允公允能日新月异

Observation of $\chi_{C J} \rightarrow K_{S}^{0} K_{S}^{0} K_{S}^{0} K_{S}^{0}$

San－Qiang Qu Ming－gang Zhao Hai－long Ma Nankai University Institute of High Energy Physics 2017．04．25

© Oütline

Motivation

Data sample

Event selection

Branching fraction

Summary

Theoretical work indicates that the color octet mechanism could have large contributions to the decays of the P-wave charmonium states.

However, Many theoretical calculations and experimental measurements still have large errors. more precise experimental data besides more theoretical efforts are mandatory to further understand $\chi_{C J}$ decay dynamics.

Thus, the measurement of as many exclusive hadronic $\chi_{C J}$ decay as possible is valuable.

First observations of $\chi_{C J} \rightarrow K_{S}^{0} K_{S}^{0} K_{S}^{0} K_{S}^{0}$

Data Sample

1. DATA : $447.9 \mathrm{M} \Psi(3686)(106.8 M(2009)+341.1 M(2012))$

2. Inclusive MC : 506M $\Psi(3686)(106 M(2009)+400 M(2012))$
$\psi(3686) \rightarrow$ anything
3. Exclusive MC : (P2GC0/P2GC1/P2GC2 PHSP) 100 K for $\mathrm{J}=0,1,2 \psi(3686) \rightarrow \gamma \chi_{C J} \rightarrow \gamma K_{S}^{0} K_{S}^{0} K_{S}^{0} K_{S}^{0}$
1000 K for $\psi(3686) \rightarrow \bar{K}^{*} K_{S} f_{0}(1710)$
1000 K for $\psi(3686) \rightarrow \bar{K}^{*} K_{S} f_{2}^{\prime}$

Boss Version: 6.6.4

Charged track selection :

1. $|\cos \theta|<0.93$
2. Momentum cut : $P<2.0 \mathrm{Gev}$
3. Charge cut : $|Q|=1 ; \operatorname{Sum}(Q)=0$
4. n Good $=8$
K_{S}^{0} reconstruction :
5. Second vertex fit applied
6. DecayLength/DecayLengthError > 2
7. $\left|M_{\pi \pi}-0.4976\right|<0.012 \mathrm{GeV}$
8. $n K_{s}^{0}=4$

Event selection

Good photon :

1. The timing information of the EMC should be within $0 \leqslant t \leqslant 14$ (in the unit of 50 ns).
2. The deposited energy should be larger than 25 MeV in the endcap |cos $\theta \mid<0.8$ and larger than 50 MeV in the barrel ($0.86<|\cos \theta|<0.92$);
3. The angle between the photon and the nearest charged track must be larger than 20 to distinguish the shower from charged particles

KinematicFit

If more than one combination survived in one event, the one with the smallest χ^{2} is retained.

K_{S}^{0} reconstruction

Nankai University

$=\chi_{C J}$ candidates after event selection

Backgrounds

No.	Decay Chain	Final states	nEvt
0	$\varphi^{\prime} \rightarrow \bar{K}^{*} K_{S} f_{2}^{\prime}, \bar{K}^{*} \rightarrow \pi^{0} K_{S}$	$\varphi^{\prime} \rightarrow \pi^{+} \pi^{+} \pi^{+} \pi^{+} \pi^{0} \pi^{-} \pi^{-} \pi^{-} \pi^{-}$	1
	$f_{2}^{\prime} \rightarrow K_{S} K_{S}, K_{S} \rightarrow \pi^{+} \pi^{-}$		
1	$\varphi^{\prime} \rightarrow \bar{K}^{*} K_{S} f_{0}(1710), \bar{K}^{*} \rightarrow \pi^{0} K_{S}$	$\varphi^{\prime} \rightarrow \pi^{+} \pi^{+} \pi^{+} \pi^{+} \pi^{0} \pi^{-} \pi^{-} \pi^{-} \pi^{-}$	1

Total: 2
Total: 2

Table1: topological analysis for Inclusive MC

Backgrounds

Distribution of invariant mass of backgrounds

Backgrounds

Backgrounds

.
 \section*{}
 Comparison of K_{S}^{0} momentum

Comparison of $K_{S}^{0} \cos \theta$

Update

充公 Fitting

Update

1. Signal shape: Breit-Wigner convoluted with double Gaussian, where the widths are fixed to the PDG value and resolution is not fixed.
2. Background shape: polynomial function

Update

Branching fraction

$$
B\left(\chi_{C J} \rightarrow 4 K_{S}^{0}\right)=\frac{N^{\text {obs }}}{N_{\psi(3686)} \times B\left(\psi(3686) \rightarrow \gamma \chi_{C J}\right) \times B^{4}\left(K_{S}^{0} \rightarrow \pi^{+} \pi^{-}\right) \times \varepsilon}
$$

$\chi_{C J} \rightarrow K_{s}^{0} K_{s}^{0} K_{s}^{0} K_{S}^{0}$	$N^{\text {obs }}$	Efficiency [\%]	Significance	B.F $\left[10^{-4}\right]$
$\chi_{C 0}$	347 ± 18	6.54	6.6	5.22 ± 0.27
$\chi_{C 1}$	18 ± 5	7.49	3.6	0.25 ± 0.07
$\chi_{C 2}$	65 ± 8	6.74	5.1	1.03 ± 0.13

notes: Significance $=\log _{e}(2 \times(F C N 1-F C N 2))$ FCN1: fitting data
FCN2: fitting data without the corresponding peak

Update

т

Systematic uncertainty

	$\chi_{C 0}[\%]$	$\chi_{C 1}[\%]$	$\chi_{C 2}[\%]$	Description
$\psi(3686)$ total numbers		0.8		$\begin{gathered} \text { CPC37 (2013) } \\ 063001 \end{gathered}$
γ detection efficiency		1.0		PRD83-012006
Reconstruction of K_{S}^{0}		6.0		PRD92-072012
MC model	3.2	4.2	1.5	following slide
Kinematic fit	1.3	6.2	7.7	following slide
Fitting range	0.3	4.5	1.4	following slide
Signal shape	1.9	0.0	3.5	following slide
MC statistics	1.1	1.0	1.0	binomial
$B\left(\varphi^{\prime} \rightarrow \gamma \chi_{C J}\right)$	2.7	3.2	3.4	PDG2016
$B\left(K_{S}^{0} \rightarrow \pi^{+} \pi^{-}\right)$		0.3		PDG2016
Total	11.3	11.2	12.0	Add in quadratic

Systematic uncertainty

1. Reconstruction of K_{S}^{0}

We use the same K_{S}^{0} selection criteria as used in PRD92-072012. The data-MC different of K_{S}^{0} reconstruction is studied in PRD92-072012 and shown below. The fit give the fitted data-MC difference to be $(1.01 \pm 0.53) \%$. So we assign 1.5% as systematic uncertainty per K_{S}^{0}.

the uncertainty includes differences between data and MC in tracking efficiency, decay length cut, mass spectra cut, vertex and second vertex fitting.

Systematic uncertainty

Update

2. MC model

The uncertainty in MC model is assigned by comparing the MC efficiencies with the ones involving possible sub-resonances.

Channel	$\chi_{C 0}[\%]$	$\chi_{C 0}[\%]$	$\chi_{C 0}[\%]$
$\chi_{C J} \rightarrow K_{S}^{0} K_{S}^{0} K_{S}^{0} K_{S}^{0}$	6.5	7.5	6.7
$\chi_{C J} \rightarrow f_{0}(1500) f_{0}(1500)$	6.5	7.3	6.6
$\chi_{C J} \rightarrow K_{S}^{0} K_{S}^{0} f_{0}(1500)$	6.4	7.4	6.7
$\chi_{C J} \rightarrow K_{S}^{0} K_{S}^{0} f_{2}^{\prime}(1525)$	6.3	7.2	6.7
$\chi_{C J} \rightarrow f_{0}(1500) f_{2}^{\prime}(1525)$	6.4	7.3	6.7
$\chi_{C J} \rightarrow f_{0}(1500) f_{0}(1710)$	6.5	7.4	6.7
$\chi_{C J} \rightarrow K_{S}^{0} K_{S}^{0} f_{2}(1565)$	6.5	7.3	6.7
$\chi_{C J} \rightarrow f_{0}(1500) f_{2}(1565)$	6.4	7.3	6.7
$\chi_{C J} \rightarrow f_{2}^{\prime}(1525) f_{2}(1565)$	6.4	7.3	6.7
systematic uncertainty	3.2	4.2	1.5

Update

Systematic uncertainty

3. Kinematic fit systematic error

The uncertainty is assigned by the difference of the branching fractions measured with and without χ^{2} cuts. In the case of no χ^{2} cut, the χ^{2} is set to be 10^{9}.

| Kinfit | $\chi_{C 0}$ | | | $\chi_{C 1}$ | | | $\chi_{C 2}$ | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| χ^{2} | signal | eff [\%] | B.F.[\%] | signal | eff [\%] | B.F. [\%] | signal | eff [\%] | B.F. [\%] |
| no | 345 | 6.50 | 5.22 | 21 | 7.59 | 0.28 | 82 | 7.35 | 1.19 |
| 2000 | 362 | 7.00 | 5.09 | 18 | 7.57 | 0.24 | 71 | 7.30 | 1.03 |
| 1500 | 360 | 6.94 | 5.10 | 20 | 8.22 | 0.25 | 67 | 7.24 | 0.99 |
| 1000 | 362 | 6.89 | 5.17 | 19 | 8.05 | 0.24 | 69 | 7.15 | 1.03 |
| 500 | 351 | 6.79 | 5.08 | 18 | 7.80 | 0.24 | 63 | 6.98 | 0.96 |
| 200 | 347 | 6.54 | 5.22 | 18 | 7.49 | 0.25 | 65 | 6.74 | 1.03 |
| Kinfit err | | 1.3 | | | 6.2 | | | 7.7 | |

SyStennatic uncertainty

Too loose χ^{2} cut may lead to too many mis－combinations among the 8 pions．

Figure：efficiency fitting for $\chi_{C 0}$ under different χ^{2} cut

4. Fitting range

The uncertainty is estimated by comparing the branching fractions with the alternative fit ranges of

	$\chi_{C 0}$			$\chi_{C 1}$			$\chi_{C 2}$		
Range	signal	eff [\%]	B.F. [\%]	signal	eff [\%]	B.F. [\%]	signal	eff [\%]	B.F. [\%]
[3.30, 3.59]	347	6.54	5.22	17	7.49	0.23	65	6.69	1.01
$[3.30,3.60]$	347	6.54	5.22	18	7.49	0.25	65	6.74	1.03
$[3.30,3.61]$	345	6.54	5.19	19	7.49	0.26	63	6.75	1.00
$[3.30,3.62]$	348	6.54	5.23	18	7.49	0.25	63	6.76	1.00
$[3.28,3.60]$	348	6.54	5.23	18	7.48	0.25	64	6.74	1.01
$[3.29,3.60]$	346	6.54	5.20	18	7.49	0.25	65	6.74	1.03
[3.31, 3.60]	346	6.54	5.20	18	7.49	0.25	64	6.74	1.01
[3.32, 3.60]	346	6.54	5.20	17	7.49	0.23	65	6.74	1.03
range err [\%]		0.3			4.5			1.4	

Update

 with the alternative fit ranges of

 Systematic uncertainty

Update

5. Signal shape

The uncertainty is obtained by comparing the branching fractions measured with the signal shapes of Breit Wigner convolution double Gaussian(left figure) and PDF generated by the MC histogram convolution Gaussian(right figure).

| $\chi_{C 0}$ | | | $\chi_{C 1}$ | | | $\chi_{C 2}$ | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| signal shape | signal | eff [\%] | B.F. [\%] | signal | eff [\%] | B.F. [\%] | signal | eff [\%] | B.F. [\%] |
| BW with
 double Gauss | 347 | 6.54 | 5.22 | 18 | 7.49 | 0.25 | 65 | 6.74 | 1.03 |
| MC pdf with
 Gauss | 338 | 6.54 | 5.03 | 18 | 7.49 | 0.25 | 62 | 6.74 | 0.98 |
| uncertainty | | 1.9 | | | 0.0 | | | 3.5 | |

Summary

Update

The decays of $\chi_{C J} \rightarrow K_{S}^{0} K_{S}^{0} K_{S}^{0} K_{S}^{0}$ are observed and their decay branching fractions are measured for the first time.

$\chi_{C J} \rightarrow K_{S}^{0} K_{S}^{0} K_{S}^{0} K_{S}^{0}$	B.F $\left[10^{-4}\right]$
$\chi_{C 0}$	$5.22 \pm 0.27 \pm 0.59$
$\chi_{C 1}$	$0.25 \pm 0.07 \pm 0.03$
$\chi_{C 2}$	$1.03 \pm 0.13 \pm 0.12$

南倒大紫 Nankar unversity．r．充公允能日新月异

Thank you ！！

Backup

$\operatorname{Cos} \theta$ of $\chi_{C J}$ in MCtruth check efficiency of $\chi_{\text {co }}$

(1)
 $\operatorname{Cos} \theta$ of $\chi_{C J}$ in MCtruth

Checkefficiency of $\chi_{C 0}$

Update

We found the efficiency decreased when Kinematic fit χ^{2} is not restricted. So we check the histogram of MC simulation for $\chi_{C J}$, and then we get the result.

	range	no χ^{2} cut entries	$\chi^{2}<2000$ entries
$\chi_{C 0}$	$\left[\begin{array}{ll}3.30 & 3.60\end{array}\right]$	8434	7021
$\chi_{C 1}$	$\left[\begin{array}{ll}3.30 & 3.44\end{array}\right]$	6218	6208
$\left.\begin{array}{lll}3.30 & 3.60\end{array}\right]$	8471	8309	
$\chi_{C 2}$	$\left[\begin{array}{ll}3.45 & 3.52\end{array}\right]$	6634	6618
$\left.\begin{array}{lll}3.30 & 3.60\end{array}\right]$	7350	7303	
	$\left[\begin{array}{ll}3.50 & 3.57\end{array}\right]$	6440	6428

