

Quarkonium Production in ATLAS

Qipeng Hu (胡启鹏)

University of Colorado

The 12th International Workshop on Heavy Quarkonium

Nov 8, 2017, Beijing

Quarkonium production in pp collisions Quarkonium production in medium

Focus on results since 2016

Quarkonium in pp collisions

CEM (Color Evaporation Model)

- **CSM** (Color Singlet Model)
- **NRQCD** (Nonrelativistic QCD)

ICEM (Improved Color Evaporation Model)

[Ma, Vogt 1609.06042]

 No consistency descriptions of cross section and polarization

Quarkonia in-medium

Quarkonium in hot & dense QGP:

- Color screening
- Sequential melting

More effects that can impact the quarkonia yields:

ATLAS detector

Energy	Collision	Int. Lumi. [pb ⁻¹]	Year
$\sqrt{s} = 7 \text{ TeV}$	pp	2100	2011
$\sqrt{s} = 8 \text{ TeV}$	pp	11400	2012
√s = 13 TeV	pp	6400	2015
$\sqrt{s_{NN}} = 5.02 \text{ TeV}$	<i>p</i> +Pb	0.028	2013
√s = 5.02 TeV	pp	25	2015
$\sqrt{s_{NN}} = 5.02 \text{ TeV}$	Pb+Pb	0.0005	2015

Triggering strategy

Inner Detector $|\eta| < 2.5$

Calorimeter $|\eta| < 4.9$

Muon Spectrometer $|\eta| < 2.7$

Precision muon reconstruction: $p_T > 4 \text{ GeV}, |\eta| < 2.4$

with $p_T > 4$ GeV

1 hardware level muon + 1 software level track/muon

Zero efficiency when two muons are close-by high efficiency CPU/bandwidth consuming

Triggered events

 $\int_{a}^{b} \int_{a}^{b} \int_{a$

Pb+Pb

Topological cuts (invariant mass, charge, angle) applied online to reduce rate

Still able to collect $p_T > 4$ GeV without additional cuts.

Working on muon+track trigger to access to $p_T(\psi) < 8 \text{ GeV}$

Quarkonium production in pp collisions Quarkonium production in medium

 $J/\psi, \psi(2S) \longrightarrow \mu^+\mu^-$

pseudo-proper lifetime:

- Per-event weight to account for trigger, reconstruction efficiency and fiducial volume acceptance
- Weighted fit with physics motivated lineshapes performed to subtract background.

8 TeV

8 TeV

 $N_{\text{non-prompt}} / (N_{\text{prompt}} + N_{\text{non-prompt}})$

Non-prompt charmonium fraction

- Significant cancellation of experimental uncertainties
- Might be a better observable to constrain models

 $\Upsilon(nS) \longrightarrow \mu^+\mu^-$

- Mass resolution ~ 150 MeV, not able to totally separate different states
- p_T (μ) > 4 GeV cause turn-on curve of bkg. at low p_T, constrained by same charge / displaced control sample

Good agreement between NLO NRQCD and 5.02 TeV data at $p_T > 15$ GeV as expected

ATLAS <u>arXiv:1709.03089</u> NRQCD Han. et. al PRD 94 (2016) 014028

ψ (2S), X(3872) \rightarrow J/ $\psi\pi\pi$

- Signal region around $J/\psi \rightarrow \mu^+\mu^-$ mass peak
- > Better invariant mass resolution due constrained fit (fix dimuon mass at J/ ψ mass)
- X(3872) is measured for the first time at ATLAS

• Good agreements with NRQCD and FONLL at $p_T < 40$ GeV

- NRQCD describe prompt X(3872) data well
- FONLL overestimate data mainly due to overestimation of BR

Quarkonium production in medium

pp collision

Quarkonium production

EXPERIMENT

Run: 286665 Event: 419161 2015-11-25 11:12:50 CEST

first stable beams heavy-ion collisions

EXPERIMENT

Entries / (20 MeV) **10⁵ ATLAS** Preliminary $[13.0 < p_{\perp} < 17.0 \text{ GeV}]$ PbPb $\sqrt{s_{NN}} = 5.02 \text{ TeV}, 0.42 \text{ nb}^{-1}$ |y| < 1.50-80% + Data 10⁴ - Fit Prompt ψ(nS) **Non-prompt** ψ(nS) 10³ Bkg 10² 2.6 2.8 3.4 3.6 3.8 4.2 3 3.2 4 *m*_{μμ} [GeV]

Run: 286665 Event: 419161 2015-11-25 11:12:50 CEST

first stable beams heavy-ion collisions

No obvious modification in p+Pb (no/small net CNM effect)

- No obvious modification in p+Pb (no/small net CNM effect)
- p+Pb results consistent with EPS09 calculation

- No obvious modification in p+Pb (no/small net CNM effect)
- p+Pb results consistent with EPS09 calculation and CMS results

- No obvious modification in p+Pb (no/small net CNM effect)
- p+Pb results consistent with EPS09 calculation and CMS results
- Strong suppression in Pb+Pb dominated by QGP effects

ψ (2S) in p+Pb

ψ (2S) in Pb+Pb

- Stronger suppression of prompt ψ (2S) wrt. J/ ψ
- Large statistical errors prevent concluding centrality dependence
- Good consistency with CMS measurements at similar kinematics

$\gamma(1S)$ in p+Pb

- Y(1S) is found to be suppressed at low p_T
- Difference between Y(1S) and J/ ψ R_{pPb} at 10 < p_T < 15 GeV
- Co-mover interaction gives a rough interpretation of the observables.

ATLAS <u>arXiv:1709.03089</u> LHCb JHEP 02 (2014) 072 ALICE JHEP 06 (2015) 055 ALICE JHEP 02 (2014) 073

$\Upsilon(1S)$ in p+Pb

- $\Upsilon(1S)$ is found to be suppressed at low p_T
- Difference between Y(1S) and J/ ψ R_{pPb} at 10 < p_T < 15 GeV
- Co-mover interaction gives a rough interpretation of the observables.
 So does EPS09

ATLAS <u>arXiv:1709.03089</u> LHCb JHEP 02 (2014) 072 ALICE JHEP 06 (2015) 055 ALICE JHEP 02 (2014) 073

γ (nS) in p+Pb

- Similar to prompt $\psi(2S)$, excited states are suppressed wrt. ground state.
- Systematic size seems to play a role in both case
- More data would help

Summary

Quarkonium production in pp

Cross section measurements show good consistency with NLO NRQCD for prompt and FONLL non-prompt productions

Quarkonium production in heavy ion collisions
 Interesting suppression pattern of excited states in *p*+Pb collisions
 Strong suppression of J/ψ and even strong suppression of ψ(2S) observed in Pb+Pb collisions

Backup

Non-prompt J/ψ

- No obvious modification in p+Pb (no/small net CNM effect)
- Significant suppression in Pb+Pb is dominate by QGP effects

Centrality dependence

- J/psi RAA in Pb+Pb shows very strong centrality dependence: more suppressed at central collisions (larger/hotter QGP medium)
- More peripheral collisions are comparable with pp collisions