?
* $\gamma \eta_{\mathrm{c}}$ and $\gamma \chi_{\mathrm{c} 0}$:
- consistent with lattice QCD hybrid calculations?
* $\pi^{+} \pi^{-} \mathrm{h}_{\mathrm{c}}(2 \mathrm{P})$:
- discover the $\mathrm{h}_{\mathrm{c}}(2 \mathrm{P})$?
* $\pi^{+} \pi^{-} \psi(2 S)$:
- will the $\mathrm{Y}(4360)$ also turn out to be more complicated?
* $\eta \mathrm{J} / \psi, \eta^{\prime} \mathrm{J} / \psi, \mathrm{XJ} / \psi \ldots$.
- other surprises?
* $\mathrm{X} \eta_{\mathrm{c}}$:
- can we access η_{c} channels?
* + many more...

The "Y Problem" and the "Z Problem"

1. The Y Problem:

$\mathrm{e}^{+} \mathrm{e}^{-}$cross sections as a function of E_{CM} have become increasingly complex.

- Even the $\mathrm{Y}(4260)$ in $\pi \pi J / \psi$ no longer looks like a simple peak.
- The $\pi \tau h_{c}$ cross section is clearly inconsistent with $\pi \tau J / \psi$.
- Open charm cross sections are even more intriguing.
\Rightarrow A fine high-statistics energy scan is needed for a more systematic approach.

2. The Z Problem:

At 4.23 and 4.26 GeV , we found evidence for the $\mathrm{Z}_{\mathrm{c}}(3900)$ and the $\mathrm{Z}_{\mathrm{c}}(4020)$, but at 4.42 GeV the Dalitz plots are generally more complex.
$-\pi \pi J / \psi$ shows a strange diagonal structure in the Dalitz plot (progress has been made!).

- $\pi л \psi(2 S)$ shows a structure at 4040 (but we can't easily fit it)???
\Rightarrow Amplitude analyses at multiple energies would probe threshold behaviors.

Next Proposal:

Building on the ongoing 2017 scan, continue to scan from 4.31 to 4.41 GeV . 2017: $500 \mathrm{pb}^{-1}$ at 4.19, 4.20, 4.21, 4.22, 4.24, 4.25, 4.27, 4.28, 4.29, 4.30 GeV NEXT: 500pb ${ }^{-1}$ at $4.31,4.32,4.33,4.34,4.35,4.37,4.38,4.39,4.40,4.41 \mathrm{GeV}$
(going to 4.41 GeV connects us to our large data set at 4.42 GeV)

The "Y Problem" and the "Z Problem"

$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \pi^{+} \pi^{-} \mathrm{J} / \psi$ at 4230 MeV

September 2015 BES meeting

ecome increasingly complex.
ike a simple peak.
with $\pi \pi J / \psi$.
riguing.
eded for a more systematic approach.

At 4.23 and 4.26 GeV , we found evidence for the $\mathrm{Z}_{\mathrm{c}}(3900)$ and the $\mathrm{Z}_{\mathrm{c}}(4020)$, but at 4.42 GeV the Dalitz plots are generally more complex.
$-\pi \pi J / \psi$ shows a strange diagonal structure in the Dalitz plot (progress has been made!).

- $\pi \pi \psi(2 S)$ shows a structure at 4040 (but we can't easily fit it)???
\Rightarrow Amplitude analyses at multiple energies would probe threshold behaviors.

Next Proposal:

Building on the ongoing 2017 scan, continue to scan from 4.31 to 4.41 GeV . 2017: $500 \mathrm{pb}^{-1}$ at 4.19, 4.20, 4.21, 4.22, 4.24, 4.25, 4.27, 4.28, 4.29, 4.30 GeV NEXT: 500pb ${ }^{-1}$ at $4.31,4.32,4.33,4.34,4.35,4.37,4.38,4.39,4.40,4.41 \mathrm{GeV}$
(going to 4.41 GeV connects us to our large data set at 4.42 GeV)

The "Y Problem" and the "Z Problem"

At 4.23 and 4.26 GeV , we found evidence for the $\mathrm{Z}_{\mathrm{c}}(3900)$ and the $\mathrm{Z}_{\mathrm{c}}(4020)$, but at 4.42 GeV the Dalitz plots are generally more complex.
$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \pi^{+} \pi^{-} \mathrm{J} / \psi$ at 4420 MeV
September 2015 BES meeting

he Dalitz plot (progress has been made!). an't easily fit it)???
s would probe threshold behaviors.
o scan from 4.31 to 4.41 GeV .
4.25, 4.27, 4.28, 4.29, 4.30 GeV

5, 4.37, $4.38,4.39,4.40,4.41 \mathrm{GeV}$
a set at 4.42 GeV)

The "Y Problem" and th

$\mathbf{e}^{+} \mathbf{e}^{-} \rightarrow \pi^{+} \pi^{-} \mathrm{J} / \psi$ at 4230 MeV

September 2015 BES meeting

At 4.23 and 4.26 GeV , we found evidence for the but at 4.42 GeV the Dalitz plots are generally mor $\mathbf{e}^{+} \mathrm{e}^{-} \rightarrow \pi^{+} \pi^{-} \mathrm{J} / \psi$ at $\mathbf{4 4 2 0} \mathbf{~ M e V}$

September 2015 BES meeting

$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \pi^{+} \pi^{-} \mathrm{J} / \psi$ at 4420 MeV

In Progress (from SUN Zhentian)

(tighter cuts than before)

Successful fit with $\mathrm{Z}_{\mathrm{c}}(3900)$ and a wider $\mathrm{Z}_{\mathrm{c}}(40 \mathrm{xx})$!

The "Y Problem" and the "Z Problem"

1. The Y Pro $\mathrm{e}^{+} \mathrm{e}^{-}$cross s

- Even t
- The $\pi \sigma$
- Open o
\Rightarrow A fine hi

2. The $Z \operatorname{Pr}$

$$
\mathbf{e}^{+} \mathbf{e}^{-} \rightarrow \pi^{+} \pi^{-} \underset{(B A M-102)}{\psi(2 S)} \text { at } \mathbf{4 2 3 0} \mathbf{M e V}
$$

tic approach.

At 4.23 and 4.26 GeV , we found evidence for the $\mathrm{Z}_{\mathrm{c}}(3900)$ and the $\mathrm{Z}_{\mathrm{c}}(4020)$, but at 4.42 GeV the Dalitz plots are generally more complex.
\Rightarrow Amplitu
Next Propos
Building or 2017: 500 NEXT: 50
(going to

$$
\begin{gathered}
-\pi \pi J / \psi \\
-\pi \pi \psi(2
\end{gathered} \begin{array}{|c}
\mathbf{e}^{+} \mathbf{e}^{-} \rightarrow \pi^{+} \pi^{-} \psi(2 S) \text { at } 4420 \mathrm{MeV} \\
(\text { BAM-102) }
\end{array}
$$

en made!).
behaviors.

The "Y Problem" and the "Z Problem"

1. The Y Problem:

$\mathrm{e}^{+} \mathrm{e}^{-}$cross sections as a function of E_{CM} have become increasingly complex.

- Even the $\mathrm{Y}(4260)$ in $\pi \pi J / \psi$ no longer looks like a simple peak.
- The $\pi \tau h_{c}$ cross section is clearly inconsistent with $\pi \tau J / \psi$.
- Open charm cross sections are even more intriguing.
\Rightarrow A fine high-statistics energy scan is needed for a more systematic approach.

2. The Z Problem:

At 4.23 and 4.26 GeV , we found evidence for the $\mathrm{Z}_{\mathrm{c}}(3900)$ and the $\mathrm{Z}_{\mathrm{c}}(4020)$, but at 4.42 GeV the Dalitz plots are generally more complex.
$-\pi \pi J / \psi$ shows a strange diagonal structure in the Dalitz plot (progress has been made!).

- $\pi л \psi(2 S)$ shows a structure at 4040 (but we can't easily fit it)???
\Rightarrow Amplitude analyses at multiple energies would probe threshold behaviors.

Next Proposal:

Building on the ongoing 2017 scan, continue to scan from 4.31 to 4.41 GeV . 2017: $500 \mathrm{pb}^{-1}$ at 4.19, 4.20, 4.21, 4.22, 4.24, 4.25, 4.27, 4.28, 4.29, 4.30 GeV NEXT: 500pb ${ }^{-1}$ at $4.31,4.32,4.33,4.34,4.35,4.37,4.38,4.39,4.40,4.41 \mathrm{GeV}$
(going to 4.41 GeV connects us to our large data set at 4.42 GeV)

Summary

- The BESIII XYZ program has been very successful.
- But there are problems remaining:
- The "Y problem" requires a systematic study of $\mathrm{e}^{+} \mathrm{e}^{-}$cross sections as a function of E_{CM}.
- The "Z problem" requires amplitude analyses for multiple E_{CM} and multiple channels (preferably simultaneous analyses).
- We propose to scan from 4.31 to 4.41 in 10 MeV steps, building on 2017's scan from 4.19 to 4.30:

```
2017: 500pb-1 at 4.19, 4.20, 4.21, 4.22, 4.24, 4.25, 4.27, 4.28, 4.29, 4.30 GeV
NEXT: 500pb-1 at 4.31, 4.32, 4.33, 4.34, 4.35, 4.37, 4.38, 4.39, 4.40, 4.41 GeV
```

