

Study of J/ψ production in jets

Jiajia Qin (UCAS) On behalf of the LHCb collaboration

12th International Workshop on Heavy Quarkonium November 6-10 Peking University Beijing, China

➢Introduction

≻LHCb detector

$> J/\psi$ production in jets

≻Summary

Introduction

\succ *J*/ ψ production

- The underlying production mechanisms are still not fully understood.
- Powerful QCD test, both for perturbative and non-perturbative aspects.

\succ J/ ψ production in jets

- J/ψ produced from direct parton scattering (isolated) or through parton showers (in jets)?
- Possible solution to lack of observed transverse polarization.
- The variable $z(J/\psi) \equiv \frac{p_{\rm T}(J/\psi)}{p_{\rm T}({\rm jet})}$ expected to be large in LO-NRQCD.

LHCb detector

- > Aiming for precision measurements in b, c flavor sectors.
- ▶ Fully instrument covering $2 < \eta < 5$.

Vertex Locator(vertex reconstruction) Tracking system(particle reconstruction) Impact parameter resolution: ϵ (Tracking) ~96% M4 M5 M3 ECAL 1 20 µm *δp/p* ~0.5%-1%(5-200 GeV) y Decay time resolution: $\sigma(m_{B \to hh}) \approx 22 \text{ MeV}$ 45 fs ($\tau_{\rm B} \sim 1.5$ ps) 5m SPD/PS Magnet T3 RICH2 M1RICH1 Vertex Locator – 5m **RICH:** particle ID 5m 10m 15m 20m z • $\varepsilon(K \rightarrow K) \sim 95\%$ Muon system • Mis-ID: $\varepsilon(\pi \rightarrow K) \sim 5\%$ Magnet • μ ID: $\varepsilon(\mu \rightarrow \mu) \sim 97\%$ Bending power: 4 Tm • Mis-ID: $\varepsilon(\pi \rightarrow \mu) \sim 1-3\%$

JINST 3 (2008) S08005 IJMPA 30 (2015) 1530022

Analysis strategy

PRL 118 (2017) 192001 JHEP 0804 (2008) 063
➤ Analysis with the 13 TeV 2016 pp collision data:

- Integrated luminosity is 1.4 fb^{-1} .
- Data taking with near real-time calibration, alignment and reconstruction.
- Online selection and storage of events with J/ψ candidates.
- Jet reconstruction by clustering the J/ψ candidate with charged and neutral particle-flow objects with the anti- $k_{\rm T}$ clustering algorithm.
- > Measure the fraction $z(J/\psi)$ of jet transverse momentum carried by J/ψ within:
 - Jets: $p_{\rm T}(\text{jet}) > 20 \text{ GeV}, \ 2.5 < \eta(\text{jet}) < 4$
 - J/ψ : 2.5 < $\eta(J/\psi)$ < 4.5
 - Muons: $p_{\rm T}(\mu) > 0.5 \text{ GeV}$, $p(\mu) > 5 \text{ GeV}$, $2.5 < \eta(\mu) < 4.5$
- > Prompt and displaced J/ψ events are separated via the pseudo-lifetime quantity:

Signal Determination

PRL 118 (2017) 192001

Perform an unbinned maximum likelihood fit in each bin of $z(J/\psi)$ and $p_{\rm T}({\rm jet})$:

Results

PRL 118 (2017) 192001

> The distribution of $z(J/\psi)$, independent for displaced and prompt J/ψ :

- Prompt $z(J/\psi)$ -distribution softer than expected.
- DPS with $\sigma_{\rm eff} = 31 \text{ mb}$ (PYTHIA default) does not explain the discrepancy.
- Good agreement between data and model for J/ψ from b.

Additional studies

➢ In LHCb simulation:

PRL 118 (2017) 192001

- Hard $z(J/\psi)$ -distribution is generic in LO-NRQCD.
- Robust predictions for displaced J/ψ mesons.

Further theory results

> Alternatives to Pythia provided, better qualitative description of prompt $z(J/\psi)$ achieved:

Summary

- > First study of properties of prompt J/ψ mesons production in jets done at LHCb.
- > We measured the fraction of jet p_T carried by J/ψ , the observed distribution for J/ψ from *b*-hadron decays is consistent with the PYTHIA8 prediction. However, for the prompt J/ψ :
 - Softer spectrum than expected results from LO-NRQCD.
 - New calculations based on GFIP or FJF formalism agree with the data well.
- Rich harvest already and more to come.
 - $\sim 5 \text{ fb}^{-1}$ in Run II
 - $\sim 50 \text{ fb}^{-1}$ in Run III(start from 2021)

Thanks for your attention!

PRL 118 (2017) 192001

Backup

Unfolding detector effect:

- > Correct for $z(J/\psi)$ resolution and $p_{\rm T}$ (jet) resolution, ~ 20-25%.
- > Perform 2D unfolding in $Z(J/\psi)$ and $p_{T}(jet)$ (iterative Bayesian). For prompt J/ψ : $p_{T}(jet)$ [true]

