Measurement of Observed Cross Sections for $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow$ hadrons $\left.\right|_{\text {non-D }}$

YI FANG, GANG RONG

Institute of High Energy Physics, Beijing 100049, People's Republic of China
March 22, 2017

Charmonium Group Meeting

Outline

(1) Introduction
(2) Measurement of Cross Sections

- Event Selection
- Background Subtraction
- Efficiency
- Cross Sections
(3) Analysis of Cross Sections
- Expected Cross Section
- Results

4 Conclusion

Introduction

- The BES-II previously observed an anomalous line shape of the cross section for $e^{+} e^{-} \rightarrow$ hadrons (Phys. Rev. Lett. 101, 102004 (2008)).

- This anomalous line shape more likely indicates that there are new structure(s) in addition to the $\psi(3770)$ around 3.773 GeV or some dynamics affect $\psi(3770)$ and $D \bar{D}$ production and decays.
- S. Dubynskiy and M. B. Voloshin interpret this anomalous line shape of cross section as a "diresonance", "which may arise from existence of both a charmonium state and a 'molecular' DD threshold resonance" (Phys. Rev. D 78, 116014 (2008)).
- However, this observation of the line shape need to be confirmed at other experiment.
- Experimental study of the process of $e^{+} e^{-}$annihilating into hadrons in this energy range with a larger data set at the BESIII experiment will provide some important information to elucidate this anomalous line-shape.

Data and MC Samples

- Data sets:
$\sim 70 \mathrm{pb}^{-1}$ energy scan data taken in range from 3.64 to 3.87 GeV
- MC samples:

Process	Generator
$J / \psi \rightarrow$ hadrons	KKMC+BESEVTGEN
$\psi(3686) \rightarrow$ hadrons	KKMC+BESEVTGEN
$D^{0} \bar{D}^{0}, D^{+} D^{-}$	KKMC+BESEVTGEN
$\psi(3770) \rightarrow$ non- $D \bar{D}$	KKMC+BESEVTGEN
$e^{+} e^{-} \rightarrow q \bar{q}$	KKMC
$e^{+} e^{-} \rightarrow e^{+} e^{-}, \mu^{+} \mu^{-}, \gamma \gamma$	BABAYAGA
$e^{+} e^{-} \rightarrow \tau^{+} \tau^{-}$	KKMC
$e^{+} e^{-} \rightarrow e^{+} e^{-} f \bar{f}$	BESTwOGAM

For inclusive decays of the $J / \psi, \psi(3686)$ and $\psi(3770)$, the known decay modes are generated by EVTGEN with branching fractions taken from PDG, while the remaining unknown decay modes are modeled by LUNDCHARM

- Software environment: BOSS 6.6.4.p01

Event Selection

- At least three good charged tracks
- $\left|V_{r}\right|<1.0 \mathrm{~cm},\left|V_{z}\right|<15.0 \mathrm{~cm},|\cos \theta|<0.93$
- To suppress the Bhabha and dimuon backgrounds, require the ratio of Fox-Wolfram moments $H_{2} / H_{0}<0.85$

- To suppress the two-photon and beam-gas events, require the ratio $\left|p_{z}^{\text {miss }}\right| / E_{\text {vis }}<0.30$
- $p_{z}^{\text {miss }}$: the z component of the missing momentum of the event
- $E_{\text {vis }}$: the visible energy of the event

Event Selection

- In order to separate some beam-gas associated background events and cosmic-ray events, which are suspected to be produced at random Z positions in the beam pipe, we can examine the averaged Z position $\left(Z_{\text {aver }}\right)$ of the charged tracks.
- The numbers of observed hadronic events are extracted from maximum likelihood fits to the $Z_{\text {aver }}$ distributions.

$E_{\mathrm{cm}}(\mathrm{GeV})$	$N_{\text {obs }}$						
3.6451	6905 ± 102	3.7587	74653 ± 300	3.7873	43808 ± 236	3.8319	3791 ± 76
3.7215	2208 ± 52	3.7617	76820 ± 312	3.7915	51908 ± 254	3.8400	3560 ± 68
3.7296	3533 ± 69	3.7645	58202 ± 271	3.7952	57198 ± 270	3.8479	3555 ± 68
3.7454	14932 ± 138	3.7674	44937 ± 237	3.7989	54047 ± 263	3.8561	4102 ± 76
3.7470	22267 ± 167	3.7702	38140 ± 213	3.8030	36777 ± 222	3.8640	3895 ± 75
3.7493	36395 ± 216	3.7731	35114 ± 207	3.8068	23726 ± 172	3.6474	26947 ± 200
3.7508	47770 ± 244	3.7760	35077 ± 205	3.8099	17046 ± 152	3.6534	26396 ± 191
3.7530	53721 ± 258	3.7789	36476 ± 211	3.8128	12063 ± 128		
3.7544	55601 ± 261	3.7818	38163 ± 214	3.8160	9019 ± 112		
3.7558	63800 ± 278	3.7847	42113 ± 231	3.8240	5247 ± 86		

Background Subtraction

- Background sources
- QED processes:

$$
e^{+} e^{-} \rightarrow e^{+} e^{-}, \mu^{+} \mu^{-}, \tau^{+} \tau^{-}, \gamma \gamma
$$

- Two-photon interactions:

$$
\begin{aligned}
& e^{+} e^{-} \rightarrow e^{+} e^{-} e^{+} e^{-}, e^{+} e^{-} \mu^{+} \mu^{-}, e^{+} e^{-} \tau^{+} \tau^{-} \\
& e^{+} e^{-} \rightarrow e^{+} e^{-} u \bar{u}, e^{+} e^{-} d \bar{d}, e^{+} e^{-} s \bar{s}
\end{aligned}
$$

- The number of background events

$$
N_{\mathrm{bkg}}=\mathcal{L} \times\left(\sum_{i} \sigma_{\mathrm{bkg}, i} \times \eta_{i}\right)
$$

- \mathcal{L} : luminosity
- $\sigma_{\text {bkg }}$: theoretical cross section of background process
- η : contamination rate

Background Subtraction — QED Processes

- The cross sections of $e^{+} e^{-} \rightarrow e^{+} e^{-}$, $\mu^{+} \mu^{-}, \gamma \gamma$ are taken from the outputs of MC generators.
- To calculate the $e^{+} e^{-} \rightarrow \tau^{+} \tau^{-}$ cross section, the effects of ISR, FSR, Coulomb interaction, $\psi(3686)$ production and interference are considered (Phys. Rev. D 74, 112003 (2006)).

- The events selection criteria applied to data is also applied to the MC simulated background events.
- The result of fitting a polynomial to these contamination rates is used for further calculations.

Background Subtraction - Two-Photon Processes

- The cross sections of $e^{+} e^{-} \rightarrow e^{+} e^{-} f \bar{f}$ ($f=e, \mu, \tau, u, d, s$) are obtained from MC simulation.

- The events selection criteria applied to data is also applied to the MC simulated background events.
- The result of fitting a polynomial to these contamination rates is used for further calculations.

The D \bar{D} Contributions

- The number of $e^{+} e^{-} \rightarrow D \bar{D}$ events is given by $N_{D \bar{D}}=\mathcal{L} \sigma_{D \bar{D}} \varepsilon_{D \bar{D}}$.
- Here $\sigma_{D \bar{D}}$ is measured using singly tagged D events.
- $D^{0} \rightarrow K^{-} \pi^{+}$
- $D^{+} \rightarrow K^{-} \pi^{+} \pi^{+}$

To reduce the statistic, the values expected from the fit are used.

- The efficiencies $\varepsilon_{D \bar{D}}$ are determined from MC simulation. The results of fitting a polynomial to these efficiencies are used for further calculations.

Efficiencies

- The efficiency for hadronic events is obtained by analyzing the MC simulated signal events.
- We first determine the detection efficiency for each category of hadronic events. To reduce MC statistic, the results of fitting a polynomial to these efficiencies are used for further calculations.

- We then weight these efficiencies according to their cross sections to obtain the overall efficiency.

Efficiencies

The detection efficiencies for $e^{+} e^{-} \rightarrow$ hadrons $\left.\right|_{\text {non-D }}$ as a function of the CM energy

Cross Sections

- The observed cross section for $e^{+} e^{-} \rightarrow$ hadrons $\left.\right|_{\text {non-D }}$ is given by

$$
\sigma_{\mathrm{had}-\mathrm{n} D \bar{D}}^{\mathrm{obs}}\left(E_{\mathrm{cm}}\right)=\frac{N_{\mathrm{obs}}\left(E_{\mathrm{cm}}\right)-N_{\mathrm{bkg}}\left(E_{\mathrm{cm}}\right)}{\mathcal{L}\left(E_{\mathrm{cm}}\right) \times \varepsilon\left(E_{\mathrm{cm}}\right)} .
$$

- Analysis of this observed cross section needs the expectedobserved cross sections for this final state, which can be obtained with BW function and ISR sampling function.

Systematic Uncertainty

Source	Systematic uncertainty (\%)
Charged track multiplicity	1.4
R_{2} cut	0.5
$\left\|p_{Z}^{\text {miss }}\right\| / E_{\text {vis }}$ cut	0.9
Fit to the \bar{V}_{z} distribution	0.8
Luminosity	1.0
Sum in quadrature	2.2

Expected Cross Section

- The cross section of $e^{+} e^{-} \rightarrow$ hadrons $_{\left.\right|_{D D \bar{D}}}$ can be expressed as

$$
\sigma^{\exp }(s)=\sigma_{J / \psi}^{\exp }(s)+\sigma_{\psi(3686)}^{\exp }(s)+\sigma_{R_{s}(3770)}^{\exp }(s)+\sigma_{q \bar{q}}(s)
$$

where $s \equiv E_{\mathrm{cm}}^{2}$.

- For resonances, one has

$$
\sigma_{R}^{\exp }(s)=\iint \sigma^{0}\left(s^{\prime}(1-x)\right) \mathcal{F}\left(x, s^{\prime}\right) \mathcal{G}\left(s^{\prime}, s\right) d x d s^{\prime}
$$

where $s^{\prime} \equiv s(1-x), x$ is the fraction of the radiative energy to the beam energy, $\mathcal{F}\left(x, s^{\prime}\right)$ is the sampling function, $\mathcal{G}\left(s^{\prime}, s\right)$ is a Gaussian function describing the distribution of the $\mathrm{e}^{+} \mathrm{e}^{-}$collision energy.
We use a Breit-Wigner function to calculate the dressed cross section:

$$
\sigma^{0}(s)=\frac{12 \pi \Gamma^{e e} \Gamma \mathcal{B}_{\mathrm{had}}}{\left(s-M^{2}\right)^{2}+(M \Gamma)^{2}},
$$

where $\Gamma^{e e}$ and Γ are respectively the leptonic width and total width of the resonance, M is the mass and $\mathcal{B}_{\text {had }}$ denotes the decay branching fraction.

- The cross section for light hadron production is parameterized as

$$
\sigma_{q \bar{q}}(s)=f_{q \bar{q}} \sigma_{\mu^{+} \mu^{-}}^{\mathrm{B}}(s),
$$

where $\sigma_{\mu^{+} \mu^{-}}^{\mathrm{B}}(s)$ is the Born cross section of $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mu^{+} \mu^{-}$and $f_{q \bar{q}}$ is a free parameter.

Fitting Procedure

- We use the least squares method to fit the experimental data. The following function is minimized:

$$
\chi^{2}=\sum_{i}\left(\frac{\sigma^{\mathrm{obs}}\left(E_{\mathrm{cm}, i}\right)-\sigma^{\exp }\left(E_{\mathrm{cm}, i}\right)}{\Delta\left(\sigma^{\mathrm{obs}}\left(E_{\mathrm{cm}, i}\right)\right)}\right)^{2}
$$

where i is the energy point number, $\Delta\left(\sigma^{\text {obs }}\left(E_{\mathrm{cm}, j}\right)\right)$ is the sadistical uncertainty of the measured cross section and $\sigma^{\exp }\left(E_{\mathrm{cm}, i}\right)$ is the predicted cross section.

- The resonance parameters of J / ψ and $\psi(3686)$ are fixed at PDG2016 values in the fit.
- The energy spread is fixed at $\sigma_{E}=1.37 \mathrm{MeV}$.
- For the $R_{s}(3770)$ resonance(s), we use one or two Breit-Wigner amplitude(s) to fit the observed hadronic cross sections.

Fit Results — Scenario 1

- Assuming that there is only $\psi(3770)$

$M(\mathrm{MeV})$	3773.13 (fixed)
$\Gamma(\mathrm{MeV})$	27.2 (fixed)
$\Gamma^{e e} \mathcal{B}(\psi(3770) \rightarrow \mathrm{nD} \bar{D})(\mathrm{eV})$	39.34 ± 3.91
f_{qa}	2.794 ± 0.009
$\chi^{2} / N_{\text {dof }}$	$64.6 / 35$

Fit Results — Scenario 1

The observed cross sections after subtracting contributions from J / ψ, $\psi(3686)$ and continuum light hadron production

Fit Results — Scenario 2

(2) Assuming that there are two structures around 3.773 GeV

$M_{1}(\mathrm{MeV})$	$3748.6_{-2.9}^{+1.6}$
$\Gamma_{1}(\mathrm{MeV})$	11.4 $4_{-5.3}^{+11.5}$
$\Gamma_{1}^{\text {ee }} \mathcal{B}\left(R_{1} \rightarrow \mathrm{nD} \overline{\mathrm{D}}\right)(\mathrm{eV})$	10.0_{-4}^{+9}
$M_{2}(\mathrm{MeV})$	$3773.2_{-1.4}^{+1.5}$
$\Gamma_{2}(\mathrm{MeV})$	$27.0_{-5.1}^{+6.3}$
$\Gamma_{2}^{e e} \mathcal{B}\left(R_{2} \rightarrow \mathrm{nD} \overline{\mathrm{D}}\right)(\mathrm{eV})$	$43.3{ }_{-8.9}^{\text {-10.2 }}$
$f_{q \bar{a}}$	$2.760_{-0.014}^{+0.013}$
$\chi^{2} / N_{\text {dof }}$	24.6/30

The signal significance of the diresonance is 5.3σ (from analyzing the observed cross sections).

Fit Results — Scenario 2

The observed cross sections after subtracting contributions from J / ψ, $\psi(3686)$ and continuum light hadron production

Systematic Uncertainties

- We first vary the measured cross sections, parameters of $J / \psi, \psi(3686)$, and energy spread by $\pm 1 \sigma$, then repeat the fit procedure.
- The shifts of the parameters are taken as systematic uncertainties.

Source	M_{1} (MeV)	$\begin{gathered} \Gamma_{1}^{\text {tot }} \\ (\mathrm{MeV}) \end{gathered}$	$\begin{gathered} \Gamma_{1}^{e e} \mathcal{B}_{R_{1} \rightarrow n D \bar{D}} \\ (\mathrm{eV}) \end{gathered}$	$\begin{gathered} M_{2} \\ (\mathrm{MeV}) \end{gathered}$	$\begin{gathered} \Gamma_{2}^{\text {tot }} \\ (\mathrm{MeV}) \end{gathered}$	$\begin{gathered} \Gamma_{2}^{e e} \mathcal{B}_{R_{2} \rightarrow n D \bar{D}} \\ (\mathrm{eV}) \end{gathered}$	${ }^{\prime} q \bar{q}$
$\sigma_{\text {had }}^{\text {obs }}$ measurement	0.2	0.4	1.3	0.1	1.0	3.6	0.066
$M_{J / \psi}$	0.0	0.0	0.0	0.0	0.0	0.0	0.000
$\Gamma_{J / \psi}^{\text {tot }}$	0.0	0.0	0.0	0.0	0.0	0.0	0.000
$\Gamma_{J / \psi}^{e e}$	0.0	0.1	0.0	0.0	0.1	0.3	0.004
$M_{\psi(3686)}$	0.0	0.0	0.0	0.0	0.0	0.0	0.000
$\Gamma_{\psi(3686)}^{\text {tot }}$	0.0	0.0	0.0	0.0	0.1	0.1	0.000
$\Gamma_{\psi(3686)}^{e e}$	0.1	0.3	0.8	0.0	0.9	2.2	0.002
Energy spread	0.0	0.0	0.0	0.0	0.0	0.0	0.000
Sum in quadrature	0.2	0.5	1.5	0.1	1.4	4.2	0.066

Comparison

Parameter	This work	BES-II
$M_{1}(\mathrm{MeV})$	$3748.6^{+1.6} \pm 0.2$	$3762.6 \pm 11.8 \pm 0.5$
$\Gamma_{1}^{\text {tot }}(\mathrm{MeV})$	$11.4_{-5.3}^{+1.5} \pm 0.5$	$49.9 \pm 32.1 \pm 0.1$
$M_{2}(\mathrm{MeV})$	$3773.2_{-1.4}^{+1.5} \pm 0.1$	$3781.0 \pm 1.3 \pm 0.5$
$\Gamma_{2}^{\text {tot }}(\mathrm{MeV})$	$27.0_{-5.1}^{+6.3} \pm 1.4$	$19.3 \pm 3.1 \pm 0.1$

- This analysis confirms (at 5.3σ) the BES-II observation of Di-Structure $R_{s}(3770)$ in the range from 3.71 to 3.87 GeV .

Conclusion

- The cross sections of $e^{+} e^{-} \rightarrow$ hadrons $\left.\right|_{n D \bar{D}}$ are measured in the energy range from 3.64 to 3.87 GeV at the BESIII experiment.
- We observed an enhancement of non- $D \bar{D}$ hadron production in the range from 3.74 to 3.80 GeV , which confirms the anomalous line shape of cross sections for $e^{+} e^{-} \rightarrow$ hadrons observed at the BES-II experiment.
- To well describe the line-shape of these observed cross sections, one more BW amplitude additional to the $\psi(3770)$ resonance is needed.
- By analyzing these observed cross sections, We obtain the parameters of the Di-structures:

$M_{1}(\mathrm{MeV})$	$3748.6^{+1.6} \pm 0.2$
$\Gamma_{1}(\mathrm{MeV})$	$11.4_{-5.5}^{+1.5} \pm 0.5$
$\Gamma_{1}^{e \mathcal{B}} \mathcal{B}\left(R_{1} \rightarrow\right.$ non $\left.-D \bar{D}\right)(\mathrm{eV})$	$10.0_{-4.1}^{+9.2} \pm 1.5$
$M_{2}(\mathrm{MeV})$	$3773.2_{-1.4}^{+1.5} \pm 0.1$
$\Gamma_{2}(\mathrm{MeV})$	$27.0_{-5.1}^{+6.3} \pm 1.4$
$\Gamma_{2}^{e \Theta} \mathcal{B}\left(R_{2} \rightarrow\right.$ non $\left.-D \bar{D}\right)(\mathrm{eV})$	$43.3_{-8.9}^{+0.2} \pm 4.2$

Backup Slides

Fox-Wolfram Moments

For a collection of N particles with momenta \boldsymbol{p}_{i}, the k-th order FoxWolfram moments H_{k} is defined as

$$
H_{k}=\sum_{i, j}^{N}\left|\boldsymbol{p}_{i}\right|\left|\boldsymbol{p}_{j}\right| P_{k}\left(\cos \theta_{i j}\right),
$$

where $\theta_{i j}$ is the angle between \boldsymbol{p}_{i} and \boldsymbol{p}_{j}, and P_{k} is the k-th order Legendre polynomial.

Systematic Uncertainty

- Multiplicity Requirement
- The systematic uncertainty due to the dependence on the charged track multiplicity is estimated by varying the requirement from $N_{\text {ch }} \geq 3$ to $N_{\text {ch }} \geq 2$.
- Additional cuts on $N_{\text {ch }}=2$ events:
- The charged track must not be identified as an electron or a muon:
$E_{\text {EMC }} /$ p <0.7 and depth MUC $<30 \mathrm{~cm}$
- The visible energy of event: $E_{\mathrm{vis}}>0.3 \times E_{\mathrm{cm}}$
- The relative changes of $\sigma_{\text {had-n } D \bar{D}}^{\text {obs }}$ are less than 1.4%, which is taken as the systematic uncertainty.
(2) $\mathrm{H}_{2} / \mathrm{H}_{0}$ cut
- To estimate the systematic uncertainty due to the $\mathrm{H}_{2} / \mathrm{H}_{0}$ cut, we vary this cut from its nominal level of 0.85 down to 0.80 .
- The relative changes of $\sigma_{\text {had-n } D \bar{D}}^{\text {obs }}$ are less than 0.5%, which is taken as the systematic uncertainty.
(3) $\left|\rho_{Z}^{\text {miss }}\right| / E_{\mathrm{vis}}$ cut
- To estimate the systematic uncertainty due to the cut on $\left|p_{z}^{\text {miss }}\right| / E_{\mathrm{vis}}$, we vary this cut from its nominal level of 0.30 up to 0.35 .
- The relative changes of $\sigma_{\text {had-nD } \bar{D}}^{\text {obs }}$ are less than 0.9%, which is taken as the systematic uncertainty.

Systematic Uncertainty

(c) Fit to \bar{V}_{z} distributions

- To estimate the uncertainties due to the fits to the \bar{V}_{z} distributions, we refit the \bar{V}_{z} distributions by varying bin size, fit range ($[-8,8] \mathrm{cm},[-12,12]$ cm), background PDF (first, third, fourth order polynomial), and signal PDF (a core Gaussian plus two exponential tails, double-Gaussian).

Item	Systematic uncertainty (\%)
Bin size	0.0
Range	0.2
Background PDF	0.7
Signal PDF	0.4
Sum in quadrature	0.8

(6) Luminosity

- 1.0\% (Chin. Phys. C 37, 123001 (2013))

