Study of $e^+e^- \rightarrow \eta' J/\psi$ around $\sqrt{s} = 4.2 \text{ GeV}$

Jielei Zhang Jingzhi Zhang

Outline

2

1. Motivation 2. Data sets 3. Event selection 4. MC and data analysis 5. Cross section measurement Summary 6

Motivation

3

PRD 94.032009

BESIII has observed the process $e^+e^- \rightarrow \eta' J/\psi$ above 4 GeV. From the lineshape of $e^+e^- \rightarrow \eta' J/\psi$, it shows $\eta' J/\psi$ mainly comes from $\psi(4160)$.

- Now BESIII has collected many data samples around \sqrt{s} =4.2 GeV, it can be used to check whether $\eta' J/\psi$ mainly comes from $\psi(4160)$.
- > The η' -transition process between charmonium may provide information that is useful in understanding the nature of charmonium.

Data sets

```
Boss Version : 7.0.2p01
Data sets :
Data around \sqrt{s} = 4.2 (4.18, 4.19, 4.20, 4.21, 4.22,
4.237, 4.247, 4.27, 4.28) GeV
Signal MC:
1、
2、
    e^+e^- \rightarrow \eta' J/\psi, \eta' \rightarrow \pi^+\pi^-\eta, \eta \rightarrow \gamma\gamma
    e^+/e^- \rightarrow \eta' I/\psi, \eta' \rightarrow \gamma \pi^+ \pi^-
Background MC:
1. e^+e^- \rightarrow \pi^+\pi^-\psi', \psi' \rightarrow \eta J/\psi
2. e^+e^- \rightarrow \gamma_{ISR}\psi', \psi' \rightarrow \pi^+\pi^- J/\psi
```

Data at $\sqrt{s} = 4.18 \text{ GeV}$

Event selections

Charged tracks

- $-|R_{xy}| < 1cm, |R_z| < 10cm$
- $-|cos\theta| < 0.93$
- $N = 4, \sum Q = 0$

Particle separation

- $-\pi: P_{mdc} < 1 \text{ GeV}$
- $-e: P_{mdc} > 1 \text{ GeV} \& E_{emc} > 1 \text{ GeV}$
- μ : $P_{mdc} > 1 \text{ GeV} \& E_{emc} < 0.4 \text{ GeV}$

Good photon

- $-0 \leq TDC \leq 14$
- Barrel : E > 0.025 GeV $|cos \theta| <$
- $E > 0.025 \text{ GeV}, |cos\theta| < 0.8$

- Endcap :

- $E > 0.050 \text{ GeV}, 0.86 < |\cos\theta| < 0.92$
- $-\Delta\theta > 20^{\circ}$
- $-N_{\gamma} \geq 2$

5C kinematic fit - $M(\gamma\gamma)$ is constrained to $M(\eta)$

- Choose the photons with least χ^2
- $-\chi^2_{5C} < 50$

Other selections - J/ψ mass window : (3.08, 3.12) GeV - $M(\eta J/\psi) < 3.675 ||M(\eta J/\psi) > 3.695$ GeV

The χ^2_{5C} of kinematic fit

8

 χ^2 distribution from 5C : $\chi^2_{5C} < 50$

Background study

BkgMC: $e^+e^- \rightarrow \pi^+\pi^-\psi', \psi' \rightarrow \eta J/\psi$

 $M(\eta J/\psi) < 3.675 || M(\eta J/\psi) > 3.695 \text{ GeV}$

Some plots from data

Signal extraction from data

Signal/: MC-determined signal MC shape to describe Background : 1st-order Polynomial function

 $N^{sig} = 9.0 \pm 3.0 \qquad S > 5\sigma$

Event selections

13

Charged tracks

- $-|R_{xy}| < 1 cm, |R_z| < 10 cm$
- $-|cos\theta| < 0.93$
- $-N = 4, \sum Q = 0$

Particle separation

- $-\pi: P_{mdc} < 1 \text{ GeV}$
- $-e: P_{mdc} > 1 \text{ GeV} \& E_{emc} > 1 \text{ GeV}$
- $-\mu: P_{mdc} > 1 \text{ GeV} \& E_{emc} < 0.4 \text{ GeV}$

Good photon

- $-0 \le TDC \le 14$
- Barrel : $F > 0.025 \text{ GeV} | \cos \theta | < 0$
- $E > 0.025 \text{ GeV}, |cos\theta| < 0.8$

- Endcap :

- $E > 0.050 \text{ GeV}, 0.86 < |cos\theta| < 0.92$
- $-\Delta\theta > 20^{\circ}$
- $N_{\gamma} \ge 1$

4C kinematic fit - Choose the photons with least χ^2 - $\chi^2_{4C} < 40$

Other selections

- J/ψ mass window : (3.08, 3.12) GeV
- $M(\pi^+\pi^- J/\psi) < 3.67 ||M(\pi^+\pi^- J/\psi) > 3.70 \text{ GeV}$
- $M(\pi^+\pi^- J/\psi) < 3.855 || M(\pi^+\pi^- J/\psi) >$ 3.885 GeV

The χ^2_{4C} of kinematic fit

 χ^2 distribution from 4C : $\chi^2_{4C} < 40$

Background study

Bkg: $e^+e^- \rightarrow \gamma_{ISR}\psi', \psi' \rightarrow \pi^+\pi^- J/\psi$ $e^+e^- \rightarrow \gamma X(3872), X(3872) \rightarrow \pi^+\pi^- J/\psi$

 $M(\pi^+\pi^- J/\psi) < 3.855 || M(\pi^+\pi^- J/\psi) > 3.885 \text{ GeV}$

Background study

16

γ conversion background

 $\cos\theta_{\pi^+\pi^-} < 0.95$

Some plots from data

Signal extraction from data

18

Signal: MC-determined signal MC shape to describe Background : 1st-order Polynomial function

 $N^{sig} = 66.6 \pm 9.2 \qquad S > 5\sigma$

Data at $\sqrt{s} = 4.19$ GeV

Data at $\sqrt{s} = 4.20$ GeV

Data at $\sqrt{s} = 4.21$ GeV

Data at $\sqrt{s} = 4.22$ GeV

Data at $\sqrt{s} = 4.237$ GeV

Data at $\sqrt{s} = 4.247$ GeV

Data at $\sqrt{s} = 4.27$ GeV

Data at $\sqrt{s} = 4.28$ GeV

Cross section measurement

 $e^+e^- \rightarrow \eta' J/\psi$

$\sqrt{s}(\text{GeV})$	$\mathcal{L}_{int}(\mathrm{pb}^{-1})$	N^{sig1}	N^{sig2}	$1+\delta(s)$	$\frac{1}{ 1-\Pi ^2}$	$\epsilon_{\pi^+\pi^-\eta}(\%)$	$\epsilon_{\gamma\pi^+\pi^-}(\%)$	$\sigma^B(\text{pb})$
4.18	3189.0	9.0±3.0	66.6±9.2	0.723	1.055	14.30	29.26	2.4 ± 0.3
4.19	521.9	$4.0{\pm}2.0$	9.1±3.6	0.734	1.056	14.72	30.01	2.4 ± 0.8
4.20	523.7	$2.2{\pm}1.6$	$14.4{\pm}4.3$	0.753	1.057	14.75	29.85	3.0 ± 0.8
4.21	511.2	$3.0{\pm}1.8$	11.3±4.0	0.773	1.057	13.82	29.13	2.7 ± 0.8
4.22	508.2	$4.0{\pm}2.0$	5.9 ± 3.4	0.789	1.057	13.98	28.58	1.8 ± 0.8
4.237	528.9	$0.0{\pm}1.2$	$16.5{\pm}4.9$	0.807	1.056	13.94	27.92	2.9 ± 0.9
4.247	532.7	$3.0{\pm}1.8$	$23.2{\pm}5.4$	0.814	1.055	13.84	27.90	4.6 ± 1.0
4.27	529.3	$6.0{\pm}2.5$	11.7±3.9	0.842	1.053	13.59	27.55	3.1 ± 0.8
4.28	174.5	0.0 ± 0.0	2.0 ± 1.5	0.861	1.053	13.51	26.85	1.0 ± 0.8

Discussion

29

If we assume the $\eta' J/\psi$ signals all come from the $\psi(4160)$ decay, the cross section is fitted with the following formula:

$$\sigma(\sqrt{s}) = |\mathcal{A}_{\psi(4160)}(\sqrt{s})\sqrt{\frac{\Phi^3(\sqrt{s})}{\Phi^3(M)}}|^2$$

$$\mathcal{A}_{\psi(4160)}(\sqrt{s}) = \frac{\sqrt{12\pi\Gamma_{ee}\Gamma_{tot}\mathcal{B}(\psi(4160)\to\eta' J/\psi)}}{s-M^2+iM\Gamma_{tot}}$$

$$\chi^2/ndf = 37.7/13$$

Only a $\psi(4160)$ resonance can't describe the $e^+e^- \rightarrow \eta' J/\psi$ line-shape very well.

Discussion

30

If we assume the $\eta' J/\psi$ signals all come from the Y(4260) decay, the cross section is fitted with the following formula:

$$\sigma(\sqrt{s}) = |\mathcal{A}_{Y(4260)}(\sqrt{s})\sqrt{\frac{\Phi^3(\sqrt{s})}{\Phi^3(M)}}|^2$$

$$\mathcal{A}_{Y(4260)}(\sqrt{s}) = \frac{\sqrt{12\pi\Gamma_{ee}\Gamma_{tot}\mathcal{B}(Y(4260)\to\eta' J/\psi)}}{s-M^2+iM\Gamma_{tot}}$$

 $\chi^2/ndf = 58.0/13$

Only a Y(4260) resonance can't describe the $e^+e^- \rightarrow \eta' J/\psi$ line-shape very well.

Iteration function

31

If we assume the $\eta' J/\psi$ signals come from the $\psi(4160)$ and Y(4260) decay, the cross section is fitted with the following formula:

$$\chi^2/ndf = 14.7/11$$

A coherent sum of $\psi(4160)$ and Y(4260) resonances can describe the $e^+e^- \rightarrow$ $\eta' J/\psi$ line-shape.

Summary

32

1. Using data samples at $\sqrt{s} = 4.18, 4.19, 4.20, 4.21, 4.22, 4.237, 4.247, 4.27$ and 4.28 GeV, the cross section of the process $e^+e^- \rightarrow \eta' J/\psi$ is measured.

2. Only $\psi(4160)$ or Y(4260) resonance can't describe the line-shape very well, while a coherent sum of $\psi(4160)$ and Y(4260) resonances can describe the $e^+e^- \rightarrow \eta' J/\psi$ line-shape.

Thanks for your attention!