
Interaction with the Geant4
kernel I.

JUNO GEANT4 SCHOOL

Beijing (北京)
15-19 May 2017

Geant4 tutorial

...User classes (continued)
At initialization At execution

G4VUserDetectorConstruction

G4VUserActionInitialization

G4UserSteppingAction

G4VUserPrimaryGeneratorAction

G4UserRunAction*

G4UserTrackingAction

G4UserStackingAction

G4UserEventAction

G4VUserPhysicsList

Global: only one instance exists in
memory, shared by all threads.

Local: an instance of each action class
exists for each thread.
(*) Two RunAction's allowed: one for master and
one for threads

• Run, Event, Track, ...

– a word about multi-threading

• Optional user action classes

• Command-based scoring

• Accumulables

• Analysis tools (detached slides)

3

Contents

Part I: Run, Track, Event, ...

Geant4 terminology: an
overview

• The following keywords are often used in
Geant4

– Run, Event, Track, Step

– Processes: At Rest, Along Step, Post Step

– Cut (or production threshold)

– Worker / Master threads

Run, Event and Tracks

• One Run consists of

– Event #1 (track #1, track #2,)

– Event #2 (track #1, track #2,)

–

– Event #N (track #1, track #2,)

Run
Event 0

Event 1

Event 2

Event 3

track 1 track 3track 2 track 4

track 1 track 3track 2

track 1

track 1 track 3track 2 track 4

The Event (G4Event)

• An Event is the basic unit of simulation
• At the beginning of event, primary tracks are generated and they are

pushed into a stack
• Tracks are popped up from the stack one-by-one and ‘tracked’

– Secondary tracks are also pushed into the stack
– When the stack gets empty, the processing of the event is completed

• G4Event class represents an event. At the end of a successful event it
has:

– List of primary vertices and particles (as input)
– Hits and Trajectory collections (as outputs)

• G4EventManager class manages the event
• G4UserEventAction is the optional user hook

The Run (G4Run)

• As an analogy with a real experiment, a run of Geant4 starts with ‘Beam On’

• Within a run, the user cannot change

– The detector setup

– The physics setting (processes, models)

• A run is a collection of events with the same detector and physics conditions

• At the beginning of a run, geometry is optimised for navigation and cross section

tables are (re)calculated

• The G4(MT)RunManager class manages the processing of each run, represented by:

– G4Run class

– G4UserRunAction for an optional user hook

The Track (G4Track)

• The Track is a snapshot of a particle and it is represented by the
G4Track class

– It keeps ‘current’ information of the particle (i.e. energy, momentum,
position, polarization, ..)

– It is updated after every step

• The track object is deleted when:
– It goes outside the world volume
– It disappears in an interaction (decay, inelastic scattering)
– It is slowed down to zero kinetic energy and there are no 'AtRest'

processes
– It is manually killed by the user

• No track object persists at the end of the event
• G4TrackingManager class manages the tracking
• G4UserTrackingAction is the optional User hook

G4Track status

• After each step the track can change its state

• The status can be (red can only be set by the User)

The Step (G4Step)

• G4Step represents a step in the particle propagation

• A G4Step object stores transient information of the
step
– In the tracking algorithm, G4Step is updated each time a

process is invoked (e.g. multiple scattering)

• You can extract information from a step after the
step is completed, e.g.
– in ProcessHits() method of your sensitive detector

(later)

– in UserSteppingAction() of your step action class
(later)

The Step in Geant4

• The G4Step has the information about the two points
(pre-step and post-step) and the ‘delta’ information of
a particle (energy loss on the step,)

• Each point knows the volume (and the material)
– In case a step is limited by a volume boundary, the end

point physically stands on the boundary and it logically
belongs to the next volume

• G4UserSteppingAction is the optional user hook

G4Step object

• A G4Step object contains
– The two endpoints (pre and post step) so one has

access to the volumes containing these endpoints
– Changes in particle properties between the points

• Difference of particle energy, momentum,
• Energy deposition on step, step length, time-of-flight, ...

– A pointer to the associated G4Track object
– Volume hiearchy information

• G4Step provides many Get... methods to access
these information or objects
– G4StepPoint* GetPreStepPoint(),

The geometry boundary

• To check, if a step ends on a boundary, one may
compare if the physical volume of pre and post-step
points are equal

• One can also use the step status
– Step Status provides information about the process that

restricted the step length

– It is attached to the step points: the pre has the status of the
previous step, the post of the current step

– If the status of POST is fGeometryBoundary, the step ends
on a volume boundary (does not apply to word volume)

– To check if a step starts on a volume boundary you can also
use the step status of the PRE-step point

Step concept and boundaries

Example: parent tracks &
process

if (track->GetTrackID() != l)
{

G4cout << "Particle is a secondary" << G4endl;

if (track->GetParentID() == l)
{

G4cout << "But parent was a primary" << G4endl;
}

// Get process information
G4VProcess* creatorProcess = track->GetCreatorProcess();
G4String processName = creatorProcess->GetProcessName();
G4cout << "Particle was created by " << processName << G4endl;
}

}

Example: boundaries

G4StepPoint* preStepPoint = step -> GetPreStepPoint();
G4StepPoint* postStepPoint = step -> GetPostStepPoint();

// Use the GetStepStatus() method of G4StepPoint to get the status of the
// current step (contained in post-step point) or the previous step
// (contained in pre-step point):
if(preStepPoint -> GetStepStatus() == fGeomBoundary) {

G4cout << "Step starts on geometry boundary" << G4endl;
}
if(postStepPoint -> GetStepStatus() == fGeomBoundary) {

G4cout << "Step ends on geometry boundary" << G4endl;
}

// You can retrieve the material of the next volume through the
// post-step point:
G4Material* nextMaterial = step->GetPostStepPoint()->GetMaterial();

Example: step deltas

MySensitiveDetector::ProcessHits(G4Step* step, G4TouchableHistory* ignore) {
// Total energy deposition on the step (= energy deposited by energy loss
// process and energy of secondaries that were not created since their
// process and energy of secondaries that were not created since their
// energy was < Cut):
G4double energyDeposit = step -> GetTotalEnergyDeposit();

// Difference of energy, position and momentum of particle between pre-
// and post-step point
G4double deltaEnergy = step -> GetDeltaEnergy();
G4ThreeVector deltaPosition = step -> GetDeltaPosition();
G4double deltaMomentum = step -> GetDeltaMomentum();

// Step length
G4double stepLength = step -> GetStepLength();

}

Example: particle information

// Retrieve from the current step the track (after PostStepDolt of
// step is completed):
G4Track* track = step -> GetTrack();

// From the track you can obtain the pointer to the dynamic particle:
const G4DynamicParticle* dynParticle = track -> GetDynamicParticle();

// From the dynamic particle, retrieve the particle definition:
G4ParticleDefinition* particle = dynParticle -> GetDefinition();

// The dynamic particle class contains e.g. the kinetic energy after the step:
G4double kinEnergy = dynParticle -> GetKineticEnergy();

// From the particle definition class you can retrieve static
// information like the particle name:
G4String particleName = particle -> GetParticleName();

G4cout << particleName << ": kinetic energy of "
<< (kinEnergy / MeV) << " MeV" << G4endl;

Part II: Optional user action
classes

Optional user action classes

• Five base classes with virtual methods the user may
override to step during the execution of the application
("user hooks“)

– G4UserRunAction

– G4UserEventAction

– G4UserTrackingAction

– G4UserStackingAction

– G4UserSteppingAction

• Default implementation (not purely virtual): Do nothing☺

• Therefore, override only the methods you need.

Multi-threaded processing of events

Master thread Worker 1 Worker 2 Worker 3

G4Run (100 evts)

G4Run (33 evts) G4Run (33 evts)G4Run (34 evts)

G4Run::Merge()

Event 0 Event 33 Event 67

Event 32 Event 66 Event 99

...

Results Results Results

Results

User actions in multi-threaded run

Master

Workers

Geometry Physics RunAction

READ ONLY

Primary

RunAction

EvtAction

Primary

RunAction

EvtAction

Primary

RunAction

EvtAction

MT

G4UserRunAction

void BeginOfRunAction(const G4Run*)

void EndOfRunAction(const G4Run*)

G4Run* GenerateRun()

Uses:

• Book/output histograms and other analysis
tools

• Custom G4Run with additional information

• Define parameters

G4UserEventAction

void BeginOfEventAction(const G4Event*)

void EndOfEventAction(const G4Event*)

Uses:

• Hit collection and event analysis

• Event selection

• Logging (e.g. output event number)

G4UserStackingAction

G4ClassificationOfNewTrack ClassifyNewTrack(const G4Track*)

void NewStage()

void PrepareNewEvent()

Uses:

• Pre-selection of tracks (~manual cuts)

• Optimization of the order of track execution

G4UserTrackingAction

void PreUserTrackingAction(const G4Track*)

void PostUserTrackingAction(const G4Track*)

Uses:

• Track pre-selection

• Store trajectories

G4UserSteppingAction

void UserSteppingAction(const G4Step*)

Uses:

• Get information about particles

• Kill tracks under specific circumstances

User-defined run class

Virtual methods
• RecordEvent()

– called at the end of each event
– alternative to EndOfEventAction() of the EventAction class

• Merge()
– Called at the end of each worker run by the master

When/why to use it?
• Convenient in MT-mode, because it allows the merging of information

(global quantities) from thread-local runs into the master
• UserEventAction is thread-local

class MyRun : public G4Run
{ ... };

User action classes
registration

• In multi-threading mode, objects of user action
classes must be registered to the
G4(MT)RunManager via a user-defined action
initialization class

• In sequential mode, the actions can be registered to
the run manager directly (not recommended).

runManager->SetUserInitialization(new MyActionInitialization);
MT

runManager->SetUserAction(new MyRunAction);

MyActionInitialization

 Register thread-local user actions

 Register run action for the master (optional)

void MyActionInitialization::Build() const
{

// Set mandatory classes
SetUserAction(new MyPrimaryGeneratorAction());

// Set optional user action classes
SetUserAction(new MyEventAction());
SetUserAction(new MyRunAction());

}

void MyActionInitialization::BuildForMaster() const
{

SetUserAction(new MyMasterRunAction());
}

Also the primary
generator

• G4MultiRunAction

• G4MultiEventAction

• G4MultiTrackingAction

• G4MultiSteppingAction

• no G4MultiStackingAction

Multiple user actions

auto multiAction = new G4MultiEventAction{ new MyEventAction1, new MyEventAction2 };

//...

multiAction->push_back(new MyEventAction3);

SetUserAction(multiAction);

Containers enabling to have multiple user actions of the same
“kind”, implemented as customized std::vector’s.

Part III: Command-based
scoring

• Define a scoring mesh
/score/create/boxMesh <mesh_name>
/score/open, /score/close

• Define mesh parameters
/score/mesh/boxsize <dx> <dy> <dz>
/score/mesh/nbin <nx> <ny> <nz>
/score/mesh/translate,

• Define primitive scorers
/score/quantity/eDep <scorer_name>
/score/quantity/cellFlux <scorer_name>
currently 20 scorers are available

UI commands for scoring  no C++ required, apart from accessing
G4ScoringManager

• Define filters
/score/filter/particle <filter_name> <particle_list>
/score/filter/kinE <filter_name> <Emin> <Emax>
<unit>

currently 5 filters are available
•Output

/score/draw <mesh_name> <scorer_name>
/score/dump, /score/list

Command-based scoring

https://geant4.web.cern.ch/geant4/UserDocumentation/UsersGuides/ForApplicationDeveloper/html/AllR
esources/Control/UIcommands/_score_.html

int main() {
...
G4ScoringManager::GetScoringManager();
...

}

https://geant4.web.cern.ch/geant4/UserDocumentation/UsersGuides/ForApplicationDeveloper/html/AllResources/Control/UIcommands/_score_.html

35

Intermezzo:
G4Accumulable

https://geant4.web.cern.ch/geant4/UserDocumentation/UsersGuides/ForApplicationDeveloper/html/ch09s04.html

https://geant4.web.cern.ch/geant4/UserDocumentation/UsersGuides/ForApplicationDeveloper/html/ch09s04.html

G4Accumulable<T>

• Templated class to collect simple information

– Thread-safe

– Accumulable during Run

– Value merge at the end (explicit)

– Scalar variables only (otherwise, expert)

• Alternative to ntuples/histograms (later)

• Managed by G4AccumulableManager

<=10.2: Previously named G4Parameter!

G4Accumulable – C++ (1)

G4Accumulable<G4int> fNElectrons;
G4Accumulable<G4double> fAverageElectronEnergy;

1) Declare (instance) variables (of RunAction)

2) Register to accumulable manager (in RunAction constructor)

G4AccumulableManager* accManager = G4AccumulableManager::Instance();
accManager->RegisterAccumulable(fNElectrons);
accManager->RegisterAccumulable(fAverageElectronEnergy);

fNElectrons += 1; // Normal arithmetics

4) Update during run (e.g. in Stacking action)

G4AccumulableManager* accManager = G4AccumulableManager::Instance();
accManager->Reset();

3) Reset to zero values (in RunAction::BeginOfRunAction)

► G4Accumulable.hh

G4Accumulable – C++ (2)

6) Report after run (in RunAction::EndOfRunAction)

G4AccumulableManager* accManager = G4AccumulableManager::Instance();
accManager->Merge();

5) Merge after run (in RunAction::EndOfRunAction)

G4AccumulableManager* accManager = G4AccumulableManager::Instance();
if (IsMaster())
{

if (fNElectrons.GetValue())
{

G4cout << " * Produced " << fNElectrons.GetValue();
G4cout << " secondary electrons/event. Average energy: ";
G4cout << fAverageElectronEnergy.GetValue() / keV / fNElectrons.GetValue();
G4cout << " keV" << G4endl;

}
else

G4cout << " * No secondary electrons produced" << G4endl;
}

Detached session:
g4analysis tools

Geant4 analysis classes

• A basic analysis interface is available in Geant4 for
histograms (1D and 2D) and ntuples
– Thread-safe (ROOT is not! Manual text output usually

not!)

• Unified interface to support different output
formats
– ROOT, CSV, AIDA XML, and HBOOK
– Code is the same, just change one line to switch from

one to an other

• Everything is done using G4AnalysisManager
– singleton class => use Instance()
– UI commands available

g4analysis

• Selection of output format is performed by
including a proper header file:

#ifndef MyAnalysis_h
#define MyAnalysis_h 1

#include "g4root.hh"
//#include "g4xml.hh"
//#include "g4csv.hh" // can be used only with ntuples

#endif

Advanced topic: It is possible to use more formats at the same time. See documentation.

Histograms

Open file and book histograms

#include "MyAnalysis.hh"

void MyRunAction::BeginOfRunAction(const G4Run* run)
{
// Get analysis manager
G4AnalysisManager* man = G4AnalysisManager::Instance();
man->SetVerboseLevel(1);
man->SetFirstHistoId(1);

// Creating histograms
man->CreateH1("h", "Title", 100, 0., 800*MeV);
man->CreateH1("hh", "Title", 100, 0., 10*MeV);

// Open an output file
man->OpenFile("myoutput");

}
Open output file

ID=1

ID=2

Start numbering of
histograms from ID=1

#include "MyAnalysis.hh"

void MyEventAction::EndOfEventAction(const G4Run* aRun)
{
auto man = G4AnalysisManager::Instance();
man->FillH1(1, fEnergyAbs);
man->FillH1(2, fEnergyGap);

}

MyRunAction::~MyRunAction()
{
auto man = G4AnalysisManager::Instance();
man->Write();

}

int main()
{
...
auto man = G4AnalysisManager::Instance();
man->CloseFile();

}

Fill histograms and write the
file

ID=1

ID=2

Ntuples

ParticleID Energy x y

0 99.5161753 -0.739157031 -0.014213165
1 98.0020355 1.852812521 1.128640204

2 100.0734469 0.863203688 -0.277949199

3 99.3508677 -2.063452685 -0.898594988
4 101.2505954 1.030581054 0.736468229

5 98.9849841 -1.464509417 -1.065372115
6 101.1547644 1.121931704 -0.203319254

7 100.8876748 0.012068917 -1.283410959
8 100.3013861 1.852532119 -0.520615895
9 100.6295882 1.084122362 0.556967258

10 100.4887681 -1.021971662 1.317380892
11 101.6716567 0.614222096 -0.483530242

12 99.1083093 -0.776034456 0.203524549
13 97.3595776 0.814378204 -0.690615126

14 100.7264612 -0.408732803 -1.278746667

Ntuples support

• g4tools support ntuples

– any number of ntuples

– any number of columns

– supported types: int/float/double

• For more complex tasks (other functionality of
ROOT TTrees) have to link ROOT directly

#include "MyAnalysis.hh"

void MyRunAction::BeginOfRunAction(const G4Run* run)
{
// Get analysis manager
G4AnalysisManager* man = G4AnalysisManager::Instance();
man-> SetFirstNtupleId(1);

// Creating ntuples
man->CreateNtuple("name", "Title");
man->CreateNtupleDColumn("Eabs");
man->CreateNtupleDColumn("Egap");
man->FinishNtuple();

man->CreateNtuple("name2","title2");
man->CreateNtupleIColumn("ID");
man->FinishNtuple();

}

Book ntuples

ID=1

Start numbering of
ntuples from ID=1

ID=2

Fill ntuples

• File handling and general clean-up as
shown for histograms

#include "MyAnalysis.hh"

void MyEventAction::EndOfEventAction(const G4Run* aRun)
{
G4AnalysisManager* man = G4AnalysisManager::Instance();
man->FillNtupleDColumn(1, 0, fEnergyAbs);
man->FillNtupleDColumn(1, 1, fEnergyGap);
man->AddNtupleRow(1);

man->FillNtupleIColumn(2, 0, fID);
man->AddNtupleRow(2);

}

ID=1,
columns 0, 1

ID=2,
column 0

• Concepts of run, event, step, track, particle

• User action classes

• Data output – g4tools

Conclusion

谢谢

More slides (back-up)...

52

Example: custom messengers
#include <G4UImessenger.hh>
#include <G4UIcmdWithoutParameter.hh>
#include <G4UIdirectory.hh>

class HiMessenger : public G4UImessenger
{
public:

HiMessenger() {
_directory = new G4UIdirectory("/hi/");
_command = new G4UIcmdWithoutParameter("/hi/sayIt", this);

}

void SetNewValue(G4UIcommand* command, G4String newValue) {
if (command == _command) {

G4cout << "Hi there :-)" << G4endl;
}

}
private:

G4UIdirectory* _directory;
G4UIcmdWithoutParameter* _command;

};

Example: output to a text file

• a

#include <fstream>

class SteppingAction
{

// ...
std::ofstream fout;

};

SteppingAction::SteppingAction() : fout("outfile.txt") { } // ...

void SteppingAction::UserSteppingAction(const G4Step* aStep)
{

G4Track* theTrack = aStep->GetTrack();
G4double edep = aStep->GetTotalEnergyDeposit();
G4double kineticEnergy = theTrack->GetKineticEnergy();

// The output
fout
<< "Energy deposited--->" << " " << edep << " "
<< "Kinetic Energy --->" << " " << kineticEnergy << " " << G4endl;

}

MT

And even more slides...

Histograms API (1)

• Support linear and log scales and irregular
bins

• CreateH2() for 2D histograms

G4int CreateH1(const G4String& name, const G4String& title,
G4int nbins, G4double xmin, G4double xmax,
const G4String& unitName = "none",
const G4String& fcnName = "none",
const G4String& binSchemeName = "linear");

G4int CreateH1(const G4String& name, const G4String& title,
const std::vector<G4double>& edges,
const G4String& unitName = "none",
const G4String& fcnName = "none");

Histograms API (2)

• You can change parameters of an existing histogram

• You can fill with a weight

• Methods to scale, retrieve, get rms and mean

G4bool SetH1Title(G4int id, const G4String& title);
G4bool SetH1XAxisTitle(G4int id, const G4String& title);
G4bool SetH1YAxisTitle(G4int id, const G4String& title);

G4bool FillH1(G4int id, G4double value, G4double weight = 1.0);

G4bool ScaleH1(G4int id, G4double factor);

G4int GetH1Id(const G4String& name, G4bool warn = true) const;

Introduction: data analysis
with Geant4

• For a long time, Geant4 did not attempt to
provide/support any data analysis tools
– The focus was given (and is given) to the central mission as a

Monte Carlo simulation toolkit
– As a general rule, the user is expected to provide her/his own

code to output results to an appropriate analysis format

• Basic classes for data analysis have recently been
implemented in Geant4 (g4analysis)
– Support for histograms and ntuples
– Output in ROOT, XML, HBOOK and CSV (ASCII)
– Appropriate only for easy/quick analysis: for advanced tasks,

the users must write their own code and to use an external
analysis tool

Introduction: how to write
simulation results

• Formatted (= human-readable) ASCII files
– Simplest possible approach is comma-separated values

(.csv) files

– The resulting files can be opened and analyzed by tools such
as: Matlab, Python, Excel, ROOT, Gnuplot, OpenOffice,
Origin, PAW, …

• Binary files with complex analysis objects (Ntuples)
– Allows to control what plot you want with modular choice of

conditions and variables
• Ex: energy of electrons knowing that (= cuts): (1) position/location, (2)

angular window, (3) primary/secondary …

– Tools: Root , PAW, AIDA-compliant (PI, JAS3 and
OpenScientist)

Output stream (G4cout)

• G4cout is a iostream object defined by Geant4.
– Used in the same way as standard std::cout
– Output streams handled by G4UImanager
– G4endl is the equivalent of std::endl to end a line

• Output strings may be displayed in another
window (Qt GUI) or redirected to a file

• You can also use the file streams (std::ofstream)
provided by the C++ libraries MT

Example: Output on screen

• a

void SteppingAction::UserSteppingAction(const G4Step* aStep)
{

// Collect data
G4Track* theTrack = aStep->GetTrack();
G4DynamicParticle* particle = theTrack->GetDynamicParticle();
G4ParticleDefinition* parDef = particle->GetDefinition();

G4double edep = aStep->GetTotalEnergyDeposit();
G4double particleCharge = particle->GetCharge();
G4double kineticEnergy = theTrack->GetKineticEnergy();

// The output
G4cout
<< "Energy deposited--->" << " " << edep << "
<< "Charge--->" << " " << particleCharge << " "
<< "Kinetic Energy --->" << " " << kineticEnergy << " " << G4endl;

}

Output on screen – an
example

Begin of Event: 0

Energy deposited---> 9.85941e-22 Charge---> 6 Kinetic energy---> 160
Energy deposited---> 8.36876 Charge---> 6 Kinetic energy---> 151.631
Energy deposited---> 8.63368 Charge---> 6 Kinetic energy---> 142.998
Energy deposited---> 5.98509 Charge---> 6 Kinetic energy---> 137.012
Energy deposited---> 4.73055 Charge---> 6 Kinetic energy---> 132.282
Energy deposited---> 0.0225575 Charge---> 6 Kinetic energy---> 132.254
Energy deposited---> 1.47468 Charge---> 6 Kinetic energy---> 130.785
Energy deposited---> 0.0218983 Charge---> 6 Kinetic energy---> 130.76
Energy deposited---> 5.22223 Charge---> 6 Kinetic energy---> 125.541
Energy deposited---> 7.10685 Charge---> 6 Kinetic energy---> 118.434
Energy deposited---> 6.62999 Charge---> 6 Kinetic energy---> 111.804
Energy deposited---> 6.50997 Charge---> 6 Kinetic energy---> 105.294
Energy deposited---> 6.28403 Charge---> 6 Kinetic energy---> 99.0097
Energy deposited---> 5.77231 Charge---> 6 Kinetic energy---> 93.2374
Energy deposited---> 5.2333 Charge---> 6 Kinetic energy---> 88.0041
Energy deposited---> 3.9153 Charge---> 6 Kinetic energy---> 84.0888
Energy deposited---> 14.3767 Charge---> 6 Kinetic energy---> 69.7121
Energy deposited---> 14.3352 Charge---> 6 Kinetic energy---> 55.3769

