Scaling patterns in ATLAS & CMS quarkonium production data

Pietro Faccioli, IST and LIP, Lisbon C. Lourenço M. Araújo J. Seixas

Quarkonium Working Group, November 8th 2017

- 1. shapes of the p_{T} distributions in pp collisions
- 2. pp cross-section scaling with mass
- 3. centrality dependence in Pb-Pb collisions

p_{T} distributions in pp collisions

Mid-rapidity cross section measurements show a *common shape pattern* for $p_T/M \gtrsim 2$

p_{T} distributions in pp collisions

p_{T} distributions in pp collisions

Higher energy, broader distribution

Goodness of the global p_T/M fit

Distribution of pulls (7 TeV fit)

"Zoom": χ_1 vs χ_2 vs ψ

Purely *kinematic* scaling \Rightarrow no sign of a dependence of the production *dynamics* on the quantum numbers!

Polarization

- S-wave quarkonia: small decay anisotropies with no significant p_{T} dependences
- No indications of differences between states, despite very different feed-down contributions from P-wave states

NRQCD vs simple data pattern

Considering e.g. cross-section SDC contributions (polarizations are as much diversified):

$${}^{1}S_{0} \xrightarrow{3}S_{1} \xrightarrow{3}P_{0|1|2} \longrightarrow \begin{array}{c} J/\psi, \psi(2S) \\ \Upsilon(1S), \Upsilon(2S), \Upsilon(3S) \end{array}$$

$${}^{3}P_{1} \xrightarrow{3}S_{1} \longrightarrow \begin{array}{c} \chi_{c1}, \chi_{b1} \\ \xrightarrow{3}P_{2} \xrightarrow{3}S_{1} \longrightarrow \begin{array}{c} \chi_{c2}, \chi_{b2} \end{array}$$

- Negative P-wave contributions require exact **cancellation** for every p_T/M to recover physical result
- Different final states come from different pre-resonance mixtures, with rather diversified kinematic behaviours
- The variety of kinematic behaviours in NRQCD seems **redundant** with respect to the observed "universal" p_T/M scaling and lack of polarization
- ⇒ Conspiring SDC×LDME combinations needed to reproduce data

Curves from H.-S. Shao et. al., PRL 108, 242004; PRL 112, 182003; Comput. Phys. Commun. 198, 238

A "surprising" agreement

• Conspiracies actually happen: NRQCD is able to reproduce the simple data patterns

New method of theory-data comparison [PF et al., PLB 773, 476 (2017)], unbiased by specific theoretical calculations of partonic cross sections: calculated NLO SDC combinations are in good agreement with the results of a fully data-driven fit of charmonium data,

taking into account feed-down and constrained by polarization results

The three *measured shapes* are almost identical to one another *Calculated shapes* are within $\approx 0 \mid 1.5 \mid 1$ sigma from data

Ultimate conspiracy or need for a better NRQCD?

Coincidentally, this seeming success of NRQCD brings along a strong prediction: the unmeasured χ_{c1} and χ_{c2} polarizations must be very different from one another

This prediction (PF et al., arXiv:1702.04207) is dramatically different from that of H.-S. Shao et al., PRL 112, 182003, because the huge acceptance-polarization correlations in the χ_c -ratio data are properly considered

A potentially striking exception to the uniform picture of mid-rapidity quarkonium production!

Will experiments find ...

... a large $\chi_{c2} - \chi_{c1}$ polarization difference? \Rightarrow smoking gun! ... weak χ_{c1} and χ_{c2} polarizations as for S-wave states? \Rightarrow need of improved (simpler?) NRQCD hierarchies or better perturbative calculations

Mass scaling from charm to beauty

Exploiting p_T/M scaling we can determine the mass scaling of the cross section without model-dependent extrapolations to low p_T : it is sufficient to measure the ratio of the fitted p_T/M distributions at one (arbitrary!) p_T/M point

How does the production cross section scales from charmonium (m_c) to bottomonium (m_b) ? We consider the two mesons closer to ground state, J/ ψ and Υ (1S), correcting for feed-down. Assumption for Υ (1S): $f_{\text{DIR}} = (50 \pm 10)\%$

$$\frac{d\sigma/dp_{T}(\Upsilon(1S))}{d\sigma/dp_{T}(J/\psi)} = \left(\frac{m_{b}}{m_{c}}\right)^{-\alpha}$$

$$\alpha = \begin{cases} 6.6 \pm 0.1 & 7 \text{ TeV} \\ 6.5 \pm 0.1 & 13 \text{ TeV} \end{cases}$$

Comparison to a simple reference: Drell-Yan

 $\Rightarrow \beta = 0.63 \pm 0.03$

 \Rightarrow the "PDF-undressed" quarkonium cross section goes like $m_0^{-(6.0 \pm 0.1)}$

Note: the power-3 difference of quarkonium wrt DY is just what is needed to accommodate the $[m_0^3]$ -dimensional bound-state wave function

Implications of the observed scaling patterns

Inclusive quarkonium production cross section from pure dimensional analysis:

$$\frac{d\sigma}{dp_{T}} = \sum_{i} m_{Q}^{-3} \times \frac{\mathcal{L}_{i} (m_{Q}, M, p_{T}/M, y, \sqrt{s/M})}{m_{Q}^{3}} \times \mathcal{F}_{i} (m_{Q}, M, p_{T}/M, y, \sqrt{s/M}) \times \left(\frac{\sqrt{s}}{M}\right)^{\beta}$$

$$\begin{array}{c} \text{global} \\ \text{dimensionality} \end{array} \qquad \mathcal{L} = \text{purely formal "LDME" terms,} \\ \text{defined to have the same } [m_{Q}^{3}] \\ \text{dimensionality of the} \\ \text{bound-state wave function} \end{array} \qquad \begin{array}{c} \text{generic} \\ \text{generic} \\ \text{dimensionless} \\ \text{factors} \\ \text{for } \sqrt{s} = 7-8 \text{ TeV} \end{array}$$

 \mathcal{L}_i and \mathcal{F}_i here *a priori generic* (and redundant) functions of the relevant variables. No assumption about possible factorization into $Q\overline{Q}$ creation × bound-state formation

ATLAS and CMS data at $|y| \notin 2$ and $p_T / M \approx 2$ tell us that:

- 1) the p_T/M dependence is the same irrespectively of m_Q and M
- 2) from charmonium to bottomonium the partonic-level (PDF-undressed) cross section scales like m_Q^{-6} , with no observed dependence on \sqrt{s}

1) $\Rightarrow p_T/M$ and $\{m_Q, M\}$ do not mix: $\mathcal{L} \times \mathcal{F}$ writeable as $\int y \, dependence to be studied <math>\mathcal{L}(m_Q, M, \sqrt{s/M}) \times \mathcal{F}(p_T/M, y, \sqrt{s/M})$ \Rightarrow an experimental evidence that short- and long-distance effects "factorize"(*) 2) \Rightarrow further specification of the "LDME": $\mathcal{L} = \mathcal{L}(M/m_Q)$, independent of m_Q and \sqrt{s} (*)

Implications of the observed scaling patterns

Inclusive quarkonium production cross section from pure dimensional analysis:

$$\frac{d\sigma}{dp_{T}} = \sum_{i} m_{Q}^{-3} \times \frac{\mathcal{L}_{i} (m_{Q}, M, p_{T}/M, y, \sqrt{s/M})}{m_{Q}^{3}} \times \mathcal{F}_{i} (m_{Q}, M, p_{T}/M, y, \sqrt{s/M}) \times \left(\frac{\sqrt{s}}{M}\right)^{\beta}$$

$$\begin{array}{c} \text{global} \\ \text{dimensionality} \end{array} \qquad \mathcal{L} = \text{purely formal "LDME" terms,} \\ \text{defined to have the same } [m_{Q}^{3}] \\ \text{dimensionality of the} \\ \text{bound-state wave function} \end{array} \qquad \begin{array}{c} \text{generic} \\ \text{factors} \\ \text{for } \sqrt{s} = 7-8 \text{ TeV} \end{array}$$

 \mathcal{L}_i and \mathcal{F}_i here *a priori generic* (and redundant) functions of the relevant variables. No assumption about possible factorization into $Q\overline{Q}$ creation × bound-state formation

(*) Disclaimer. The
$$\mathcal{L}$$
 functions are not the same as that:
They do not involve unobservable energy scales
they obey simple dimensional-analysis considerations leading to $\mathcal{L} = \mathcal{L}(M/m_Q)$
they are experimentally definable (see next slide)
1) $\Rightarrow p_T/M$ and $\{m_Q, M\}$ do not mix: $\mathcal{L} \times \mathcal{F}$ writes
 $\mathcal{L}(m_Q, M, \sqrt{s/M}) \times \mathcal{F}(p_T/M, \sqrt{s/M})$
 \Rightarrow an experimental evidence that short- and long-distance effects "factorize"(*)
2) \Rightarrow further specification of the "LDME": $\mathcal{L} = \mathcal{L}(M/m_Q)$, independent of m_Q and \sqrt{s} (*)

Mass scaling of S-wave cross sections

Refined determination of the mass scaling, using all S states and adopting the short \times long-distance "factorized" point of view:

Using: $2m_Q = M_{\eta_c(1S)} | M_{\eta_b(1S)}$

Long-distance scaling: a universal pattern?

The "LDMEs" show a clear correlation with binding energy,

- common to charmonium and bottomonium
- identical at 7 and 13 TeV

 \Rightarrow further support to the assumption that the dependence on bound-state mass is a *"factorizable"* long-distance effect (= abstract from lab momentum dependence)

The "missing pieces" of quarkonium feed-down

Assuming that the "universal" E_{binding} dependence hypothesis can be extended to the P-wave states,

$$\frac{D_{\chi}}{D_{o\bar{o}}} \propto E_{\text{binding}}^{0.63 \pm 0.02}$$

• Y2S

tot

from chib0_2P

from chib1_2P

from chib2_2P

 χ_c data come to constrain the χ_b (1-2-3P) cross sections and, using BRs from PDG, the feed-down structure of quarkonium production can be fully predicted

							from Y3S	5.7 +- 1.2	
			•			•	from chib0_3P	0.15 +- 0.12	
			• Y1S	tot	59.0 +- 4.9		from chib1_3P	5.9 +- 1.7	-
				from chib0 1P	1.22 +- 0.29	-	from chib2_3P	3.7 +- 1.3	
				from chib1_1P	21.7 +- 3.6				3.
				from chib2 1P	11.5 +- 2.1	· chi b0_2P	tot	3.09 +- 0.79	
Feed-down fractions in pp (%):			from Y2S	11.3 +- 1.6		from Y3S	3.09 +- 0.79	3.	
				from chib0_2P	0.167 +- 0.082	•			
Jpsi chi c0	tot	31.9 +- 1.6		from chib1 2P	5.1 +- 1.1	· chi b1_2P	tot	6.5 +- 1.6	8
	from chic0	0.762 + 0.059		from chib2 2P	3. 40 +- 0. 74	•	from Y3S	6.5 +- 1.6	
	from chic1	15.61 + 0.99		from Y3S	1.51 +- 0.28	•8			3
	from chic2	7.83 +- 0.53	-	from chib0 3P	0.018 +- 0.016	· chi b2_2P	tot	6.8 +- 1.7	
	from psi2S	7.67 +- 0.88		from chib1 3P	1.59 +- 0.52	-	from Y3S	6.8 +- 1.7	3.
	from Y1S	(5.57 + 0.69) = 5	•	from chib2 3P	1.35 +- 0.52	•			
	from Y2S	(2.2 + 2.2) = 5				• Y3S	tot	25.9 +- 5.5	8.
			· chi b0 1P	tot	2.67 +- 0.62	•	from chib0_3P	1.02 +- 0.61	
	tot	2.09 +- 0.26	•	from Y2S	2.58 + 0.61	-9	from chib1_3P	17.0 +- 4.5	8.
	from psi2S	2.09 +- 0.26	•	from Y3S	0.099 +- 0.028	•	from chib2_3P	7.8 +- 2.4	1
	from Y1S	(3.4 + 3.4) = 5	•			-8			8
	from Y2S	(1.5 + 1.5) E - 5	· chi b1 1P	tot	4.8 +- 1.0				3
			-	from Y2S	4.7 +- 1.0	-9			ä.
chi c1	tot	2.61 +- 0.33		from Y3S	0.033 + 0.020				
	from psi2S	2.61 +- 0.33	•						8
	from Y1S	(4.26 + 0.89) E - 5	· chi b2 1P	tot	5.3 +- 1.1				
	from Y2S	(2.10 + 0.55) E - 5		from Y2S	5.0 +- 1.1				
			•	from Y3S	0.372 +- 0.099	3.			
chi c2	tot	2.81 +- 0.35	-						
	from psi2S	2.81 +- 0.35							
	from Y1S	(7.1 + 2.) E - 5							
	from Y2S	(2.48 + 0.92) E - 5	-			•			
psi 2S	tot	(1.36 +- 0.43) E-4				•			
	from Y1S	(1.01 + 0.22) E - 4	•						
	from Y2S	(0.35 + 0.35) E - 4	•						
			•						

45.0 +- 5.7

1.42 +- 0.43

19.0 +- 3.8

9.2 +- 2.1

Comparison with existing data

The predicted $\chi_b \rightarrow \Upsilon$ feed-downs are in reasonable agreement with forward-rapidity LHCb data (considered for $p_T/M > 2$)

30

40

 $\left[\operatorname{GeV}/c\right]$

 $=7 \,\mathrm{TeV}$

 $\sqrt{s} = 8 \,\mathrm{TeV}$

 \sqrt{s}

Nuclear modifications in Pb-Pb

How is the universal *E*_{binding}-scaling modified in Pb-Pb? Can we describe Pb-Pb data assuming a minimal modification of the simple parametrization found for pp data?

Nuclear modifications in Pb-Pb

We want to study the measured AA-to-pp production ratio R_{AA} as a function of

binding energy

centrality

One hypothesis, different interpretations

Base assumption:

nuclear effects modify the "universal bound-state formation pattern" as follows:

With increasing ΔE it becomes less and less probable to *form* the bound state. For $\Delta E \ge E_{\text{binding}}$ the QQbar never transforms into quarkonium

An *empirical* parametrization with different interpretations and possibly including different physics effects, e.g.:

$$E_{\text{binding}}(J/\psi) = 2M(D^{0}) - M(J/\psi)$$

$$E_{\text{binding}}(J/\psi) - \Delta E = \begin{cases} [2M(D^{0}) - \Delta E] - M(J/\psi) ? & \text{screening effectively reduces} \\ 2M(D^{0}) - [M(J/\psi) + \Delta E] ? & \text{multiple scattering effectively} \\ \text{increases Q-Qbar relative} \\ \text{momentum and invariant mass?} \\ \rightarrow J. \text{ Qiu et al., PRL 88 (2002) 232301} \end{cases}$$

Parameters and ingredients

 ΔE is determined from data in each condition (centrality, energy), but we test the approximation that it is always *the same for all states* Additional parameter:

the width of the ΔE distribution, $\sigma_{\Delta E}$, for simplicity centrality-independent

All the rest is *fixed* from pp data:

- same parameter δ = 0.63 ± 0.04 used in AA as in pp
- same short-distance cross-section dependence used in AA as in pp
- cross sections of all states calculated in pp and AA for each condition; all varying feed-down effects included in the parametrization

Examples

Curves: suppression of *directly* produced states Points: including effect of feed-down specific to each state

Examples

Curves: suppression of *directly* produced states Points: including effect of feed-down specific to each state

Global data fit: *R*_{AA} vs centrality

CMS & ATLAS 5.02 TeV

CMS-PAS HIN-16-023 CMS-PAS HIN-16-025 ATLAS-CONF-2016-109

- 3 free parameters
- 70 nuisance parameters
(BRs, pp cross sections, global experimental uncertainties)

Good fit quality $P(\chi^2) = 22\%$

Improves if the absolute energy shift ΔE is allowed to be different for charmonium and bottomonium

Summary

At the current level of experimental precision, mid-rapidity LHC pp data for charmonium and bottomonium are well described by a simple parametrization reflecting a universal (*=state-independent*) scaling with two variables:

- **1.** shapes of the p_{T} distributions in pp collisions
- 2. pp cross-section scaling with mass $\rightarrow E_{\text{binding}} \begin{pmatrix} I_{Ong} \\ distance \end{pmatrix}$

This parametrization mirrors well the general idea of factorization of NRQCD. While the observed simplicity is in seeming contradiction with the calculated SDCs, cancellations ultimately enable NRQCD to succeed.

Will the striking χ_{c1} and χ_{c2} polarization predictions bring us to a new theory-data clash?

 $\rightarrow p_{T}/M \frac{short}{distance}$

Also PbPb data (for S-waves) show a surprisingly simple pattern: R_{AA} can be parametrized assuming a (centrality/energy-dependent) shift of the binding-energy, equal in magnitude, at least in first approximation, for all c-cbar and b-bbar states

3. centrality dependence in Pb-Pb collisions $\rightarrow E_{\text{binding}} - \Delta E$