dE/dx Study at CEPC TPC

An Fenfen
2017.02.28

dE/dx Meas. @ TPC

$N_{\text {pad }}$: number of pad circles
$h_{\text {pad }}$: pad size in the radial direction

Gas density (atmosphere pressure, temperature, gas type)

And, momentum and $\cos \theta$ of the incident particle (θ is the angle between the particle and z axis)

Space Charge Effect

$$
\begin{aligned}
& \text { charge density }=\frac{d E}{d x} * \frac{s}{h_{p a d}}=\frac{d E}{d x} \cdot \frac{1}{\sin \theta} \\
& \sigma_{d E / d x}=2.53-0.77(\cos \theta)^{2}+2.75(\cos \theta)^{10} \\
& \text { Smaller } \theta \rightarrow \\
& \text { Larger charger density }
\end{aligned}
$$

$N_{\text {pad }}$ decreases when track is parallel to Z

New 5-d Formula Based on G4

$$
\begin{array}{r}
\frac{\sigma_{d E / d x}}{\mu_{d E / d x}}=\frac{13.66}{\sqrt{N_{p a d} *}\left(h_{p a d} \cdot \rho\right)^{0.3}}\left(2.18+0.30 e^{-0.1 p}\right) \\
\left(2.53-0.77(\cos \theta)^{2}+2.75(\cos \theta)^{10}\right)
\end{array}
$$

```
N pad}:30-35
hpad}(\textrm{mm}): 1-3
\rho(mg/cm3): 0.16~2(1-10atm)
p(GeV/c): 1-100
```

For He-based gas with a large fraction of hydrocarbon, the power in $\left(h_{p a d} \cdot \rho\right)^{0.3}$ should be changed to $\left(h_{\text {pad }} \cdot \rho\right)^{0.45}$

$$
\begin{gathered}
\frac{\sigma_{d E / d x}}{\mu_{d E / d x}}=\frac{14.61}{\sqrt{N_{\text {pad }}} *\left(h_{\text {pad }} \cdot \rho\right)^{0.45}}\left(2.18+0.30 e^{-0.1 p}\right) \\
\left(2.53-0.77(\cos \theta)^{2}+2.75(\cos \theta)^{10}\right)
\end{gathered}
$$

Gas Type

In order to separate the two groups with(out) much hydrocarbon, the normalization factor is different

$\sigma / \mu \sim\left(\Delta R, N_{\text {pad }}\right)$

Comparison With Other Exp.

	$\begin{gathered} \text { TOPZA [1] } \\ 1987 \text { @TRISTAN } \end{gathered}$	$\begin{gathered} \text { PEP-4 [2, 3] } \\ \text { 1981@PEP } \end{gathered}$	$\begin{aligned} & \text { DELPHI [4] } \\ & 1990 @ \text { LEP } \end{aligned}$	$\begin{gathered} \text { ALEPH [5] } \\ 1990 @ \text { LEP } \end{gathered}$
Det. Structure	TPC	1st TPC	TPC	
Gas	$90 \% \mathrm{Ar}+10 \% \mathrm{CH} 4$	80\% $\mathrm{Ar}+20 \% \mathrm{CH} 4$	80\%Ar $+20 \% \mathrm{CH} 4$	91\%Ar $+9 \% \mathrm{CH} 4$
Electric Field (V/cm)	353	750	187	125
Magnetic Field (T)	1	4 KG	1.23	1.5
Drift time (us)	23	21	20	
Pressure (atm)	3.5	8.6	1	1
$r_{\text {in }}(\mathrm{mm})$	367	200	325	300
$r_{\text {out }}(\mathrm{mm})$	1076	1000	1160	1800
L (mm)	3000	2000	2680	4400
mulitplicity	$e^{+} e^{-}$col.	$e^{+} e^{-} \mathrm{col}$.	$e^{+} e^{-} \mathrm{col}$.	$e^{+} e^{-} \mathrm{col}$.
$N_{\text {cell }}$	175	183	192	344
$h_{\text {cell }}$	4	4	4	4
truncation	0-65\%	0-65\%	8-80\%	8-60\%
$\rho(\mathrm{mg} / \mathrm{ml})$	1.5617	1.4624	1.4624	1.5716
Data sample (GeV)	π (0.4-0.65)	cosmic	e (45)	$\mathrm{e} / \mu(45)$
Exp. mea. (\%)	4.6	$\begin{aligned} & 2.80(8.64 \mathrm{~atm}) \\ & 3.56(4.02 \mathrm{~atm}) \\ & 4.65(1.50 \mathrm{~atm}) \end{aligned}$	6.5	4.5
G4 pre. (\%)	2.2	1.59 / 1.95 / 2.59	2.76	2.10
Theory pre. (\%)	2.25-2.55	$\begin{aligned} & 1.56-1.77 \\ & 1.96-2.23 \\ & 2.64-2.99 \\ & \hline \end{aligned}$	2.82-3.21	2.07-2.34

Comparison With Other Exp.

	Mark II [7] 1989@SLAC	Babar[8] 1999@PEP-II	BESIII [9] 2009@ BEPC-II	Belle [10] $@ \mathrm{KEK}$
Det. Structure	Wire Chamber	Wire Chamber	Wire Chamber	Wire Chamber
Gas	$89 \% \mathrm{Ar}+10 \% \mathrm{CO} 2$ $+1 \% \mathrm{CH} 4$	$80 \% \mathrm{He}$ $+20 \% \mathrm{iC} 4 \mathrm{H} 10$	$60 \% \mathrm{He}$ $+40 \% \mathrm{C} 3 \mathrm{H} 8$	$50 \% \mathrm{He}$ $+50 \% \mathrm{C} 2 \mathrm{H} 6$
Electric Field (V/cm)	9	-	-	-
Magnetic Field (T)	-	1.5	1	1.5
Drift time (us)	-	-	-	-
Pressure (atm)	1	-	1	1
$r_{\text {in }}(\mathrm{mm})$	190	236	59	80
$r_{\text {out }}(\mathrm{mm})$	1520	810	810	874
L (mm)	2300	2800	2308	2400
mulitplicity	$e^{+} e^{-}$col.	$e^{+} e^{-}$col.	$e^{+} e^{-}$col.	$e^{+} e^{-}$col.
$N_{\text {cell }}$	72	40	43	53
$h_{\text {cell }}$	8.33	14.3	16.2	15.5
truncation	$5-75 \%$	$0-80 \%$	$5-75 \%$	$0-80 \%$
$\rho(\mathrm{mg} / \mathrm{ml})$	1.669	0.631	0.851	0.7152
Data sample (GeV)	$\mathrm{e}(14.5)$	$\mathrm{e}(1)$	$\pi(0.5)$	$\pi(3.5)$
Exp. mea. $(\%)$	7.0	6.8	6	5.0
G4 pre. $\%)$	3.5	4.5	4.10	3.96
Theory pre. $(\%)$	$3.7-4.2$	$4.7-5.3$	$3.76-4.26$	$3.63-4.11$

Truncation In dE/dx Calculation

We measure the average $\mathrm{dE} / \mathrm{dx}$ value of one track by removing parts of its hits (noise and Landau tail)

For $20 \mathrm{GeV} \pi$ with direction $(0,1,1)$ in default geometry, σ / μ with different truncation: 0-1: 2.64
0-0.95: 2.24
0-0.9: 2.22
0-0.8: 2.28
0-0.65: 2.43
0.05-0.75: 2.31

Loss of 30% hits will increase the resolution by $\sim 4 \%$

$\mu_{d E / d x} \sim \beta \gamma$

$-\frac{\mathrm{d} E}{\mathrm{~d} x}=4 \pi N_{\alpha} r_{e}^{2} m_{e} c^{2} z^{2}\left(\frac{Z}{A}\right)\left(\frac{1}{\beta^{2}}\right)\left[\ln \left(\frac{2 m_{e} c^{2} \beta^{2} \gamma^{2} E_{\text {cut }}}{I^{2}}\right)-\beta^{2}-\frac{\delta}{2}\right]$

$$
\delta=\left\{\begin{array}{lr}
0, & x=\log _{10}(\beta \gamma)<x_{0} \\
2 \ln (x)-\bar{C}+a\left(x_{1}-x\right)^{k}, & x_{0} \leq x \leq x_{1} \\
2 \ln (x)-\bar{C} . & x \geq x_{1}
\end{array}\right.
$$

$\mathrm{E}_{\text {cut }}=851 \mathrm{eV}$, determined by fitting the G4 plots

Z	$A[\mathrm{~g} / \mathrm{mol}]$	$\rho\left[\mathrm{g} / \mathrm{cm}^{3}\right]$	$I[\mathrm{eV}]$	a	$k=m_{s}$	x_{0}	x_{1}	\bar{C}

dE/dx For Different Particles

Definition of separation ability: $\frac{\mu_{1}-\mu_{2}}{\sqrt{\sigma_{1}^{2}+\sigma_{2}^{2}}}$

Separation Ability

Dash-dotted line corresponds to the case I doubled the σ / μ

Summary \& Outlook

- The influence of entrance angle on $\mathrm{dE} / \mathrm{dx}$ is predicted, and a range of prediction is given
- Preliminary result of the separation ability is given.

A Screenshot From INFN Report

 Particle separation (2 m track)(cluster conting efficiency $=\mathbf{8 0 \%}-\mathrm{dE} / \mathrm{dx}$ at 4%)

Dash-dotted line corresponds to the case using clustering counting techneque

Comparison With Other Exp.

	STAR	PEP-4	ALICE
	$2000-2001 @ R H I C$	$1976 @ S L A C$	2008-@LHC
Det. Structure	TPC	TPC	TPC
Gas	$90 \% \mathrm{Ar}+10 \% \mathrm{CH} 4$	$80 \% \mathrm{Ar}+20 \% \mathrm{CH} 4$	$\mathrm{Ne}+\mathrm{CO} 2+\mathrm{N} 2$
$N_{\text {layer }}$	45	183	159
$h_{\text {cell }}(\mathrm{mm})$	$20^{*} 32\left(12^{*} 13\right)$	4	$7.5 * 63,10^{*} 64,15^{*} 32$
$r_{\text {in }}(\mathrm{mm})$	500	-	788
$r_{\text {out }}(\mathrm{mm})$	2000	1000	2580
L (mm)	4200	2000	4994
Pressure (atm)	1	8.64	1
dE/dx $(\%)$	$8(1 \mathrm{GeV}, 0.25 \mathrm{~T})$	2.8	$5 \%(\operatorname{cosmic}, 160$ cluster $)$
Theory Pred. $\%)$	$3.4-4.5$	$1.6-1.8$	$2.1-2.8$

