# Flavor tagging based on deep learning

Bingyang Zhang Instructor:Gang Li

# CONTENTS

The relationship among Al, machine learning and deep learning

A brief introduction of deep learning

Apply DNN to the flavor tagging

The relationship among Al, machine learning and deep learning

# Al, Machine Learning AND Deep Learning



DL is an important way of machine learning.

## Al, Machine Learning AND Deep Learning



# A brief introduction of deep learning

 $\mathbf{0}$ 

#### The basic element of neural network



#### **Architectures of neural networks**



#### **Deep neural network(DNN):Many hidden layers.**



Apply DNN to the flavor tag work

03

# Flavor tag(VTX\_08mm):

# 01 Data set 200k training events 50k test events

# **02** Input parameters

We totally have 68 parameters.

'aux','vtxlen1','vtxlen1\_j','z0cprob','d0

bprob' are removed.

And then we have 63 inputs.

### **Total parameters**

['aux' 'ntrkwitho' 'ntrk' 'nvtxall' 'vtxmassal' 'vtxlen12a' 'vtxlen12a' 'lvtxprob' 'nvtx' 'jete' 'jetcosine' 'jeteta' 'vtxlen1' 'vtxlen2' 'vtxlen12' 'vtxlen1\_j' 'vtxlen2\_j' 'vtxlen12\_' 'vtxsig1' 'vtxsig2' 'vtxsig12' 'vtxsig1\_j' 'vtxsig2\_j' 'vtxsig12\_' 'vtxdirang' 'vtxdirang' 'vtxdirang' 'vtxdirang' 'vtxdirang' 'vtxdirang' 'vtxmom1' 'vtxmom2' 'vtxmom\_je' 'vtxmom1\_j' 'vtxmom2\_j' 'vtxmass' 'vtxmass1' 'vtxmass2' 'vtxmasspc' 'vtxmult' 'vtxmult1' 'vtxmult2' 'vtxprob' 'trk1d0sig' 'trk2d0sig' 'trk1z0sig' 'trk2z0sig' 'trk1pt' 'trk2pt' 'trk1pt\_je' 'trk2pt\_je' 'jprobr' 'jprobz' 'jprobr5si' 'jprobz5si' 'sphericit' 'Fd' 'jetrho' 'trkmass' 'nmuon' 'nelectron' 'd0bprob' 'd0cprob' 'd0qprob' 'z0bprob' 'z0cprob' 'z0qprob']

**03** Output Three outputs represent b,c and other tags.

## **DNN structure for flavor tag**



Layer 1(Input layer):63 neurons Layer 2:512 neurons dropout:0.5 Layer 3:512 neurons dropout:0.5 Layer 4:512 neurons dropout:0.5 Layer 5:512 neurons dropout:0.5 Layer 6:256 neurons dropout:0.5 Layer 7:256 neurons dropout:0.5 Output layer:3 neurons

dropout=0.5 means that the probability that neurons are removed during training is 0.5

- The entire dataset of 250000 was normalized prior to any training.
- Network parameters were trained using gradient descent with mini-batches of 100 examples per step and 300000 steps.
- The neural networks were trained using the tensorflow package.

## **ROC compared with bdt:**

BDT:630k events DNN:250k events



# Signal Efficiency & Background Rejection

# b signal

| E <sub>sig</sub> (b) | 1–E <sub>bkg</sub> (c, dnn) | 1-E <sub>bkg</sub> (c,bdt) | 1-E <sub>bkg</sub> (o, dnn) | 1-E <sub>bkg</sub> (o,bdt) |
|----------------------|-----------------------------|----------------------------|-----------------------------|----------------------------|
| 0.8                  | 0.94                        | 0.92-0.93                  | 0.99                        | 0.99                       |
| 0.9                  | 0.79-0.80                   | 0.75-0.76                  | 0.98                        | 0.96-0.97                  |
| 0.95                 | 0.62-0.65                   | 0.52-0.55                  | 0.93-0.94                   | 0.90-0.91                  |

# c signal

| E <sub>sig</sub> (c) | 1–E <sub>bkg</sub> (b, dnn) | 1-E <sub>bkg</sub> (b, bdt) | 1-E <sub>bkg</sub> (o, dnn) | 1-E <sub>bkg</sub> (o,bdt) |
|----------------------|-----------------------------|-----------------------------|-----------------------------|----------------------------|
| 0.8                  | 0.8                         | 0.77                        | 0.83                        | 0.81                       |
| 0.9                  | 0.72                        | 0.7                         | 0.62                        | 0.59                       |
| 0.95                 | 0.68                        | 0.67                        | 0.4                         | 0.38                       |

For flavor tagging,DNN can improve the background rejection compared with BDT in the same signal efficiency.

Deep learning may be a promising method to deal with other classification problems with lots of physical parameters.