NLO QCD corrections to $B_c(B_c^*)$ production around the Z pole at an e^+e^- collider

Xu-Chang Zheng

Institute of Theoretical Physics, Chinese Academy of Sciences and School of Physical Sciences, University of Chinese Academy of Sciences

> Advised by Chao-Hsi Chang Based on arXiv:1701.04561

QWG 2017@ Peking University

November 9, 2017

Outline

Introduction

- An introduction to B_c meson
- B_c meson production at e^+e^- colliders

2 NLO QCD corrections to $e^+e^- \rightarrow B_c(B_c^*) + b + \bar{c}$

- Calculating method
- Numerical results

3 Conclusions and outlook

An introduction to B_c meson:

- The unique explicitly doubly heavy-flavored meson in the Standard Model
- Its production can be calculated through NRQCD factorization
- The production mechanism of B_c is simpler than that of heavy quarkonium

For example, the color-octet contributions are sometimes important in the J/Ψ or Υ production, but the color-octet contributions are always suppressed in the production of B_c meson.

Advantages of the production of B_c at e^+e^- colliders:

- The center-of-mass system of the process is known Angle distributions and forward-backward asymmetry of B_c meson have proper meaning in understanding the production.
- There are less backgrounds at an e^+e^- collider

 e^+e^- collider is a good platform for precision measurements.

At an e^+e^- collider, the production of B_c meson at Z pole is greatly enhanced by the resonance effect. There are several plans are under consideration:

ILC, FCC-ee, CEPC, and Super Z Factory,

which plan to run at energies around the Z pole for a long period and with much higher luminosity than that of LEP-I.

LO calculations:

X.C. Zheng, et al, Phys.Rev. D93 (2016)034019.

States	Cross section					
$B_c({}^1S_0)$	2.73 pb					
$B_{c}^{*}({}^{3}S_{1})$	3.82 pb					
$B_{c}^{**}({}^{1}P_{1})$	0.27 pb					
$B_{c}^{**}({}^{3}P_{0})$	0.16 pb					
$B_{c}^{**}({}^{3}P_{1})$	0.34 pb					
$B_{c}^{**}({}^{3}P_{2})$	0.37 pb					
Ξ_{cc}	0.52 pb					
\equiv_{bc}	1.37 pb					
\equiv_{bb}	0.04 pb					

Differential angle distribution:

The differential angle distribution is forward-backward asymmetric due to the Z-boson exchange. The forward-backward asymmetry (A_{FB}) depends on the value of the weak mixing angle θ_W .

LO calculations:

X.C. Zheng, et al, Phys.Rev. D93 (2016)034019.

Differential angle distribution for $e_R^+ e_I^-$:

Differential angle distribution for $e_l^+ e_R^-$:

The forward-backward asymmetry is remarkable when the initial e^+e^- are polarized.

LO calculations:

X.C. Zheng, et al, Phys.Rev. D93 (2016)034019.

Differential energy distribution under fixed-order(LO) calculation: Differential energy distribution under fragmentation approach:

For the framentation approach, the leading logarithms of $m_z^2/m_{B_c}^2$ have been resummed by use of DGLAP evolution equation.

From LO calculations:

- There are about a million of the B_c mesons may be produced per year at a Z factory with a luminosity such as $10^{35} cm^{-2} s^{-1}$.
- The differential angle distribution is forward-backward asymmetric, and it can be used to examine the value of $\sin \theta_w$.
- The differential energy distribution is obtained through fixed-order(LO) calculation and fragmentation approach.

The NLO calculations are needed:

- To see the changes of the physical observables from the LO calculations to the NLO calculations.
- To see how the dependence on the renormalization scale changes after including the NLO QCD corrections.

Calculating method NRQCD factorization:

$$d\sigma(e^+e^- \to B_c(B_c^*) + b + \bar{c} + X)$$

= $\sum_n d\hat{\sigma}(e^+e^- \to (c\bar{b})[n] + b + \bar{c} + X) \langle \mathcal{O}^H(n) \rangle$

LO calculation

Color prejector: $C_{1} = \frac{\delta_{ij}}{\sqrt{N_{c}}}$ Spin prejectors: $\frac{-\sqrt{M}}{4m_{b}m_{c}}(\not{p}_{12} - m_{b})\gamma_{5}(\not{p}_{11} + m_{c}) \text{ for } B_{c}$ $\frac{-\sqrt{M}}{4m_{b}m_{c}}(\not{p}_{12} - m_{b})\not\in(p_{1})(\not{p}_{11} + m_{c}) \text{ for } B_{c}^{*}$

Two of the LO Feynman diagrams.

Calculating method NLO corrections:

- Virtual corrections Passarino-Veltman tensor reduction, Integration-by-parts(IBP) reduction.
- Real corrections The two-cutoff phase-space slicing method.

Four of the correction Feynman diagrams.

Difficulties in the calculations:

- There are three mass scales $(m_z, m_b \text{ and } m_c)$ in this process, which leads to the calculations very complicated.
- There are many tensors in the hadronic part need to be calculated before contracting with the leptonic tensor.
- There are vector and axial-vector couplings of Z-boson involved in this process.

Numerical results:

μ	$\sigma^{LO}_{Bc}(pb)$	$\sigma_{B_c}^{\rm NLO}(\rm pb)$	K-factor
2m _b	1.576	2.387	1.515
m _z /2	0.847	1.587	1.874

Table : Total cross section of $e^+e^- \rightarrow B_c + b + \bar{c} + X$ at the Z pole.

μ	$\sigma^{LO}_{B^*_c}(pb)$	$\sigma^{NLO}_{B^*_c}(pb)$	K-factor
2 <i>m_b</i>	2.204	2.930	1.329
m _z /2	1.185	2.059	1.738

Table : Total cross section of $e^+e^- \to B_c^* + b + \bar{c} + X$ at the Z pole.

The NLO corrections are significant! The dependence on μ is weaken significantly due to NLO corrections.

12 / 18

Differential angle distribution:

$cos\theta$	-0.8	-0.6	-0.4	-0.2	0	0.2	0.4	0.6	0.8
$d\sigma/dcos\theta(B_c, LO)$	1.066	0.892	0.759	0.667	0.617	0.608	0.639	0.711	0.825
$d\sigma/dcos\theta(B_c, NLO)$	1.606	1.346	1.150	1.014	0.939	0.924	0.969	1.075	1.242
$K(B_c)$	1.506	1.509	1.515	1.520	1.522	1.520	1.516	1.512	1.505
$d\sigma/dcos\theta(B_c^*, LO)$	1.507	1.254	1.060	0.926	0.853	0.839	0.884	0.990	1.156
$d\sigma/dcos\theta(B_c^*, NLO)$	1.990	1.662	1.414	1.240	1.144	1.125	1.183	1.317	1.529
$K(B_c^*)$	1.320	1.325	1.334	1.339	1.341	1.341	1.338	1.330	1.323

- The differential angle distribution is forward-backward asymmetric due to Z-boson exchange.
- The K-factor changes very little with different θ .

Forward-backward asymmetry:

$$\begin{split} A^{LO}_{FB}(B_c) &= -9.58 \times 10^{-2} \,, \\ A^{NLO}_{FB}(B_c) &= -9.50 \times 10^{-2} \,, \\ A^{LO}_{FB}(B_c^*) &= -9.97 \times 10^{-2} \,, \\ A^{NLO}_{FB}(B_c^*) &= -9.83 \times 10^{-2} \,, \end{split}$$

where

$$A_{FB} = \frac{\sigma_F - \sigma_B}{\sigma_F + \sigma_B}.$$

• The measurements of the forward-backward asymmetry of B_c and B_c^* can be used to examine the value of $\sin \theta_W$.

Differential energy distribution:

z	0.183	0.269	0.355	0.441	0.527	0.613	0.699	0.785	0.871	0.957
$d\sigma/dz(B_c, LO)$	0.276	0.543	0.833	1.195	1.655	2.237	2.932	3.603	3.664	1.534
$d\sigma/dz(B_c, NLO)$	0.650	1.173	1.682	2.274	2.964	3.732	4.508	4.970	4.360	1.578
$K(B_c)$	2.355	2.160	2.019	1.903	1.791	1.668	1.538	1.379	1.190	1.029
$d\sigma/dz(B_c^*, LO)$	0.167	0.417	0.699	1.091	1.681	2.582	3.905	5.584	6.617	3.187
$d\sigma/dz(B_c^*, NLO)$	0.446	0.920	1.418	2.029	2.884	4.098	5.586	7.056	7.058	2.852
$K(B_c^*)$	2.671	2.206	2.029	1.860	1.716	1.587	1.430	1.264	1.067	0.895

The energy distribution predicted by fragmentation approach is also presented in the figure.

- The NLO corrections change the energy distribution significantly.
- The K-factor changes remarkably with different z.

Conlusions:

- e^+e^- collider is a good platform to study the production of B_c meson and the other doubly heavy hadrons.
- Due to the Z-boson resonance, the production rate of B_c meson is greatly enhanced.
- The differential angle distribution and forward-backward asymmetry of the B_c (B_c^*) have been obtained up-to NLO accuracy, and $\sin \theta_W$ can be examined precisely through measuring these observables.
- The differential energy distribution up-to NLO accuracy has been obtained.

Outlook:

- There are large logrithms of m_z^2/m_{Bc}^2 in each order of perturbative expansion for the differential energy distribution.
- These large logrithms can be resummed through DGLAP equation under the fragmentation approach.
- We are working on the fragmentation approach up-to NLO accurracy, some results have been obtained, and the paper is in preparation.

Thanks!

Xu-Chang Zheng (ITP, CAS)

2