~) /
INFN INFN

(_ LNS GE/LNT

Interaction with the Geant4

!'_ kernel — part 3

Luciano Pandola
INFN — Laboratori Nazionali del Sud

IHEP China

i The ingredients of user SD

= A powerful and flexible way of extracting information
from the physics simulation is to define your own SD

= Derive your own concrete classes from the base
classes and customize them according to your needs

Sensitive Detector MySensitiveDetector G4VSensitiveDetector

Hit MyHit G4VHit

Hits collection G4THitsCollection<MyHit*>

i Hit class - 1

s Hit Is a user-defined class which derives from the
base class G4VHi1t. Two virtual methods

= Draw()
= Print()

= You can store various types of information by
Implementing your own concrete Hit class

= Typically, one may want to record information like
= Position, time and AE of a step

= Momentum, energy, position, volume, particle type of
a given track

= EtC.

i Hit class - 2

A “Hit” Is like a “container”, a empty box which
will store the information retrieved step by step

The Hit concrete class (derived by

Xi ™ G4VHit) must be written by the user: the
i ’\> user must decide which variables and/or
T= information the hit should store and when

/
AE = store them

The Hit objects are created and filled by the
SensitiveDetector class (invoked at each step in detectors

defined as sensitive). Stored in the “HitCollection”, attached
to the G4Event: can be retrieved at the end of the event

i Hit class - 3

/ header file: MyHit.hh
#include “GAVHt hh* Example

class MyHit : public G4VHit {

plhl/?lilg:' 0

LyHi1t(); . bli thods t

tual ~MvHit(); public methods to
VH - yHIL) handle data member

inline void SetEnergyDeposit(G4double energy) { energyDeposit = energy; }

inline G4double GetEnergyDeposit() { return energyDeposit;}

... Il more get and set methods

private:

G4double energyDeposit; - data member (private)
... Il more data members

I

i Geant4 Hits

Since In the simulation one may have different
sensitive detectors In the same setup (e.g. a
calorimeter and a Si detector), it is possible to define
many Hit classes (all derived by G4VHIt) storing

different information

Class Hit1 : 7 = Class Hit2 :

B public G4VHIt bos = public G4VHit

Dir =

i Hits Collection - 1

At each step in a detector defined as sensitive, the method
ProcessHit() of the user SensitiveDetector class is

Invoked: it must create, fill and store the Hit objects

X=1 X=2 X =3 X=3
Y=2 Y=0 Y=2 Y=2
T=3 T =3.1 T =4 T =6
AE =1 AE = 2 AE=3 | ~ ==sna AE =1
er 1 Step 2 Step 3 Step N

Hits collection (= vector<Hit>)

i Hits Collection - 2

= Once created in the sensitive detectors, objects of the

concrete hit class must be stored in a dedicated
collection

= Template class GATHItsCol lection<MyHIt>, which
IS actually a vector of MyHIt*

s The hits collections can be accesses in different
phases of tracking

= At the end of each event, through the G4Event (a-
posteriori event analysis)

= During event processing, through the Sensitive Detector
Manager G4SDManager (event filtering)

The HCofThisEvent

Remember that you may have many kinds of Hits
(and Hits Collections)

HCofThisEvent

Attached to
G4Event™

i Hits Collections of an event

= A G4Event object has a G4HCofThisEvent
object at the end of the event processing (if it was
successful)

= The pointer to the G4HCofThisEvent object can be
retrieved using the G4Event: :GetHCofThisEvent()

method
s The G4HCofThisEvent stores all hits collections
creted within the event

= Hits collections are accessible and can be processes e.g.
In the EndOfEventAction() method of the User

Event Action class
= Transient: information cleaned up at each new event

i SD and Hits

= Using information from particle steps, a
sensitive detector either
= constructs, fills and stores one (or more) hit object
= accumulates values to existing hits

= Hits objects can be filled with information in
the ProcessHits() method of the SD

concrete user class 2 next slides

= This method has pointers to the current G4Step and
to the G4TouchableHistory of the Parallel World

(if defined)

i Sensitive Detector (SD)

= A specific feature to Geant4 is that a user can
provide his/her own implementation of the detector
and Its response - customized

= To create a sensitive detector, derive your own
concrete class from the G4VSensitiveDetector

abstract base class

= The principal purpose of the sensitive detector is to
create hit objects

= Overload the following methods (see also next slide):
« Inittialize()

» ProcessHits() (Invoked for each step if step starts in
logical volume having the SD attached)

« EndOfEvent()

Sensitive Detector

class G4VSensitiveDetector { |
public: abstract base class

" virtual void Initialize (G4A4HCofThisEvent*);
virtual void EndOfEvent(G4HCofThisEvent®);
protected:

virtual G4bool ProcessHits(G4Step™,
G4TouchableHistory*) = 0;

// header file: MySensitiveDetector.hh _
#include “G4VSensitiveDetector.hh“ |} pure virtual method

class MySensitiveDetector : public G4VSensitiveDetector {

public;
MySensitiveDetector(G4Strin name),
virtual ~MySensitiveDetector(); User

virtual void Initialize(G4HCofT hlsEvent*HCE) : concrete

virtual G4bool ProcessHits(G4Step* steP
G4Touchab eHistory* ROhist); SD class

virtual void EndOfEvent(G4HCofThisEvent*HCE); -

private: _ _ _
MyHitsCollection * hitsCollection;

G4int collectionlD;

ti

i SD implementation: constructor

= Specify a hits collection (by its unique name) for each
type of hits considered in the sensitive detector:

= Insert the name(s) in the collectionName vector

MySensitiveDetector::MySensitiveDetector(G4String detectorUniqueNarnnie)
: G4VSensitiveDetector(detectorUniquename),
collectionID(-1) {

collectionName.insert(“collection_name");

y

class G4VSensitiveDetector {

pfotected:
%4(}31011ecti0nN§1meVector collectiogl}lce?lllg;
This protected name vector must be filled in
Base class - // the constructor of the concrete class for
// registering names of hits collections

i SD implementation: Initialize()

The Inittialize() method is invoked at the beginning of each event
Construct all hits collections and insert them in the G4HCofThisEvent
object, which is passed as argument to Initialize()
= The AddHitsCollection() method of G4HCofThisEvent requires the
collection ID

The unique collection ID can be obtained with GetCol lectionlID():
= GetCollectionID() cannot be invoked in the constructor of this SD

= Hence, we defined a private data member (collectionID), which is set at the
first call of the Initialize() function

void MySensitiveDetector::Initialize(G4AHCofThisEvent*HCE) {
if(collectionID < 0)

collectionID = GetCollectionID(0); // Argument : order % collect.

, , . [l as stored in the collectionName
hitsCollection = new MyHitsCollection

(SensitiveDetectorName, collectionName[0]¥

HCE -> AddHitsCollection(collectionID, hitsCollection);

j

i SD implementation: ProcessHits()

= This ProcessHits() method is invoked for every step Iin
the volume(s) which hold a pointer to this SD (= each
volume defined as “sensitive”)

= The main mandate of this method Is to generate hit(s)
or to accumulate data to existing hit objects, by using
iInformation from the current step

G4bool. MySensitiveDetector::ProcessHits(G4Step* stell:),
G4TouchableHistory*ROhist) {
MyHit* hit = new MyHit(); // 1) create hit

" // some set methods, e. g. for a tracking detector: o
G4double energyDeposit = step -> GetTotalEnergyDeposit(); /7 2) fill hit
hit -> SetEnergyDeposit(energyDeposit); // See implement. of our Hit class

" hitsCollection -> insert(aHit); // 3) insert in the collection
return true;
}

i Processing hit information - 1

= Retrieve the pointer of a hits collection with the
GetHC()method of GAHCofThisEvent collection

using the collection index (a G4int number)

= Index numbers of a hit collection are unique and

don’t change for a run. The number can be obtained
by GASDManager: :GetCollectionlID(*name’™);

= Notes:

= If the collection(s) are not created, the pointers of the
collection(s) are NULL: check before trying to access
it

= Need an explicit cast from G4VHiItsCol lection (see
code)

‘L Process hit: example

void MyEventAction::EndOfEventAction(const G4Event* event) {

/l index is a data member, representing the hits collection index of the

// considered collection. It was initialized to -1 in the class constructor

if(index < 0) index = retrieve
G4SDManager::GetSDMpointer() -> GetCollectionID("myDet/myColl"); index

G4HCofThisEvent* HCE = event-> GetHCofThisEvent(); } retrieve ?“ hits
collections

MyHitsCollection* hitsColl = 0;) :

if(HCE) hitsColl = (MvHits(Zollection*)(HCE->GetHC(indeX));} retrieve hits

collection by index

Be sure that this is
non-NULL

i Processing hit information - 2

= Loop through the entries of a hits collection to
access individual hits
= Since the HitsCollection is a vector, you can

use the [] operator to get the hit object
corresponding to a given index

= Retrieve the information contained in this hit
(e.g. using the Get/Set methods of the
concrete user Hit class) and process it

= Store the output in analysis objects

i Process hit: example

void MyEventAction::EndOfEventAction(const G4Event* event) {
// index is a data member, representing the hits collection index of the
// considered collection. It was initialized to -1 in the class constructor
if(index <0) index=
G4SDManager::GetSDMpointer() -> GetCollectionID("myDet/myColl");
G4HCofThisEvent* HCE = event-> GetHCofThisEvent();

MyHitsCollection* hitsColl = 0; Be sure that this is

if(HCE) hitsColl = (MyHitsCollection* - i , non-NULL

if(hitsColl) f \
int numberHits = hitsColl->entries();

cast
for(int 1]>l_<:h 0;1l jhnulélbﬁrHits s1144) {
MyHit* hit = (*hitsColl}[il];
// Retrieve information from hit object, e.g. _ I_O op over
G4double energy = hit -> GetEnergyDeposit; individual hits,

... I/ Further process and store information retrieve the data

The HCofThisEvent

Remember that you may have many kinds of Hits
(and Hits Collections)

ID=1
HCofThisEvent

i Recipe and strategy - 1

= Create your detector geometry
= Solids, logical volumes, physical volumes

= Implement a sensitive detector and assign an
iInstance of it to the logical volume of your
geometry set-up
= Then this volume becomes “sensitive”

= Sensitive detectors are active for each particle steps, if
the step starts in this volume

i Recipe and strategy - 2

= Create hits objects in your sensitive detector
using information from the particle step

= You need to create the hit class(es) according to your
regquirements

= Store hits in hits collections (automatically
associated to the G4Event object)

= Finally, process the information contained in the

hit in user action classes (e.qg.
G4UserEventAction) to obtain results to be

stored in the analysis object

i Hands-on session

= Task4

s Task4d: Custom SD and hits

= Task4e (optional): try everything in MT mode
= Task5 (bonus summary exercise)

= http://7202.122_.35.46/geant/task4
= http://7202.122_.35.46/geant/task5

i SD implementation: EndOfEvent()

= This EndOfEvent() method is invoked at the
end of each event.

= Note Is invoked before the EndOfEvent function
of the G4UserEventAction class

void MySensitiveDetector::EndOfEvent(G4HCofThisEvent* HCE) {
;

	Interaction with the Geant4 kernel – part 3
	The ingredients of user SD
	Hit class - 1
	Hit class - 2
	Hit class - 3
	Geant4 Hits
	Hits Collection - 1
	Hits Collection - 2
	The HCofThisEvent
	Hits Collections of an event
	SD and Hits
	Sensitive Detector (SD)
	Sensitive Detector
	SD implementation: constructor
	SD implementation: Initialize()
	SD implementation: ProcessHits()
	Processing hit information - 1
	Process hit: example
	Processing hit information - 2
	Process hit: example
	The HCofThisEvent
	Recipe and strategy - 1
	Recipe and strategy - 2
	Hands-on session
	SD implementation: EndOfEvent()

