Exotic Quarkonium with Non-Relativistic Effective Field Theories

Matthias Berwein

Tohoku University, Sendai, Japan

06.11.2017

イロト イヨト イヨト

SQA

Effective theories for heavy particles

EFTs applied to standard quarkonium

- motivating idea: description similar to positronium bound states
- utilizing the existence of a large energy scale: the heavy quark mass
- systematic expansion with effective theory NRQCD
- \bullet exploiting further scale hierarchies between relative momentum/distance and energy: $p\sim 1/r\gg E$
- multipole expansion in EFT: pNRQCD
- provides accurate description of quarkonium in perturbative and non-perturbative regime

Adaptation to exotics

- investigate excited spectrum of static Hamiltonian (LO NRQCD)
- study multipole expansion with pNRQCD
- inclusion of largest term beyond static limit leads to Schrödinger description

Sac

イロト イヨト イヨト

Static states and 1/M expansion

1/M expanded Hamiltonian through EFT (NRQCD)

Caswell and Lepage 1986 Bodwin, Braaten and Lepage 1995

$$H_0 = \int d^3x \left(\operatorname{Tr} \left[\mathbf{E}^2 + \mathbf{B}^2 \right] + \sum_l \bar{q}_l \boldsymbol{\gamma} \cdot (-i\mathbf{D})q_l \right)$$
$$H_1 = \int d^3x \,\psi^\dagger \left(-\frac{\mathbf{D}^2}{2M_Q} - c_F \frac{g\mathbf{B} \cdot \boldsymbol{\sigma}}{2M_Q} \right) \psi + \int d^3x \,\chi^\dagger \left(\frac{\mathbf{D}^2}{2M_{\bar{Q}}} + c_F \frac{g\mathbf{B} \cdot \boldsymbol{\sigma}}{2M_{\bar{Q}}} \right) \chi$$

 ψ : heavy quark, χ : heavy antiquark, q_l : massless quark H_0 : static Hamiltonian, H_1 first 1/M correction

Static states $|\underline{n}; \boldsymbol{x}_1, \boldsymbol{x}_2\rangle_0$:

• construct with static fields ψ , χ and some light d.o.f. operator $\Phi_n^{(0)}$:

$$\left|\underline{n}; \boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right\rangle_{0} = \psi^{\dagger}(\boldsymbol{x}_{1}) \Phi_{n}^{(0)}(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}) \chi(\boldsymbol{x}_{2}) \left|0\right\rangle$$

- quantum numbers \underline{n} defined by symmetries of static system
- static energies $H_0 |\underline{n}; \boldsymbol{x}_1, \boldsymbol{x}_2 \rangle_0 = E_n^{(0)}(r) |\underline{n}; \boldsymbol{x}_1, \boldsymbol{x}_2 \rangle_0$ depend only on relative distance r and internal quantum numbers \underline{n}

M. Berwein (Tohoku)

naa

Symmetries of the static system

Static system has cylindric symmetry: $D_{\infty h}$ Elementary group transformations:

- Rotations R around Q- \bar{Q} axis
- CP: Space inversion across center of Q- \bar{Q} combined with charge conjugation
- Reflection M across plane with $Q\text{-}\bar{Q}$ axis

All other elements are combinations of these

Static States labeled with associated quantum numbers Λ_{η}^{σ} :

- $\Lambda:$ rotational quantum number; labels $\Sigma,\,\Pi,\,\Delta$ correspond to $\Lambda=0,\,1,\,2$
- η : eigenvalue of CP: g = +1 (gerade), u = -1 (ungerade)
- σ : sign of reflections M; σ only relevant for Σ representations

For $r \to 0$ symmetry extends to $O(3) \times C$: Λ_n^{σ} states form degenerate multiplets

Small distance expansion with pNRQCD

For
$$r \ll \Lambda_{\rm QCD}^{-1}$$
 multipole expanded EFT: pNRQCD Brambilla, Pineda, Soto, Vairo 1999

$$\begin{aligned} H^{(0,0)} &= H_0^{(NRQCD)} + \int d^3r d^3R \operatorname{Tr} \left[S^{\dagger} V_S S + O^{\dagger} V_O O \right] \\ H^{(0,1)} &= \int d^3r d^3R \operatorname{Tr} \left[V_A \left(S^{\dagger} \boldsymbol{r} \cdot g \boldsymbol{E} O + O^{\dagger} \boldsymbol{r} \cdot g \boldsymbol{E} S \right) + \frac{1}{2} V_B O^{\dagger} \{ \boldsymbol{r} \cdot g \boldsymbol{E}, O \} \right] \\ H^{(1,-2)} &= \int d^3r d^3R \operatorname{Tr} \left[-S^{\dagger} \frac{\boldsymbol{\nabla}_r^2}{M} S - O^{\dagger} \frac{\boldsymbol{\nabla}_r^2}{M} O \right] \\ \text{ith} \qquad V_S(r) &= -\frac{4}{3} \frac{\alpha_{VS}(r)}{r} \qquad V_O(r) = \frac{1}{6} \frac{\alpha_{VO}(r)}{r} \qquad V_{A/B}(r) = 1 + \mathcal{O}(\alpha_s) \\ \text{hultipole expand statics} \end{aligned}$$

pole expand static

۱A/

$$|\underline{n}; \boldsymbol{r}, \boldsymbol{R}\rangle_{0} = \operatorname{Tr}\left[\left(\Phi_{n}^{(0,0)}(\hat{\boldsymbol{r}}, \boldsymbol{R}) + r\Phi_{n}^{(0,1)}(\hat{\boldsymbol{r}}, \boldsymbol{R}) + \mathcal{O}(r^{2})\right)(S/O)^{\dagger}(\boldsymbol{r}, \boldsymbol{R})\right]|0\rangle$$

• $\Phi_n^{(...)}$ composed only of gluons or light quarks and have Λ_n^{σ} quantum numbers • dependence on $\hat{r} = r/r$ comes from polarization along $Q\bar{Q}$ axis

Beyond the static limit

We want to diagonalize $H_0 + H^{(1,-2)}$ at leading order in r between the states

$$\ket{\underline{n}}; l, m; \boldsymbol{R}
angle \equiv \int d^3r \, \ket{\underline{n}}; \boldsymbol{r}, \boldsymbol{R}
angle_0 \Psi_{nlm}(\boldsymbol{r})$$

with suitable wave functions $\Psi_{nlm}(\mathbf{r}) = R_n(r) \, \omega_{nlm}(\theta, \varphi)$

- $|\underline{n};l,m; \mathbf{R}
 angle$ is an (l,m)-eigenstate of angular momentum $\mathbf{L} = \mathbf{L}_{\mathrm{light}} + \mathbf{L}_{\mathrm{heavy}}$
- kinetic term in $H^{(1,-2)}$: $-\frac{\nabla_r^2}{M} = -\frac{1}{Mr^2}\partial_r r^2\partial_r + \frac{L_{\rm heavy}^2}{Mr^2}$
- radial part acts only on $R_n(r)$, but L^2_{heavy} does not commute with $\Phi_n^{(0,0)}$ • radial wave function satisfies **coupled Schrödinger equation**

$$\sum_{n'} \left[-\frac{1}{Mr^2} \partial_r r^2 \partial_r \delta_{nn'} + \frac{1}{Mr^2} \mathcal{M}_{nn'} + E_n^{(0)}(r) \delta_{nn'} \right] R_{n'}(r) = \mathcal{E}_n R_n(r)$$

with matrix elements $\mathcal{M}_{nn'} = \int d\Omega \, \omega_{nlm}^* \left\langle 0 \right| \Phi_n^{(0,0)} L_{\text{heavy}}^2 \Phi_{n'}^{(0,0)} \left| 0 \right\rangle \omega_{n'lm}$

• $\mathcal{M}_{nn'}$ can be expressed exactly through \underline{n} , $\underline{n'}$, and l

M. Berwein (Tohoku)

Numerical determination of static energies

In practice: exact form of light operators Φ_n unknown

- replace Φ_n by some simple light operator X_n with same quantum numbers \underline{n}
- calculate the large time correlator of this state:

$$\langle X_n(T)|X_n(0)\rangle = \langle X_n|e^{-iH_0T}\sum_{n'}|\underline{n'}\rangle_{0\,0}\langle \underline{n'}|X_n\rangle = \sum_{n'}\underbrace{\left|\langle X_n|\underline{n'}\rangle_0\right|^2}_{\propto\delta_{nn'}}e^{-iE_{n'}^{(0)}T}$$

For large T smallest static energy dominates

$$E_n^{(0)}(r) = \lim_{T \to \infty} \frac{i}{T} \ln \langle X_n(T) | X_n(0) \rangle$$

- in pNRQCD: short distance expansion in terms of light field correlators
- on the lattice: direct calculation beyond multipole expansion

M. Berwein (Tohoku)

Operators for hybrids and $Q\bar{Q}$ tetraquarks

Gluonic excitation spectrum roughly shows scaling of static energies with mass dimension of short distance operators:

Λ_{η}^{σ}	pNRQCD operator				
Σ_u^- , Π_u	$oldsymbol{\hat{r}}\cdotoldsymbol{B}$, $oldsymbol{\hat{r}} imesoldsymbol{B}$				
Σ_q^+ , Π_g	$oldsymbol{\hat{r}}\cdotoldsymbol{E}$, $oldsymbol{\hat{r}} imesoldsymbol{E}$				
$\Sigma_g^-, \Pi_g, \Delta_g$	projections of $\left[D_{\{i\}},B_{j\}}\right]$				
Σ_u^+ , Π_u , Δ_u	projections of $\left[D_{\{i}, E_{j\}}\right]$				

By analogy, we expect that lowest tetraquark or pentaquark states are generated by operators with lowest mass dimension: $\bar{q}_i(\mathbf{R})q_j(\mathbf{R})$

The spin, flavor, and color indices allow for different configurations:

pNRQCD for QQ states and tetraquarks

pNRQCD with 2 heavy quarks: color antitriplet $Q_{\bar{3}}$ or sextet Q_6 diquark fields

$$H^{(0,0)} = H_0^{(HQET)} + \int d^3r d^3R \left[Q_{\bar{3}}^a {}^{\dagger}V_{\bar{3}} Q_{\bar{3}}^a + Q_6^a {}^{\dagger}V_6 Q_6^a \right]$$

 $V_6(r) = \frac{1}{3} \frac{\alpha_{V6}(r)}{r}$

with

Tetraquarks analogous, with light color triplet or antisextet $\bar{q}_i(\mathbf{R})\bar{q}_i(\mathbf{R})$, but:

• static symmetries have P instead of CP

 $V_{\bar{3}}(r) = -\frac{2}{3} \frac{\alpha_{V\bar{3}}(r)}{r}$

- $Q(-r, R) = (-1)^{S}Q(r, R)$, so only (anti)symmetric wave functions allowed
- $(q_i(\boldsymbol{R}))^2 = 0$, so light operator obeys Pauli principle

00 color state	static energies	light (iso)spin		J^P for heavy spin	
GG COIOI State	static energies	Ι	s	S = 0	S = 1
antitriplet	Σ_{q}^{+}	0	0	1-	1+
	$\{\Sigma_g^-, \Pi_g\}$	1	1	0-	$(0,1,2)^+$
sextet	$\{\Sigma_g^+\}$	1	0	0+	$(0,1,2)^-$
	$\{\Sigma_g^-, \Pi_g\}$	0	1	1+	1-

M. Berwein (Tohoku)

QQq baryons and pentaquarks

All can be dealt with in the same framework just with different light operators

type	light (iso)spin		J^P for heavy spin		
type	Ι	s	S = 0	S = 1	
$(QQ)_{\bar{3}}q_3$	1/2	1/2	$(1/2, 3/2)^-$	$(1/2,3/2)^+$	
$(Q\bar{Q})_1(qqq)_1$	1/2	1/2	$\{(1/2)^-, (1/2, 3/2)^-\}$		
	3/2	3/2	$\{(3/2)^-, (1/2, 3/2, 5/2)^-\}$		
$(Q\bar{Q})_8(qqq)_8$	any	1/2	$\{(1/2)^-, (1/2, 3/2)^-\}$		
	1/2	3/2	$\{(3/2)^-, (1/2, 3/2, 5/2)^-\}$		
$(QQ)_{\bar{3}}(qq\bar{q})_3$	any	1/2	$(1/2)^-$	$(1/2, 3/2, 5/2)^+$	
	any	3/2	$(3/2)^{-}$	$(1/2, 3/2)^+$	
$(QQ)_6(qq\bar{q})_{\bar{6}}$	any	1/2	$(1/2, 3/2)^+$	$(1/2,3/2)^-$	
	any	3/2	$(1/2)^+$	$(1/2, 3/2, 5/2)^-$	

 \bullet all Schrödinger equations for s=3/2 are coupled

- shape of orbital term depends on quantum numbers l, P and $P_{\rm light}$
- Pauli principle for light quarks rules out certain (I, s) combinations
- \bullet Pauli principle for QQ rules out some values of l based on P and S

M. Berwein (Tohoku)

SOA

Results for hybrids and comparison to lattice

Results for hybrids published in

Phys. Rev. **D92** (2015) 11, 114019 [arXiv:1510.04299] Nora Brambilla, Jaume Tarrus, Antonio Vairo, M.B.

Hadron Spectrum Collaboration 2012

イロト イポト イラト イラ

- in EFT distinction between different spins only at order $1/M^2$
- good agreement for relative distance between spin-averaged multiplets
- some overall shift for absolute values

M. Berwein (Tohoku)

06.11.2017 11 / 12

Conclusions and outlook

Conclusions

- treatment of heavy exotics in EFT framework (NRQCD and pNRQCD)
- study of the spectrum of the static Hamiltonian with non-static corrections
- short-distance limit of static energies: degenerate multiplets
- (un)coupled Schödinger equation (depending on multiplet)
- interplay of other quantum numbers, Pauli principle, etc., determines $J^{P(C)}$

Outlook

- numerical determination of static energies for light quark states
- inclusion of higher order terms (spin dependence, large distance contributions)
- study of other properties like decays

Thank you for your attention!

M. Berwein (Tohoku)

Sar

・ロト ・ 同ト ・ 日ト ・ 日