Update on Luminosity

Yang Yifan

IHEP

April 2017

Switching to Babayaga-NLO

- For standard Babayaga NLO, the mean value of cross section deviates because of the long tail.
- It's probably caused by the low numerical precision when sampling narrow resonances

2 / 6

Switching to Babayaga-NLO

- To deal with this effect, the cut m(ee) > 3.8 GeV is added into Babayaga NLO.
- And a cut on M(ee) is added into event selection criteria.

Methods

Event Selection

- 2 good charged tracks with 0 net charge, for each of which $R_{xy} < 1cm$, $R_z < 10cm$ is required.
- $E_{e^-}, E_{e^+} > 1.55/4.26 \times E_{CMS}$
- $|cos\theta_{e^-}^{MDC}|, |cos\theta_{e^+}^{MDC}| < 0.8$
- $P_{e^-}, P_{e^+} > 2/4.26 \times E_{CMS}$
- $m(ee) > 3.8 \, GeV$

MC

- Modified Babayaga-NLO MC sample: 1 million events per energy point.
- Calculate cross section with standalone BabayagaNLO package, which is modified accordingly.

4 / 6

Overall Result

$E_{cms}(GeV)$	Cross Section(nb)	MC Efficiency(%)	Offline Lum (pb^{-1})
4190 _{prev}	422.3 ± 0.4	14.39 ± 0.04	517.5
4190	354.68 ± 0.05	$16.99 {\pm} 0.04$	521.9
4220	352.14 ± 0.05	$16.94{\pm}0.04$	508.5
4237	350.64 ± 0.05	16.79 ± 0.04	529.0

• 4190 previous result with Babayaga 3.5 is here for comparison.

Comparison by Run

