New Method for Resummation of Logarithms in $Z \rightarrow V + \gamma$

Geoffrey Bodwin (ANL)

(G. T. Bodwin, H. S. Chung, J.-H. Ee and J. Lee, arXiv:1709.09320 [hep-ph])

- The Decays $Z \to V + \gamma$
- The Light-Cone Formalism
- Solution of the Problem of Diverging Eigenfunction Expansions
- Branching Fractions for $Z \to V + \gamma$
- Summary

The Decays $Z \rightarrow V + \gamma$

- The decay of the Z boson to a vector quarkonium V and a photon is interesting in its own right:
 - as a test of the standard model
 - as a test of our understanding of quarkonium production.
- ullet It is also important as a calibration for experimental measurements of the final state $V+\gamma$.
 - The rare Higgs decay $H \to J/\psi + \gamma$ can be used to measure the $Hc\bar{c}$ coupling at a high-luminosity LHC [Bodwin, Petriello, Stoynev, Velasco (2013)].
 - The rare Higgs decays $H \to \Upsilon(nS) + \gamma$ are very sensitive to deviations from the standard model $Hb\bar{b}$ coupling.
 - See my talk at QWG2014 for further details.

The Light-Cone Formalism

• In calculating these decays, it is convenient to use the light-cone formalism for exclusive processes.

[Brodsky and Lepage (1980); Chernyak and Zhitnitsky (1984)]

- Expansion in powers of m_V^2/m_Z^2 .
- We work at leading order in the expansion.
- Greatly simplifies the calculation at fixed-order in α_s .
- A natural framework within which to resum large logs of m_Z^2/m_Q^2 .
- The NRQCD expansion of the light-cone distribution amplitude (LCDA) leads to distributions (generalized functions):
 - Dirac δ -function, its derivatives, + and ++ distributions,
- Problem: The generalized functions cause the standard expansion of the LCDA in eigenfunctions of the evolution operator to diverge.

The Light-Cone Amplitude

ullet For $Z o V + \gamma$ the leading-twist light-cone direct amplitude has the form

$$\mathcal{A} = \int_0^1 dx \, T_H(x,\mu) \phi_V(x,\mu).$$

- *x* is the light-cone momentum fraction.
- $T_H(x,\mu)$ is the hard-scattering kernel at the renormalization scale μ .
 - $T_H(x,\mu)$ can be calculated in QCD perturbation theory.
 - μ is chosen to be of order m_Z in order to avoid large logs of m_Z^2/μ^2 .
- $\phi_V(x,\mu)$ is the quarkonium light-cone distribution amplitude (LCDA).

NRQCD Expansion of the LCDA

• At the scale $\mu_0 \sim m_Q$, $\phi_V(x, \mu_0)$ has an NRQCD expansion. [Yu Jia, Deshan Yang (2008)]

$$\phi_V(x,\mu_0) = \phi_V^{(0)}(x,\mu_0) + \langle v^2 \rangle_V \phi_V^{(v^2)}(x,\mu_0) + \frac{\alpha_s(\mu_0)}{4\pi} \phi_V^{(1)}(x,\mu_0) + O(\alpha_s^2, \alpha_s v^2, v^4).$$

• $\langle v^2 \rangle_V$ is the ratio of the order- v^2 LDME to the order- v^0 LDME:

$$\langle v^2 \rangle_V = \frac{1}{m_Q^2} \frac{\langle V(\boldsymbol{\epsilon}_V) | \psi^{\dagger}(-\frac{i}{2} \stackrel{\leftrightarrow}{\boldsymbol{\nabla}})^2 \boldsymbol{\sigma} \cdot \boldsymbol{\epsilon}_V \chi | 0 \rangle}{\langle V(\boldsymbol{\epsilon}_V) | \psi^{\dagger} \boldsymbol{\sigma} \cdot \boldsymbol{\epsilon}_V \chi | 0 \rangle}.$$

The LO LCDA is

$$\phi_V^{(0)}(x,\mu_0) = \delta(x - \frac{1}{2}).$$

 $\delta(x-\frac{1}{2})$ is the Dirac delta function.

 \bullet The order- v^2 contribution to the LCDA is proportional to

$$\phi_V^{(v^2)}(x,\mu_0) = \frac{1}{24}\delta^{(2)}(x-\frac{1}{2}).$$

 $\delta^{(n)}(x-\frac{1}{2})$ is the *n*th derivative of the Dirac delta function.

Evolution of the LCDA

- ullet We need to evolve the LCDA from $\mu_0 \sim m_Q$ to $\mu \sim m_Z$.
 - The evolution takes into account logs of m_Z^2/m_Q^2 to all orders in perturbation theory.
 - In practice, we work to NLL accuracy.
- The LCDA satisfies the Efremov-Radyushkin-Brodsky-Lepage (ERBL) evolution equation:

$$\mu^2 \frac{\partial}{\partial \mu^2} \phi_V(x,\mu) = C_F \frac{\alpha_s(\mu)}{2\pi} \int_0^1 dy \, V_T(x,y) \phi_V(y,\mu), \tag{1}$$

 $V_T(x,y)$ is the evolution kernel.

Standard Method of Solution of the ERBL Equation

- Decompose ϕ_V into eigenfunctions $|n,x\rangle$ of the LO evolution kernel.
- The LO evolution kernel is diagonalized by Gegenbauer polynomials of order 3/2:

$$|n,x\rangle = N_n C_n^{(3/2)}(2x-1),$$

 $\langle n,x| = N_n w(x) C_n^{(3/2)}(2x-1).$

(Sometimes suppress the argument x in $|n,x\rangle$ and $\langle n,x|$.)

- $-N_n = \frac{4(2n+3)}{(n+1)(n+2)}$ is the normalization factor.
- -w(x)=x(1-x) is the weight factor.
- Orthonormality: $\langle n|m\rangle = \delta_{nm}$. (The inner product denotes integration over x.)
- Completeness: $\sum_{n} |n, x'\rangle \langle n, x| = \delta(x' x)$.

 The evolution equation for the LCDA can be solved in closed form for each eigenstate:

$$|\phi_V(\mu)\rangle = \sum_{m,n} |m\rangle\langle m|U(\mu,\mu_0)|n\rangle\langle n|\phi_V(\mu_0)\rangle.$$

 $\langle m|U(\mu,\mu_0)|n\rangle$ is the evolution matrix.

- Depends on the eigenvalues of the evolution operator.
- Diagonal at LL order.
- The light-cone amplitude is now

$$\mathcal{A} = \sum_{m,n} \underbrace{\langle T_H(\mu)|m \rangle}_{T_m(\mu)} \underbrace{\langle m|U(\mu,\mu_0)|n \rangle}_{U_{mn}(\mu,\mu_0)} \underbrace{\langle n|\phi_V(\mu_0) \rangle}_{\phi_n(\mu_0)}.$$

• Charge conjugation symmetry: ϕ_n is nonzero only for n even.

Problem: The eigenfunction series sometimes diverges.

• Example [Bodwin, Chung, Ee, Lee, Petriello (2014)]:

For
$$T_H = T_H^{(0)} = \frac{1}{x(1-x)}$$
 and $\phi_V = \delta^{(2k)}(x - \frac{1}{2})$, $T_n \phi_n \sim (-1)^{(n/2-k)} n^{(2k-1/2)}$.

– In particular, for $\phi_V = \delta^{(2)}(x-\frac{1}{2})$ (the order- v^2 correction), the series is divergent:

- $\langle m|U(\mu,\mu_0)|n\rangle$ improves the convergence, but the series doesn't converge until μ is much greater than m_Z .
- The essence of the problem: Generalized functions, such as $\delta^{(k)}(x-\frac{1}{2})$, unlike ordinary functions, are not guaranteed to have convergent eigenfunction expansions.
- Also a problem for the order- α_s correction to ϕ_V (+ and ++ distributions).

Solution of the Problem of Diverging Eigenfunction Expansions

Abel Summation

- A general way to assign a value to a divergent series.
 - Multiply the nth term in the series by z^n .
 - z is a complex number with |z| < 1.
 - Take the limit $z \to 1^-$.
- In our case, we have

$$\mathcal{A} = \lim_{z \to 1^{-}} \sum_{m,n} \langle T_H(\mu) | m \rangle \langle m | U(\mu, \mu_0) | n \rangle z^n \langle n | \phi_V(\mu_0) \rangle.$$

Interpretation:

$$S(x, x', z) = \sum_{n} |n, x'\rangle z^{n} \langle n, x|$$

gives a representation of a Dirac δ -function as a sequence of ordinary functions.

- -S(x,x',z) becomes more and more peaked around x=x' as $z\to 1$.
- The area under S(x, x', z) goes to 1 as $z \to 1$.

$$\sum_{n} |n, x'\rangle z^{n} \langle n, x | \phi_{V}(\mu_{0}) \rangle = \int dx' S(x, x', z) \phi_{V}(x')$$

smears any generalized functions in ϕ_V , turning them into ordinary functions.

ullet The Abel summation defines generalized functions in ϕ_V as a limit of a sequence of ordinary functions.

Padé Approximants

- Problem: The Abel-summation series converges very slowly for z near 1.
 In order to obtain percent level accuracy, it is necessary to retain hundreds of terms.
- Padé approximants replace the Nth partial sum of a series with a ratio of polynomials:

$$[i/j](z) = \frac{a_0 + a_1 z^1 + a_2 z^2 + \dots + a_i z^i}{1 + b_1 z^1 + b_2 z^2 + \dots + b_i z^j}.$$

The a's and b's are chosen so that the series expansion of [i/j](z) reproduces the partial sum though Nth order.

- The Padé approximant gives an approximate analytic continuation that is valid beyond the radius of convergence of the series.
- Simple example: 1/(1+z) has a series expansion with partial sums

$$S_N = 1 - z + z^2 + \ldots + (-1)^N z^N.$$

The series has a radius of convergence 1 because of the singularity at z=-1.

• Every Padé approximant of every partial sum is 1/(1+z). We can evaluate the Padé approximant at z=1, even though the series does not converge there.

- The evolved light-cone amplitude exists because the RHS of the ERBL equation is nonsingular.
- Therefore, the point z=1 is nonsingular. We can evaluate the Padé approximant at z=1, instead of taking $\lim z \to 1^-$.
- For $T_H = T_H^{(0)} = \frac{1}{x(1-x)}$ and $\phi_V = \delta^{(2)}(x-\frac{1}{2})$ (no evolution) the Abel-Padé method converges amazingly rapidly to the analytic answer:

N	$\sum_{n=0}^{N} T_n \phi_n$	
4	5.468750000	Using $[(N/2)/(N/2)](z)$ Padé approximants.
8	3.988747921	
12	4.000358243	
16	3.999983194	
20	4.000000036	

• We have tested the Abel-Padé method against known analytic results in a number of cases: $\phi(x, \mu_0)$ (no evolution) at LO and NLO in α_s , $\phi(x) = \delta^{(2k)}(x - \frac{1}{2})$ up to k = 5, fixed-order-in- α_s evolution of ϕ .

In every case, Abel-Padé method converges rapidly to the correct answer.

Branching Fractions for $Z \to V + \gamma$

- Using the Abel-Padé method, we computed the branching fractions for $Z \to V + \gamma$.
 - 1. Including the contribution of NLO in α_s in $\phi_V(x, \mu_0)$. [X.-P. Wang and D. Yang (2017)].
 - 2. Including the contribution of NLO in α_s in T_H . [X.-P. Wang and D. Yang (2014)].
 - 3. Including logs of m_Z^2/m_Q^2 resummed to all orders in α_s at NLL accuracy.
 - 4. Including the indirect amplitude (decay of the Z boson through a fermion loop). Only a 1% effect.
- Compare with Huang and Petriello (HP) (2014) and Grossman, König, and Neubert (GKN) (2015).
 - HP did not include 3.
 - GKN did not include 1 and 4 and did 3 at LL accuracy.
 - GKN used different values for $\langle v^2 \rangle$.
 - We corrected some scale choices in HP.
 Produced nearly cancelling 30% corrections.
 - We corrected the relative sign of the indirect amplitude in HP.

V	$Br(Z \to V + \gamma)$	${ m Br}(Z o V+\gamma)$ (HP)	${ m Br}(Z o V + \gamma)$ (GKN)
$\overline{J/\psi}$	$8.96^{+1.51}_{-1.38} \times 10^{-8}$	$(9.96 \pm 1.86) \times 10^{-8}$	$8.02^{+0.46}_{-0.44} \times 10^{-8}$
$\Upsilon(1S)$	$4.80^{+0.26}_{-0.25} \times 10^{-8}$	$(4.93 \pm 0.51) \times 10^{-8}$	$5.39^{+0.17}_{-0.15} \times 10^{-8}$
$\Upsilon(2S)$	$2.44^{+0.14}_{-0.13} \times 10^{-8}$	_	_
$\Upsilon(3S)$	$1.88^{+0.11}_{-0.10} \times 10^{-8}$	_	_

- Our result for ${\rm Br}(Z\to J/\psi+\gamma)$ differs from that of HP by -10% and from that of GKN by +12%.
- Our result for ${\rm Br}(Z\to\Upsilon(1S)+\gamma)$ differs from that of HP by -3% and from that of GKN by -11%.
- The error bars in GKN seem to be underestimated.
 - Estimated by varying the hard scale μ by a factor two.
 - Does not take into account uncalculated corrections to $\phi_V(x,\mu_0)$ at the heavy-quark scale μ_0 .

Summary

- The Abel-Padé method provides a general solution to the problem of the evolution of the NRQCD expansions of quarkonium LCDAs.
- We have used the Abel-Padé method to compute the evolution of the order- α_s and order- v^2 corrections to the quarkonium LCDAs for the decays $Z \to V + \gamma$.
- Experimental measurements of the decays $Z \to V + \gamma$ will provide new precision tests of quarkonium-production theory.
- Experience with these measurements may facilitate measurements of $H \to V + \gamma$ ($Hc\bar{c}$ and $Hb\bar{b}$ couplings).