
(Structure of)
Geant4 applications

JUNO GEANT4 SCHOOL

Beijing (北京)
15-19 May 2017

Geant4 tutorial

Contents

• Geant4 design principles

• Your application: first steps

2

3

Part I:
Geant4 design principles

How to work with Geant4
• Your model = “normal” application written in C++
• Geant4 = “normal” external library against which you

compile and link

⇒ You have to:

• create an empty C++ application
• initialize Geant4 in the application main()
• describe the geometry, primary particles, physics and

other functionality in terms of Geant4 classes
• compile the code with Geant4
• run your application

4

It also helps if you understand how Geant4 works!

Modular architecture
• Geant4 consists of loosely coupled modules:

– Run: management of the runs
– Event: management of events
– Tracking: particle tracks in the geometry
– Processes: physics attached to particles
– Particle: elementary and other particles
– Geometry: description of the detector
– Material: all material properties
– Interfaces: communication with user
– Visualization: graphical representation

of geometry & tracks
– ...and others

Object-oriented design

Geant4 employs many object-oriented design
concepts including:

– class inheritance
– polymorphism
– method overriding
– (pure) virtual methods

To add functionality, you typically add classes
inheriting from some (abstract) base class in
Geant4, implementing:

– virtual methods that can be overridden
– pure virtual methods that must be overridden

It’s good to understand
how C++works with

these concepts.

At least a basic
understanding is

necessary!

Run

Geant4 as state machine

7

PreInit

Idle

GeomClosed

Quit

EventProc
Abort

runManager->Initialize()

no more commands / end of main()

Start of the application

new G4RunManager()

/run/beamOn

Inside an event

B
E

G
IN

E
N

D

8

Part II:
Your application

Official basic/B1 example: The text file CMakeLists.txt is the
CMake script containing commands
which describe how to build the
exampleB1 application

contains main() for
the application

Macro file containing the

commands

Header files

Source files

Note: Recommended, not enforced!

Application source structure

How to add a new class

1) Select a class to inherit from (if applicable)
2) Find a good name for you class (no abbreviations,

confusing words, otherwise inadequate)
3) Create a header file in include/

– name it using the class name, with .hh extension
– define the class (inheriting from the base)
– declare the methods to override and other methods

4) Create a source file in src/
– name it using the class name, with .hh extension
– #include the header file
– add definition for the class methods

Whenever you want to use it, include the header!

Typical header file

#ifndef MYDETECTORCONSTRUCTION_HH
#define MYDETECTORCONSTRUCTION_HH

#include <G4VUserDetectorConstruction.hh>

class MyDetectorConstruction
: public G4VUserDetectorConstruction

{
public:

MyDetectorConstruction();
~MyDetectorConstruction();

G4VPhysicalVolume* Construct() override;
void ConstructSDandField() override;

private:
G4LogicalVolume* fLogVolume { nullptr };

};
#endif

// ...
class G4VUserDetectorConstruction
{
public:

G4VUserDetectorConstruction();
virtual ~G4VUserDetectorConstruction();

public:
virtual G4VPhysicalVolume* Construct() = 0;
virtual void ConstructSDandField();

// ...
}

G4VUserDetectorConstruction.hh

Header protection (against multiple inclusions)

Include other header files (the base class + ...)

New class definition (corresponding to the file name!)

Inherit from a base class

Constructor (optional)

Virtual destructor (optional)

Override
virtual
functions

A member
field

MyDetectorConstruction.hh

End the class
definition with
semi-colon!

Typical source file

#include "MyDetectorConstruction.hh"

#include <G4Box.hh>

#include <G4LogicalVolume.hh>

#include <G4PVPlacement.hh>

MyDetectorConstruction::MyDetectorConstruction() {

// ...

}

~MyDetectorConstruction::MyDetectorConstruction() {

// ...

}

G4VPhysicalVolume* MyDetectorConstruction::Construct() {
G4Box* box = // ...

// ...

fLogVolume =

return new G4PVPlacement(nullptr, {}, fLogVolume, "world", nullptr, 0, 0);

}

void MyDetectorConstruction::ConstructSDandField() {

// ...

}

class MyDetectorConstruction
: public G4VUserDetectorConstruction

{
public:

MyDetectorConstruction();
~MyDetectorConstruction();

G4VPhysicalVolume* Construct() override;
void ConstructSDandField() override;

private:
G4LogicalVolume* fLogVolume;

};

MyDetectorConstruction.hh

MyDetectorConstruction.cc

Include other
headers

Including the associated header file

Mandatory user classes
Initialization classes Action classes

G4VUserDetectorConstruction

G4VUserActionInitialization

G4UserSteppingAction

G4VUserPrimaryGeneratorAction

G4UserRunAction

G4UserTrackingAction

G4UserStackingAction

G4UserEventAction

G4VUserPhysicsList

main()
function

Detector construction

• Define the geometry of your model
– All materials

– All volumes & placements

• (Optionally) add fields

• (Optionally) define volumes for read-out (sensitive
detectors)

...more on that in
3 separate talks...

// ...
class G4VUserDetectorConstruction
{
public:
G4VUserDetectorConstruction();
virtual ~G4VUserDetectorConstruction();

public:
virtual G4VPhysicalVolume* Construct() = 0;
virtual void ConstructSDandField();
// ...

}

G4VUserDetectorConstruction.hh

Physics list

• Define all necessary particles

• Define all necessary processes and assign them to
proper particles

• Define particles production threshold (in terms of
range)

...more on that in
2 separate talks...

// ...
class G4VUserPhysicsList
{
public:
G4VUserPhysicsList();
virtual ~G4VUserPhysicsList();

public:
virtual void ConstructParticle() = 0;
virtual void ConstructProcess() = 0;
virtual void SetCuts();
// ...

}

G4VUserPhysicsList.hh

Primary generator action

• Define the source of simulated particles
– particle type

– kinematic properties

– additional information

...more on that in
a separate talk...

// ...
class G4VUserPrimaryGeneratorAction
{
public:
G4VUserPrimaryGeneratorAction();
virtual ~G4VUserPrimaryGeneratorAction();

public:
virtual void GeneratePrimaries(G4Event* anEvent) = 0;
// ...

}

G4VUserPrimaryGeneratorAction.hh

Other user actions
• Optional actions as hooks for different situations:

– G4UserRunAction

– G4UserEventAction

– G4UserStackingAction

– G4UserTrackingAction

– G4UserSteppingAction

• Bind them all in G4VUserActionInitialization

...more on that in
a separate talk...

// ...
class G4VUserActionInitialization
{
public:
G4VUserActionInitialization ();
virtual ~G4VUserActionInitialization ();

public:
virtual void Build() const = 0;
virtual void BuildForMaster() const;
// ...

}

G4VUserActionInitialization.hh

User interaction

Communicate with your application at three levels:

• hard-coded application with no interaction

• batch mode controlled by macro files

• interactive mode with real-time user response
– various terminal user interfaces

– various graphical user interfaces

...more on that in
2 separate talks...

Visualization

• View and debug your geometry

• View and study the tracks

• Produce (almost) publication-ready graphics

• Export events and geometry to text files

All of that is enabled in various “drivers”.

...more on that
in exercises...

main() function
Geant4 does not provide main entry to your
application, but any (C++) executable needs it!

Define it:

1) Create a source (.cc) file in the root directory of the
application (name is not important)

2) Define a main function:
– int main() or int main(int argc, char** argv)

3) Inside it:
– initialize the run manager
– initialize all your initialization classes
– initialize user interface and/or visualization

Example: very simple main()
#include <G4RunManager.hh>

#include <G4UIExecutive.hh>

#include <G4VisExecutive.hh>

#include "MyDetectorConstruction.hh"

#include "MyPhysicsList.hh"

#include "MyActionInitialization.hh"

int main(int argc, char** argv) {

G4RunManager* runManager = new G4RunManager;

runManager->SetUserInitialization(new MyDetectorConstruction);

runManager->SetUserInitialization(new MyPhysicsList);

runManager->SetUserInitialization(new MyActionInitialization);

G4VisManager* visManager = new G4VisExecutive;

visManager->Initialize();

G4UIExecutive* ui = new G4UIExecutive(argc, argv);

ui->SessionStart();

delete ui;

delete visManager;

delete runManager;

}

myApplication.cc

Include Geant4 class headers

Include your class headers

Prepare Geant4 kernel

Enable visualization

Enable user interface

Set up your
initialization classes

Interact with user

Final clean-up

General recipe: application
1) Design your application... (what is supposed to do?)

2) Implement the mandatory user classes

– detector construction

– physics list

– primary generator action

– action initialization

3) Implement (optional) user action classes

– run action, event action, stacking action, tracking action, stepping
action

4) Write the main() function

– create a run manager instance

– register user initialization classes with the run manager

– optionally initialize user interface and/or visualization

Note: You can actually do a lot more!

