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The Decays Z → V + γ

• The decay of the Z boson to a vector quarkonium V and a photon is interesting
in its own right:

– as a test of the standard model

– as a test of our understanding of quarkonium production.

• It is also important as a calibration for experimental measurements of the final
state V + γ.

– The rare Higgs decay H → J/ψ+γ can be used to measure the Hcc̄ coupling
at a high-luminosity LHC [Bodwin, Petriello, Stoynev, Velasco (2013)].

– The rare Higgs decays H → Υ(nS) + γ are very sensitive to deviations from
the standard model Hbb̄ coupling.

– See my talk at QWG2014 for further details.
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The Light-Cone Formalism

• In calculating these decays, it is convenient to use the light-cone formalism for
exclusive processes.
[Brodsky and Lepage (1980); Chernyak and Zhitnitsky (1984)]

– Expansion in powers of m2
V /m

2
Z.

– We work at leading order in the expansion.

– Greatly simplifies the calculation at fixed-order in αs.

– A natural framework within which to resum large logs of m2
Z/m

2
Q.

• The NRQCD expansion of the light-cone distribution amplitude (LCDA) leads to
distributions (generalized functions):
Dirac δ-function, its derivatives, + and ++ distributions, . . . .

• Problem: The generalized functions cause the standard expansion of the LCDA
in eigenfunctions of the evolution operator to diverge.
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The Light-Cone Amplitude

• For Z → V + γ the leading-twist light-cone direct amplitude has the form

A =

∫ 1

0

dxTH(x, µ)ϕV (x, µ).

• x is the light-cone momentum fraction.

• TH(x, µ) is the hard-scattering kernel at the renormalization scale µ.

– TH(x, µ) can be calculated in QCD perturbation theory.

– µ is chosen to be of order mZ in order to avoid large logs of m2
Z/µ

2.

• ϕV (x, µ) is the quarkonium light-cone distribution amplitude (LCDA).
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NRQCD Expansion of the LCDA

• At the scale µ0 ∼ mQ, ϕV (x, µ0) has an NRQCD expansion.
[Yu Jia, Deshan Yang (2008)]

ϕV (x, µ0) = ϕ
(0)
V (x, µ0) + ⟨v2⟩V ϕ(v

2)
V (x, µ0) +

αs(µ0)

4π
ϕ
(1)
V (x, µ0) +O(α2

s, αsv
2, v4).

• ⟨v2⟩V is the ratio of the order-v2 LDME to the order-v0 LDME:

⟨v2⟩V =
1

m2
Q

⟨V (ϵV )|ψ†(− i
2

↔
∇)2σ · ϵV χ|0⟩

⟨V (ϵV )|ψ†σ · ϵV χ|0⟩
.

• The LO LCDA is
ϕ
(0)
V (x, µ0) = δ(x− 1

2).

δ(x− 1
2) is the Dirac delta function.

• The order-v2 contribution to the LCDA is proportional to

ϕ
(v2)
V (x, µ0) =

1

24
δ(2)(x− 1

2).

δ(n)(x− 1
2) is the nth derivative of the Dirac delta function.
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Evolution of the LCDA

• We need to evolve the LCDA from µ0 ∼ mQ to µ ∼ mZ.

– The evolution takes into account logs of m2
Z/m

2
Q to all orders in perturbation

theory.

– In practice, we work to NLL accuracy.

• The LCDA satisfies the Efremov-Radyushkin-Brodsky-Lepage (ERBL) evolution
equation:

µ2 ∂

∂µ2
ϕV (x, µ) = CF

αs(µ)

2π

∫ 1

0

dy VT (x, y)ϕV (y, µ), (1)

VT (x, y) is the evolution kernel.
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Standard Method of Solution of the ERBL Equation

• Decompose ϕV into eigenfunctions |n, x⟩ of the LO evolution kernel.

• The LO evolution kernel is diagonalized by Gegenbauer polynomials
of order 3/2:

|n, x⟩ = NnC
(3/2)
n (2x− 1),

⟨n, x| = Nnw(x)C
(3/2)
n (2x− 1).

(Sometimes suppress the argument x in |n, x⟩ and ⟨n, x|.)

– Nn = 4(2n+3)
(n+1)(n+2) is the normalization factor.

– w(x) = x(1− x) is the weight factor.

• Orthonormality: ⟨n|m⟩ = δnm.

(The inner product denotes integration over x.)

• Completeness:
∑

n |n, x′⟩⟨n, x| = δ(x′ − x).
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• The evolution equation for the LCDA can be solved in closed form for each eigen-
state:

|ϕV (µ)⟩ =
∑
m,n

|m⟩⟨m|U(µ, µ0)|n⟩⟨n|ϕV (µ0)⟩.

⟨m|U(µ, µ0)|n⟩ is the evolution matrix.

– Depends on the eigenvalues of the evolution operator.

– Diagonal at LL order.

• The light-cone amplitude is now

A =
∑
m,n

⟨TH(µ)|m⟩︸ ︷︷ ︸
Tm(µ)

⟨m|U(µ, µ0)|n⟩︸ ︷︷ ︸
Umn(µ,µ0)

⟨n|ϕV (µ0)⟩︸ ︷︷ ︸
ϕn(µ0)

.

• Charge conjugation symmetry: ϕn is nonzero only for n even.
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Problem: The eigenfunction series sometimes diverges.

• Example [Bodwin, Chung, Ee, Lee, Petriello (2014)]:

For TH = T
(0)
H = 1

x(1−x) and ϕV = δ(2k)(x− 1
2),

Tnϕn ∼ (−1)(n/2−k) n(2k−1/2).

– In particular, for ϕV = δ(2)(x− 1
2) (the order-v2 correction), the series

is divergent:

n 0 2 4 6 8 10

Tnϕn 0 17.5 −38.5 63.3 −91.4 122.6

• ⟨m|U(µ, µ0)|n⟩ improves the convergence, but the series doesn’t converge until
µ is much greater than mZ.

• The essence of the problem: Generalized functions, such as δ(k)(x − 1
2), unlike

ordinary functions, are not guaranteed to have convergent eigenfunction expan-
sions.

• Also a problem for the order-αs correction to ϕV (+ and ++ distributions).

New Method for Resummation of Logarithms in Z → V + γ 9 G. Bodwin (ANL)



Solution of the Problem of Diverging Eigenfunction Expansions

Abel Summation

• A general way to assign a value to a divergent series.

– Multiply the nth term in the series by zn.

– z is a complex number with |z| < 1.

– Take the limit z → 1−.

• In our case, we have

A = lim
z→1−

∑
m,n

⟨TH(µ)|m⟩⟨m|U(µ, µ0)|n⟩zn⟨n|ϕV (µ0)⟩.

• Interpretation:
S(x, x′, z) =

∑
n

|n, x′⟩zn⟨n, x|

gives a representation of a Dirac δ-function as a sequence of ordinary functions.

New Method for Resummation of Logarithms in Z → V + γ 10 G. Bodwin (ANL)



0.2 0.4 0.6 0.8 1.0
x

5

10

15

S(x,0.2)

z=.95

z=.90

z=.85

]

– S(x, x′, z) becomes more and more peaked around x = x′ as z → 1.

– The area under S(x, x′, z) goes to 1 as z → 1.

• ∑
n

|n, x′⟩zn⟨n, x|ϕV (µ0)⟩ =
∫
dx′ S(x, x′, z)ϕV (x

′)

smears any generalized functions in ϕV , turning them into ordinary functions.

• The Abel summation defines generalized functions in ϕV as a limit of a sequence
of ordinary functions.
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Padé Approximants

• Problem: The Abel-summation series converges very slowly for z near 1.
In order to obtain percent level accuracy, it is necessary to retain hundreds of
terms.

• Padé approximants replace the Nth partial sum of a series with a ratio of poly-
nomials:

[i/j](z) =
a0 + a1z

1 + a2z
2 + . . .+ aiz

i

1 + b1z1 + b2z2 + . . .+ bizj
.

The a’s and b’s are chosen so that the series expansion of [i/j](z) reproduces
the partial sum though Nth order.

• The Padé approximant gives an approximate analytic continuation that is valid
beyond the radius of convergence of the series.

• Simple example: 1/(1 + z) has a series expansion with partial sums

SN = 1− z + z2 + . . .+ (−1)NzN .

The series has a radius of convergence 1 because of the singularity at z = −1.

• Every Padé approximant of every partial sum is 1/(1 + z).
We can evaluate the Padé approximant at z = 1, even though the series does
not converge there.
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• The evolved light-cone amplitude exists because the RHS of the ERBL equation
is nonsingular.

• Therefore, the point z = 1 is nonsingular.
We can evaluate the Padé approximant at z = 1, instead of taking lim z → 1−.

• For TH = T
(0)
H = 1

x(1−x) and ϕV = δ(2)(x − 1
2) (no evolution) the Abel-Padé

method converges amazingly rapidly to the analytic answer:

N
∑N

n=0 Tnϕn

4 5.468750000

8 3.988747921

12 4.000358243

16 3.999983194

20 4.000000036

Using [(N/2)/(N/2)](z) Padé approximants.

• We have tested the Abel-Padé method against known analytic results in a num-
ber of cases: ϕ(x, µ0) (no evolution) at LO and NLO in αs, ϕ(x) = δ(2k)(x− 1

2) up
to k = 5, fixed-order-in-αs evolution of ϕ.
In every case, Abel-Padé method converges rapidly to the correct answer.
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Branching Fractions for Z → V + γ

• Using the Abel-Padé method, we computed the branching fractions for
Z → V + γ.

1. Including the contribution of NLO in αs in ϕV (x, µ0).
[X.-P. Wang and D. Yang (2017)].

2. Including the contribution of NLO in αs in TH. [X.-P. Wang and D. Yang (2014)].

3. Including logs of m2
Z/m

2
Q resummed to all orders in αs at NLL accuracy.

4. Including the indirect amplitude (decay of the Z boson through a fermion
loop). Only a 1% effect.

• Compare with Huang and Petriello (HP) (2014) and
Grossman, König, and Neubert (GKN) (2015).

– HP did not include 3.

– GKN did not include 1 and 4 and did 3 at LL accuracy.

– GKN used different values for ⟨v2⟩.
– We corrected some scale choices in HP.

Produced nearly cancelling 30% corrections.

– We corrected the relative sign of the indirect amplitude in HP.
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V Br(Z → V + γ) Br(Z → V + γ) (HP) Br(Z → V + γ) (GKN)

J/ψ 8.96+1.51
−1.38 × 10−8 (9.96± 1.86)× 10−8 8.02+0.46

−0.44 × 10−8

Υ(1S) 4.80+0.26
−0.25 × 10−8 (4.93± 0.51)× 10−8 5.39+0.17

−0.15 × 10−8

Υ(2S) 2.44+0.14
−0.13 × 10−8 − −

Υ(3S) 1.88+0.11
−0.10 × 10−8 − −

• Our result for Br(Z → J/ψ + γ) differs from that of HP by −10% and from that of
GKN by +12%.

• Our result for Br(Z → Υ(1S) + γ) differs from that of HP by −3% and from that
of GKN by −11%.

• The error bars in GKN seem to be underestimated.

– Estimated by varying the hard scale µ by a factor two.

– Does not take into account uncalculated corrections to ϕV (x, µ0) at the heavy-
quark scale µ0.
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Summary

• The Abel-Padé method provides a general solution to the problem of the evolu-
tion of the NRQCD expansions of quarkonium LCDAs.

• We have used the Abel-Padé method to compute the evolution of the order-αs

and order-v2 corrections to the quarkonium LCDAs for the decays Z → V + γ.

• Experimental measurements of the decays Z → V +γ will provide new precision
tests of quarkonium-production theory.

• Experience with these measurements may facilitate measurements ofH → V +γ

(Hcc̄ and Hbb̄ couplings).
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