Measurement of Observed Cross Sections for $e^+e^- ightarrow hadrons|_{{ m non}\-Dar D}$

YI FANG, GANG RONG

Institute of High Energy Physics, Beijing 100049, People's Republic of China

March 22, 2017

Charmonium Group Meeting

Outline

Introduction

- Event Selection
- Background Subtraction
- Efficiency
- Cross Sections

3 Analysis of Cross Sections

- Expected Cross Section
- Results

Conclusion

Introduction

• The BES-II previously observed an anomalous line shape of the cross section for $e^+e^- \rightarrow hadrons$ (Phys. Rev. Lett. **101**, 102004 (2008)).

- This anomalous line shape more likely indicates that there are new structure(s) in addition to the $\psi(3770)$ around 3.773 GeV or some dynamics affect $\psi(3770)$ and $D\bar{D}$ production and decays.
- S. Dubynskiy and M. B. Voloshin interpret this anomalous line shape of cross section as a "diresonance", "which may arise from existence of both a charmonium state and a "molecular" *DD* threshold resonance" (Phys. Rev. D 78, 116014 (2008)).
- However, this observation of the line shape need to be confirmed at other experiment.
- Experimental study of the process of e^+e^- annihilating into hadrons in this energy range with a larger data set at the BESIII experiment will provide some important information to elucidate this anomalous line-shape.

Data sets:

 ${\sim}70~\text{pb}^{-1}$ energy scan data taken in range from 3.64 to 3.87 GeV

MC samples:

Process	Generator
$J/\psi ightarrow$ hadrons	kkmc+BesE∨tGen
ψ (3686) $ ightarrow$ hadrons	kkmc+BesE∨tGen
$D^0 \overline{D}^0, D^+ D^-$	ккмс+BesEvtGen
ψ (3770) $ ightarrow$ non- $Dar{D}$	kkmc+BesE∨tGen
$e^+e^- ightarrow qar q$	ККМС
$e^+e^- ightarrow e^+e^-, \mu^+\mu^-, \gamma\gamma$	Babayaga
$e^+e^- \rightarrow \tau^+\tau^-$	ККМС
$e^+e^- ightarrow e^+e^-far{f}$	BesTwogam

For inclusive decays of the J/ψ , ψ (3686) and ψ (3770), the known decay modes are generated by EVTGEN with branching fractions taken from PDG, while the remaining unknown decay modes are modeled by LUNDCHARM

Software environment: BOSS 6.6.4.p01

Event Selection

- At least three good charged tracks
 - $|V_r| < 1.0 \text{ cm}, |V_z| < 15.0 \text{ cm}, |\cos \theta| < 0.93$
- To suppress the Bhabha and dimuon backgrounds, require the ratio of Fox-Wolfram moments $H_2/H_0 < 0.85$

- To suppress the two-photon and beam-gas events, require the ratio $|p_z^{\rm miss}|/E_{\rm vis}<0.30$
 - p_z^{miss} : the z component of the missing momentum of the event
 - E_{vis}: the visible energy of the event

Y. Fang (IHEP)

 $e^+e^- \rightarrow hadrons$

Event Selection

- In order to separate some beam-gas associated background events and cosmic-ray events, which are suspected to be produced at random Z positions in the beam pipe, we can examine the averaged Z position (Zaver) of the charged tracks.
- The numbers of observed hadronic events are extracted from maximum likelihood fits to the Z_{aver} distributions.

E _{cm} (GeV)	N _{obs}						
3.6451	6905 ± 102	3.7587	74653 ± 300	3.7873	43808 ± 236	3.8319	3791 ± 76
3.7215	2208 ± 52	3.7617	76820 ± 312	3.7915	51908 ± 254	3.8400	3560 ± 68
3.7296	3533 ± 69	3.7645	58202 ± 271	3.7952	57198 ± 270	3.8479	3555 ± 68
3.7454	14932 ± 138	3.7674	44937 ± 237	3.7989	54047 ± 263	3.8561	4102 ± 76
3.7470	22267 ± 167	3.7702	38140 ± 213	3.8030	36777 ± 222	3.8640	3895 ± 75
3.7493	36395 ± 216	3.7731	35114 ± 207	3.8068	23726 ± 172	3.6474	26947 ± 200
3.7508	47770 ± 244	3.7760	35077 ± 205	3.8099	17046 ± 152	3.6534	26396 ± 191
3.7530	53721 ± 258	3.7789	36476 ± 211	3.8128	12063 ± 128		
3.7544	55601 ± 261	3.7818	38163 ± 214	3.8160	9019 ± 112		
3.7558	63800 ± 278	3.7847	42113 ± 231	3.8240	5247 ± 86		

(□▶◀@▶◀칠▶◀철▶ 칠|ᆋ 옛)

Background sources

QED processes:

 ${\rm e^+e^-} \rightarrow {\rm e^+e^-}$, $\mu^+\mu^-$, $\tau^+\tau^-$, $\gamma\gamma$

• Two-photon interactions:

$$e^+e^- \to e^+e^-e^+e^-$$
, $e^+e^-\mu^+\mu^-$, $e^+e^-\tau^+\tau^-$
 $e^+e^- \to e^+e^-u\bar{u}$, $e^+e^-d\bar{d}$, $e^+e^-s\bar{s}$

• The number of background events

$$N_{\mathrm{bkg}} = \mathcal{L} \times \left(\sum_{i} \sigma_{\mathrm{bkg}, i} \times \eta_{i} \right)$$

• \mathcal{L} : luminosity

- $\sigma_{\rm bkg}$: theoretical cross section of background process
- η : contamination rate

Background Subtraction — QED Processes

- The cross sections of e⁺e⁻ → e⁺e⁻, μ⁺μ⁻, γγ are taken from the outputs of MC generators.
- To calculate the $e^+e^- \rightarrow \tau^+\tau^$ cross section, the effects of ISR, FSR, Coulomb interaction, $\psi(3686)$ production and interference are considered (Phys. Rev. D **74**, 112003 (2006)).

- The events selection criteria applied to data is also applied to the MC simulated background events.
- The result of fitting a polynomial to these contamination rates is used for further calculations.

March 22, 2017

Background Subtraction — Two-Photon Processes

• The cross sections of $e^+e^- \rightarrow e^+e^-f\bar{f}$ ($f = e, \mu, \tau, u, d, s$) are obtained from MC simulation.

- The events selection criteria applied to data is also applied to the MC simulated background events.
- The result of fitting a polynomial to these contamination rates is used for further calculations.

The DD Contributions

- The number of $e^+e^- \rightarrow D\bar{D}$ events is given by $N_{D\bar{D}} = \mathcal{L}\sigma_{D\bar{D}}\varepsilon_{D\bar{D}}$.
- Here $\sigma_{D\bar{D}}$ is measured using singly tagged *D* events.
 - $D^0 \rightarrow K^- \pi^+$
 - $D^+ \rightarrow K^- \pi^+ \pi^+$

To reduce the statistic, the values expected from the fit are used.

 The efficiencies ε_{DD̄} are determined from MC simulation. The results of fitting a polynomial to these efficiencies are used for further calculations.

Efficiencies

- The efficiency for hadronic events is obtained by analyzing the MC simulated signal events.
- We first determine the detection efficiency for each category of hadronic events. To reduce MC statistic, the results of fitting a polynomial to these efficiencies are used for further calculations.

 We then weight these efficiencies according to their cross sections to obtain the overall efficiency.

Efficiencies

The detection efficiencies for $e^+e^- \to \textit{hadrons}|_{non\text{-}D\bar{D}}$ as a function of the CM energy

Y. Fang (IHEP)

 $e^+e^- \rightarrow hadrons$

March 22, 2017 12 / 27

Cross Sections

• The observed cross section for $e^+e^- \rightarrow hadrons|_{non-D\bar{D}}$ is given by $\sigma^{obs}_{had-nD\bar{D}}(E_{cm}) = \frac{N_{obs}(E_{cm}) - N_{bkg}(E_{cm})}{\mathcal{L}(E_{cm}) \times \varepsilon(E_{cm})}.$

 Analysis of this observed cross section needs the expectedobserved cross sections for this final state, which can be obtained with BW function and ISR sampling function.

Source	Systematic uncertainty (%)
Charged track multiplicity	1.4
R_2 cut	0.5
$ \mathcal{P}_z^{ m miss} /E_{ m vis}$ cut	0.9
Fit to the $ar{V}_z$ distribution	0.8
Luminosity	1.0
Sum in quadrature	2.2

イロト イポト イヨト イヨト

三日 のへの

Expected Cross Section

• The cross section of $e^+e^-
ightarrow hadrons|_{nDD}$ can be expressed as

$$\sigma^{\exp}(s) = \sigma^{\exp}_{J/\psi}(s) + \sigma^{\exp}_{\psi(3686)}(s) + \sigma^{\exp}_{R_{s}(3770)}(s) + \sigma_{q\bar{q}}(s)$$

where $s \equiv E_{\rm cm}^2$.

For resonances, one has

$$\sigma_{R}^{\exp}(s) = \int \int \sigma^{0}(s'(1-x))\mathcal{F}(x,s')\mathcal{G}(s',s)dxds',$$

where $s' \equiv s(1 - x)$, x is the fraction of the radiative energy to the beam energy, $\mathcal{F}(x, s')$ is the sampling function, $\mathcal{G}(s', s)$ is a Gaussian function describing the distribution of the e^+e^- collision energy.

We use a Breit-Wigner function to calculate the dressed cross section:

$$\sigma^{0}(s) = \frac{12\pi\Gamma^{ee}\Gamma\mathcal{B}_{had}}{(s-M^{2})^{2}+(M\Gamma)^{2}},$$

where Γ^{ee} and Γ are respectively the leptonic width and total width of the resonance, *M* is the mass and \mathcal{B}_{had} denotes the decay branching fraction.

The cross section for light hadron production is parameterized as

$$\sigma_{q\bar{q}}(s) = f_{q\bar{q}}\sigma^{\mathrm{B}}_{\mu^{+}\mu^{-}}(s),$$

where $\sigma^{\rm B}_{\mu^+\mu^-}(s)$ is the Born cross section of $e^+e^- \rightarrow \mu^+\mu^-$ and $f_{q\bar{q}}$ is a free parameter.

Fitting Procedure

• We use the least squares method to fit the experimental data. The following function is minimized:

$$\chi^{2} = \sum_{i} \left(\frac{\sigma^{\text{obs}}(E_{\text{cm},i}) - \sigma^{\exp}(E_{\text{cm},i})}{\Delta(\sigma^{\text{obs}}(E_{\text{cm},i}))} \right)^{2},$$

where *i* is the energy point number, $\Delta(\sigma^{\text{obs}}(E_{\text{cm},i}))$ is the sadistical uncertainty of the measured cross section and $\sigma^{\exp}(E_{\text{cm},i})$ is the predicted cross section.

- The resonance parameters of J/ψ and ψ (3686) are fixed at PDG2016 values in the fit.
- The energy spread is fixed at $\sigma_E = 1.37$ MeV.
- For the $R_s(3770)$ resonance(s), we use one or two Breit-Wigner amplitude(s) to fit the observed hadronic cross sections.

Fit Results — Scenario 1

M (MeV)	3773.13 (fixed)
Г (MeV)	27.2 (fixed)
$\Gamma^{ee}\mathcal{B}(\psi(3770) \rightarrow nD\bar{D}) \text{ (eV)}$	39.34 ± 3.91
f _{qq}	2.794 ± 0.009
χ^2/N_{dof}	64.6/35

The observed cross sections after subtracting contributions from J/ψ , $\psi(3686)$ and continuum light hadron production

Fit Results — Scenario 2

Assuming that there are two structures around 3.773 GeV

M ₁ (MeV)	3748.6 ^{+1.6}
Γ ₁ (MeV)	$11.4^{+11.5}_{-5.3}$
$\Gamma_1^{ee}\mathcal{B}(R_1 \rightarrow nD\bar{D}) \text{ (eV)}$	10.0 ^{+9.2} 4.1
M ₂ (MeV)	$3773.2^{+1.5}_{-1.4}$
Γ ₂ (MeV)	27.0 ^{+6.3}
$\Gamma_2^{ee}\mathcal{B}(R_2 \rightarrow nD\bar{D}) \text{ (eV)}$	43.3 ^{+10.2}
f _{qā}	2.760 ^{+0.013} _0.014
$\chi^2/N_{\rm dof}$	24.6/30

The signal significance of the diresonance is 5.3σ (from analyzing the observed cross sections).

The observed cross sections after subtracting contributions from J/ψ , $\psi(3686)$ and continuum light hadron production

- We first vary the measured cross sections, parameters of J/ψ , $\psi(3686)$, and energy spread by $\pm 1\sigma$, then repeat the fit procedure.
- The shifts of the parameters are taken as systematic uncertainties.

Source	Ml	Γlot	$\Gamma_1^{\Theta\Theta}\mathcal{B}_{R_1\to nD\bar{D}}$	M2	Γ ^{tot} 2	$\Gamma_2^{\Theta\Theta}\mathcal{B}_{R_2 \rightarrow nD\bar{D}}$	f _q ą
	(MeV)	(MeV)	(eV)	(MeV)	(MeV)	(eV)	
σ_{had}^{obs} measurement	0.2	0.4	1.3	0.1	1.0	3.6	0.066
M _{J/ψ}	0.0	0.0	0.0	0.0	0.0	0.0	0.000
$\Gamma_{J/\psi}^{tot}$	0.0	0.0	0.0	0.0	0.0	0.0	0.000
$\Gamma_{J/\psi}^{ee}$	0.0	0.1	0.0	0.0	0.1	0.3	0.004
M _{ψ(3686)}	0.0	0.0	0.0	0.0	0.0	0.0	0.000
Γ ^{tot} ψ(3686)	0.0	0.0	0.0	0.0	0.1	0.1	0.000
Γ ^{ee} ψ(3686)	0.1	0.3	0.8	0.0	0.9	2.2	0.002
Energy spread	0.0	0.0	0.0	0.0	0.0	0.0	0.000
Sum in quadrature	0.2	0.5	1.5	0.1	1.4	4.2	0.066

Comparison

• This analysis confirms (at 5.3σ) the BES-II observation of Di-Structure $R_s(3770)$ in the range from 3.71 to 3.87 GeV.

Y. Fang (IHEP)

March 22, 2017 22 / 2

Conclusion

- The cross sections of $e^+e^- \rightarrow hadrons|_{nD\bar{D}}$ are measured in the energy range from 3.64 to 3.87 GeV at the BESIII experiment.
- We observed an enhancement of non- $D\bar{D}$ hadron production in the range from 3.74 to 3.80 GeV, which confirms the anomalous line shape of cross sections for $e^+e^- \rightarrow hadrons$ observed at the BES-II experiment.
- To well describe the line-shape of these observed cross sections, one more BW amplitude additional to the $\psi(3770)$ resonance is needed.
- By analyzing these observed cross sections, We obtain the parameters of the Di-structures:

<i>M</i> ₁ (MeV)	$3748.6^{+1.6}_{-2.9}\pm0.2$
Γ1 (MeV)	$11.4^{+11.5}_{-5.3} \pm 0.5$
$\Gamma_1^{ee}\mathcal{B}(R_1 ightarrow \mathbf{non-} D\bar{D})$ (eV)	$10.0^{+9.2}_{-4.1} \pm 1.5$
<i>M</i> ₂ (MeV)	$3773.2^{+1.5}_{-1.4} \pm 0.1$
Γ ₂ (MeV)	$27.0^{+6.3}_{-5.1} \pm 1.4$
$\Gamma_2^{ee}\mathcal{B}(R_2 ightarrow \mathbf{non} \cdot D\bar{D})$ (eV)	$43.3^{+10.2}_{-8.9}\pm4.2$

Backup Slides

-

For a collection of N particles with momenta p_i , the k-th order Fox-Wolfram moments H_k is defined as

$$H_k = \sum_{i,j}^N |\boldsymbol{p}_i| |\boldsymbol{p}_j| P_k(\cos \theta_{ij}),$$

where θ_{ij} is the angle between \mathbf{p}_i and \mathbf{p}_j , and P_k is the k-th order Legendre polynomial.

Systematic Uncertainty

Multiplicity Requirement

- The systematic uncertainty due to the dependence on the charged track multiplicity is estimated by varying the requirement from $N_{\rm ch} \ge 3$ to $N_{\rm ch} \ge 2$.
- Additional cuts on $N_{\rm ch} = 2$ events:
 - The charged track must not be identified as an electron or a muon: $E_{\rm EMC}/p<0.7$ and $depth_{\rm MUC}<30~{\rm cm}$
 - The visible energy of event: $\textit{E}_{vis} > 0.3 \times \textit{E}_{cm}$
- The relative changes of $\sigma_{\rm had-nD\bar{D}}^{\rm obs}$ are less than 1.4%, which is taken as the systematic uncertainty.

a H_2/H_0 cut

- To estimate the systematic uncertainty due to the H_2/H_0 cut, we vary this cut from its nominal level of 0.85 down to 0.80.
- The relative changes of $\sigma^{\rm obs}_{\rm had-nD\bar{D}}$ are less than 0.5%, which is taken as the systematic uncertainty.

• $|p_z^{\text{miss}}|/E_{\text{vis}}$ cut

- To estimate the systematic uncertainty due to the cut on $|p_z^{miss}|/E_{vis}$, we vary this cut from its nominal level of 0.30 up to 0.35.
- The relative changes of $\sigma_{had-nD\bar{D}}^{obs}$ are less than 0.9%, which is taken as the systematic uncertainty.

• Fit to \bar{V}_z distributions

• To estimate the uncertainties due to the fits to the \bar{V}_z distributions, we refit the \bar{V}_z distributions by varying bin size, fit range ([-8, 8] cm, [-12, 12] cm), background PDF (first, third, fourth order polynomial), and signal PDF (a core Gaussian plus two exponential tails, double-Gaussian).

Item	Systematic uncertainty (%)
Bin size	0.0
Range	0.2
Background PDF	0.7
Signal PDF	0.4
Sum in quadrature	0.8

Luminosity

• 1.0% (Chin. Phys. C 37, 123001 (2013))