Amplitude analysis for $e^+e^- \rightarrow \pi^+\pi^- J/\psi@4420$

Zhentian Sun, Ryan Mitchell Indiana University Mar. 22, 2017

OUT LINE

- Amplitude construction
- Finding nominal fit.
- Goodness of the fit
- Systematic uncertainty
- summary

Helicity amplitude

For decay process $Y \to Z_c + \pi^+, Z_c \to J/\psi + \pi^-, J/\psi \to l^+l^-$, the helicity amplitude is:

$$\begin{split} A_{Z_c}(\lambda_Y,\lambda_{Z_c},\lambda_{l^+},\lambda_{l^-}) = & F_{\lambda_{Z_c},0}^{J_Y} D_{\lambda_Y,\lambda_{Z_c}}^{J_Y}(\theta_{Z_c},\phi_{Z_c}) \cdot BW(Z_c) \cdot F_{\lambda_{J/\psi},0}^{J_{Z_c}} D_{\lambda_{Z_c},\lambda_{J/\psi}}^{J_{Z_c}}(\theta_{J/\psi},\phi_{J/\psi}) \\ & \cdot F_{\lambda_{l^+},\lambda_{l^-}}^{J_{J/\psi}} D_{\lambda_{J/\psi},\lambda_{l^+}-\lambda_{l^-}}^{J_{J/\psi}}(\theta_{l^+},\phi_{l^+}) \end{split}$$

For decay process $Y \to f_0(f_2) + J/\psi$, $f_0(f_2) \to \pi^+ + \pi^-$, $J/\psi \to l^+l^-$, the helicity amplitude is:

$$\begin{split} A_f(\lambda_Y,\lambda_f,\lambda_{l^+},\lambda_{l^-}) = & F^{J_Y}_{\lambda_f,\lambda_{J/\psi}} D^{J_Y}_{\lambda_Y,\lambda_f-\lambda_{J/\psi}}(\theta_f,\phi_f) \cdot BW(f) \cdot F^{J_f}_{0,0} D^{J_f}_{\lambda_f,0}(\theta_{\pi^+},\phi_{\pi^+}) \\ & \cdot F^{J_{J/\psi}}_{\lambda_{l^+},\lambda_{l^-}} D^{J_{J/\psi}}_{\lambda_{J/\psi},\lambda_{l^+}-\lambda_{l^-}}(\theta_{l^+},\phi_{l^+}) \end{split}$$

The cross section:

$$\frac{d\sigma}{d\phi} = M = \sum_{\lambda_Y, \Delta\lambda_l} |\sum_{\lambda_{Zc}, \lambda_f} (A_f + e^{i\Delta\lambda_l\alpha_l(Z_c^+)} A_{Z_c^+} + e^{i\Delta\lambda_l\alpha_l(Z_c^-)} A_{Z_c^-})|^2$$

Parameterization of intermediate states

- Zc are parameterized with constant width Breit-Wigner function $\frac{1}{s - M^2 + iM\Gamma}$
- For $\pi\pi$ S-wave, we utilize the amplitude from $\pi\pi \rightarrow \pi\pi$ and KK $\rightarrow \pi\pi$ scattering experiment.

The scattering amplitude is rewritten in N(s)/D(s) form, the numerator is replaced by a polynomial expansion

$$S_{\pi\pi}(s) = \frac{1+z(s)}{D(s)} = S_{\pi\pi}^{0}(s) + cS_{\pi\pi}^{1}(s),$$

$$z(s) = \frac{\sqrt{s+s_0} - \sqrt{4m_K^2 - s}}{\sqrt{s+s_0} + \sqrt{4m_K^2 - s}}.$$

ππ S-wave parameterization

Same method as

CLEO: Phys. Rev. D 84, 112009 (2011).

BESIII: BAM 168

Finding nominal fit

Fit 0: Fit result with one $Z_c(3900)$

Fit 1: Fit result with one Zc(x)

=	J^P of $Z_c(35xx)$	-2lnL	$\Delta N_{dof.}$	Mass of Z _c MeV	Width MeV
_	0-	-5143.32	4	3539.2 ± 9.1	91.2 ± 19.4
	1+	-5218.74	10	3546.9 ± 6.1	93.7 ± 14.9
	1-	-5159.78	4	3550.6 ± 6.5	72.8 ± 11.8
	2+	-5159.45	4	3541.8 ± 6.0	65.7 ± 11.0
	2-	-5208.12	10	3546.3 ± 5.7	106.4 ± 13.9

Table 1: The fit result with different J^P assumption of $Z_c(35xx)$

J^P of $Z_c(40xx)$	-2lnL	$\Delta N_{dof.}$	Mass of Z _c MeV	Width MeV
0-	-5154.62	4	3917.4 ± 5.2	55.3 ± 9.3
1+	-5202.58	10	3959.5 ± 8.9	116.0 ± 13.4
1-	-5135.88	4	3948.5 ± 15.6	94.2 ± 24.3
2+	-5130.10	4	3959.2 ± 13.0	112.4 ± 17.6
2-	-5182.70	10	3949.4 ± 8.8	113.3 ± 17.1

Table 2: The fit result with different J^P assumption of $Z_c(40xx)$

H₀

Fit 1: Fit result with one Zc(35xx)

Fit 1: Fit result with one Zc(40xx)

Fit 2a: fit with two Zc

-	J^P of $2^{nd} Z_c$	-2lnL	J^P of Z_c	$\Delta N_{dof.}$	Mass of Z_c MeV	Width MeV
	0-	-5258	0-	4	3903.9 ± 9.4	41.6 ± 8.4
	U	-3236	1+	10	4004.1 ± 12.4	110.2 ± 14.9
	1+	5006	1+	10	3893.8 ± 5.0	41.2 ± 8.7
	1	-5286	1+	10	4018.4 ± 13.4	106.7 ± 19.0
	1-	-5253	1-	4	3591.0 ± 14.2	52.3 ± 11.8
	1	-3233	1+	10	3535.1 ± 8.1	109.8 ± 29.2
	2+	5226	2+	4	4014.3 ± 13.2	114.5 ± 28.1
	2	-5236	1+	10	3914.0 ± 5.4	65.8 ± 10.0
2-	-5264	2-	10	3892.6 ± 6.4	30.6 ± 8.5	
	2	-3204	1+	10	3994.8 ± 11.5	124.8 ± 16.2

H1

Table 4: The fit result with different J^P assumption of $Z_c(J^P) + Z_c(1^+)$.

Compare with page 8, Likelihood ratio test shows that the 1+ component is significant.

J^p of Zc of H0	δL(H1-H0)	N _{dof}	significance
0-	52	10	8.6σ
1+	34	10	6.5σ
1-	47	10	8.0σ
2+	38.5	10	7.0σ
2-	28	10	5.6σ

Fit 2: nominal fit result with two Zc

J^P of Z_c	-2lnL	$\Delta N_{dof.}$	Mass of Z_c MeV	Width MeV
0-	-5217.67	4	4005.7 ± 18.0	130.2 ± 44.5
1+	-5285.50	10	4027.0 ± 11.5	105.6 ± 20.2
1-	-5237.11	4	4028.7 ± 6.4	39.0 ± 14.9
2+	-5228.86	4	4000.0 ± 15.1	121.9 ± 28.4
2-	-5244.44	10	3995.7 ± 10.6	108.8 ± 16.3

Table 5: The fit result with different J^P assumption of $Z_c(40xx) + Z_c(3900)(1^+)$.

Scan plot of mass and width of Second Zc

The mass and width of Zc(3900) are fixed,
The mass and width of second Zc are free in the fit

H₀

The completeness of fit 2

- Completeness: The components in fit 2 are all significant, no other states are needed.
- The fit with $Zc(3900)(1^+)+Zc(40xx)(1^+)+Zc(40xx)(J^P)$, the mass and width of all states beside Zc(3900) are free in the fit.

	14	
		6

J^P of $Z_c H_0$	Likelihood of H_1	$\delta L(H_1 - H_0)$	$N_{dof}1^+$	significance of 1+	$\Delta L(H_1 - fit2)$	$N_{dof}J^p$	significance of J^p
0-	-5306.09	44	10	7.7σ	10.3	4	3.5σ
1+	-5312.84	8	10	_	13.7	10	3.1σ
1-	-5293.79	28	10	5.6σ	4.1	4	1.7σ
2+	-5294.74	33	10	6.3σ	4.6	4	1.9σ
2-	-5320.71	38	10	7.0σ	17.6	10	3.8σ

The significance of 1+ over other J^p assumption for Zc(40xx)

The significance of extra Zc states with different J^p assumption

The completeness of fit 2

- The significance of $\pi^+\pi^-$ D-Wave (f₂(1270))is 2.7 σ
- Fit 2 compare with fit 1 \rightarrow The significance of Zc(3900) is 6.4 σ
- Fit 2 compare with fit $0 \rightarrow$ The significance of Zc(4020) is 7.6 σ

The logic

The projection of fit 2

The projection of fit 2

Fit fraction

• The fit fraction is calculated by the MC integral of the cross section of intermediate process and the total cross section.

$$F_i = \sum_{j=1}^{N_{mc}} \left(\frac{d\sigma}{d\phi}\right)_j^i / \sum_{j=1}^{N_{mc}} \left(\frac{d\sigma}{d\phi}\right)_j$$

The interference table of fit 2

	$Z_c(3900)$	$Z_c(4020)$	$S_{\pi\pi}^{0}$	$S_{\pi\pi}^{1}$	S_{KK}
$Z_c(3900)$	0.43				
$Z_c(4020)$	-0.28	0.324			
$S_{\pi\pi}^{0}$	-0.17	0.26	0.923		
$S^1_{\pi\pi}$	0.06	-0.1	-1.0	0.42	
S_{KK}	-0.01	-0.002	0.067	0.019	0.076

Dalitz plot of Four dominant states

Dalitz plot of Four dominant states

Another $m(\pi^{+}\pi^{-})$ parameterization

- Three pipi S-wave components are used. σ_1 , $f_0(980)$, σ_2
- The σ_1 : The bump at the lower threshold of $m(\pi\pi)$

$$\begin{split} f = & \frac{G_{\sigma}}{M^2 - s - iM\Gamma_{tot}(s)}, \\ \Gamma_{tot}(s) = & g_1 \frac{\rho_{\pi\pi}(s)}{\rho_{\pi\pi}(M^2)} + g_2 \frac{\rho_{4\pi}(s)}{\rho_{4\pi}(M^2)}, \\ g_1 = & f(s) \frac{s - m_{\pi}^2/2}{M^2 - m_{\pi}^2/2} \exp[-(s - M^2)/a]. \end{split}$$

• $f_0(980)$ is parameterized with flatte formula: fixed to BESII's

measurement Phys.Lett. B607 (2005) 243-253

$$f = \frac{1}{M^2 - s - i(g_1 \rho_{\pi\pi} + g_2 \rho_{K\bar{K}})}.$$

• σ_2 : The bump at higher threshold of $m(\pi\pi)$

$$\frac{d\sigma}{dm_{\pi\pi}} \propto |\vec{q}| \sqrt{(q^2 - 4m_{\pi}^2)} \times q^4$$

q is the four momentum of the dipion system |q| is the magnitude of space part of q

Fit result with alternative $m(\pi^+\pi^-)$ parameterization

Fit result with different J^p assumption

J^P of $Z_c(40xx)$	-2lnL	$\Delta N_{dof.}$	Mass of Z_c MeV	Width MeV
0-	-5231.66	4	3974.1 ± 14.2	96.6 ± 21.0
1+	-5281.17	10	4025.1 ± 17.7	108.4 ± 22.7
1-	-5240.66	4	3983.0 ± 7.2	53.0 ± 9.9
2+	-5234.63	4	3977.2 ± 9.5	67.1 ± 18.0
2-	-5252.47	10	4004.9 ± 12.1	97.7 ± 17.3

The interference table of fit

	$Z_c(3900)$	$Z_c(4020)$	σ (600)	NS model	$f_0(980)$
$Z_c(3900)$	0.324				
$Z_c(4020)$	-0.133	0.248			
σ (600)	-0.094	0.111	0.339		
NS model	0.066	-0.037	-0.124	0.252	
$f_0(980)$	-0.052	0.047	0.112	-0.221	0.157

Fit result projection with alternative $m(\pi^+\pi^-)$ parameterization

Dalitz plot of Four dominant states

Dalitz plot of Four dominant states

Goodness of the fit

We use the Mixed-Sample Method used in BAM278.

M. Williams, Journal of Instrumentation 5, P09004 (2010).

$$T = \frac{1}{n_k(n_a + n_b)} \sum_{i=1}^{n_a + n_b} \sum_{k=1}^{n_k} I(i, k),$$

I(I,k)=1 if the neighbor are from same sampleI(I,k)=0 if the neighbor are from different sample

Goodness of the fit

The expected mean value of T if two samples have same distribution

$$\mu_T = \frac{n_a(n_a - 1) + n_b(n_b - 1)}{n(n - 1)},$$

The expected variance of T if two samples have same distribution

$$\lim_{n,n_k,D\to\infty}\sigma_T^2 = \frac{1}{nn_k}(\frac{n_a n_b}{n^2} + 4\frac{n_a^2 n_b^2}{n^4}).$$

- We generate MC sample according to fitted result. Then separate them into 300 samples. Then compare them with real data.
- The pull distribution of T should be a standard distribution if these samples have same distribution.

The pull distribution of T

The χ^2 check at different m($\pi\pi$) range

process	total	high $(M(\pi^+\pi^-) > 1.0 GeV)$	low $(M(\pi^+\pi^-) < 1.0 GeV)$
Fit 1	44.2, 44, 1.005	63.3, 24, 2.64	65.1, 47, 1.39
Fit 2	39.4, 47, 0.84	36.3, 23, 1.58	53.8, 47, 1.14

The three numbers in each box are χ^2 , Ndof. and χ^2 /Ndof

Figure 11: Fit 1: The projection result and χ^2 for each bin at different $M(\pi^+\pi^-)$ range. (a) total, (b) $M(\pi^+\pi^-) > 1.0 GeV$, (c) $M(\pi^+\pi^-) < 1.0 GeV$.

Fit 1

The χ^2 check at different m($\pi\pi$) range

Figure 12: Fit 2: The projection result and χ^2 for each bin at different $M(\pi^+\pi^-)$ range. (a) total, (b) $M(\pi^+\pi^-) > 1.0 GeV$, (c) $M(\pi^+\pi^-) < 1.0 GeV$.

Systematic uncertainty

• $\pi^+\pi^-$ S-Wave parameterization. Instead of using the scattering amplitude. We use three Breit-Wigner like structure. The difference is taken as systematic uncertainty.

• The influence of $\pi^+\pi^-$ D-Wave. The significance of $f_2(1270)$ is 2.7 σ , the result difference when $f_2(1270)$ included is taken as systematic uncertainty

Systematic Uncertainty

- The J/ ψ signal range and sideband range is varied, the difference is taken as systematic uncertainty.
- The barrier factor. The radius of centrifugal barrier is varied between 0.5fm and 1.5fm.
- Mass and width of Zc(3900) are varied with their uncertainty.

Systematic Uncertainty

• The resolution and fitting effect (I/O check): We use the same 300 MC samples to perform the fit. Then compare the input/output value. The mean difference is taken as uncertainty.

Figure 17: The pull distribution for 4 measured value. Fit 2: (a) mass of $Z_c(40xx)$, (b) width of $Z_c(40xx)$, (c) fraction of $Z_c(3900)$, (d) fraction of $Z_c(40xx)$.

Summary of the systematic uncertainty

	$M(Z_c(40xx)$	$\Gamma(Z_c(40xx))$	$Fr.(Z_c(3900))$	$\operatorname{Fr.}(\mathbf{Z}_c(40xx))$
$\pi^+\pi^-$ S-Wave	+0	+2.7	+0	+0
parameterization	-0.047	-0	-24.8	-23.5
$\pi^+\pi^-$ D-Wave	+0 -0.21	+2.18 -0	+0 -3.94	+3.70 -0
background	+0 -1.24	+43.8 -0	+21.8 -0	+111.4 -0
Barrier factor	+0.1 -0	+1.58 -1.25	+0 -0.4	+2.87 -1.76
$Z_c(3900)$ parameter	+0.23 -0.53	+61.5 -4.6	+61.3	-1.76 +88.9 -13.6
IO	+0 -0	+0° -2.64	-36.7 +0 -2.72	+0 -0.34
Total	+0.25 -1.37	+75.6 -5.5	+65.1 -44.6	+142.6 -27.2

Last result

• Multiplying the fraction by the cross section of $e^+e^- \rightarrow \pi^+\pi^- J/\psi$, arXiv:1611.01317v2 we get the cross section of intermediate process.

	Result
Mass of $Z_c(40xx)$	$4027.0 \pm 11.5^{+10.1}_{-55.1} \text{ MeV}$
Width of $Z_c(40xx)$	$105.6 \pm 20.2^{+79.8}_{-5.8}$ MeV
Fraction of $Z_c(3900)$	$43.1 \pm 7.0^{+28.1}_{-19.2}\%$
$\sigma(e^+e^-\to\pi^\pm Z_c(3900))$	$5.22 \pm 0.85^{+3.42}_{-2.36}$ pb
Fraction of $Z_c(40xx)$	$32.4 \pm 11.8^{+46.2}_{-8.8}\%$
$\sigma(e^+e^- \to \pi^{\pm}Z_c(40xx))$	$3.92 \pm 1.43^{+5.60}_{-1.11}$ pb

Summary

- The nominal fit contain a $Z_c(3900)$ and a $Z_c(4020)$. The J^p of $Z_c(4020)$ is 1^+ , the width is much wider than that observed in $\pi^+\pi^-h_c$. The detailed value is shown in previous table.
- We show the detailed interference plot between different states.
- The goodness of fit are performed
- I/O check are performed