Exotic Hadrons - A Diquarkonium Perspective

Ahmed Ali

DESY, Hamburg

Nov. 6, 2017

12th Workshop on Heavy Quarkonium, Beijing

- Experimental Evidence for Multiquark states *X*, *Y*, *Z* and *P*_c
- The Diquark model of Tetraquarks
- Mass Spectrum of the low-lying *S* and *P* Wave Tetraquark States
- A New Look at the excited Ω_c and the Y States in the Diquark Model
- Summary

X(3872) - the poster Child of the X, Y, Z Mesons PHYSICAL REVIEW LETTERS

VOLUME 91, NUMBER 26

week ending 31 DECEMBER 2003

Observation of a Narrow Charmoniumlike State in Exclusive $B^{\pm} \rightarrow K^{\pm}\pi^{+}\pi^{-}I/\psi$ Decays

S.-K. Choi,⁵ S.L. Olsen,⁶ K. Abe,⁷ T. Abe,⁷ I. Adachi,⁷ Byoung Sup Ahn,¹⁴ H. Aihara,⁴³ K. Akai,⁷ M. Akatsu,²⁰ M. Akemoto,⁷ Y. Asano,⁴⁸ T. Aso,⁴⁷ V. Aulchenko,¹ T. Aushev,¹¹ A. M. Bakich,³⁸ Y. Ban,³¹ S. Banerjee,³⁹ A. Bondar,¹ A. Bozek.²⁵ M. Bračko.^{18,12} J. Brodzicka.²⁵ T. E. Browder.⁶ P. Chang.²⁴ Y. Chao.²⁴ K.-F. Chen.²⁴ B. G. Cheon.³⁷ R. Chistov, "Y. Choi, 37 Y. K. Choi, 37 M. Dani lov, "L. Y. Dong," A. Drutskov, "S. Eidelman, V. Eiges, "J. Flanagan," C. Fukunaga,⁴⁵ K. Furukawa,⁷ N. Gabyshev,⁷ T. Gershon,⁷ B. Golob,^{17,12} H. Guler,⁶ R. Guo,²² C. Hagner,⁵⁰ F. Handa,⁴² T. Hara, 29 N.C. Hastings,7 H. Hayashii, 21 M. Hazumi,7 L. Hinz, 16 Y. Hoshi, 41 W.-S. Hou, 24 Y. B. Hsiung, 24.8 H.-C. Huang.²⁴T. liji ma.²⁰K. Inami.²⁵A. Ishikawa.²⁰R. Itoh.⁷M. Iwasaki,⁴³Y. Iwasaki,⁷J. H. Kang.⁵²S. U. Kataoka.²¹ N. Katayama.⁷ H. Kawai.² T. Kawasaki.²⁷ H. Kichimi.⁷ E. Kikutani.⁷ H.J. Kim.⁵² Hyunwoo Kim.¹⁴ J.H. Kim.³⁷ S.K. Kim.³⁶ K. Kinoshita, ³ H. Koiso,⁷ P. Koppenburg,⁷ S. Korpar,^{18,12} P. Križan,^{17,12} P. Krokovny,¹ S. Kumar,³⁰ A. Kuzmin, ¹ J. S. Lange, ^{4,33} G. Leder, ¹⁰ S. H. Lee, ³⁶ T. Lesiak, ²⁵ S.-W. Lin, ²⁴ D. Liventsev, ¹¹ J. MacNaughton, ¹⁰ G. Majumder, 39 F. Mandl, 10 D. Marlow, 32 T. Matsumoto, 48 S. Michizono, 7 T. Mimashi, 7 W. Mitaroff, 10 K. Miyabayashi,²¹ H. Miyake,²⁹ D. Mohapatra,⁵⁰ G. R. Moloney,¹⁹ T. Nagamine,⁴² Y. Nagasaka,⁸ T. Nakadaira,⁴³ T.T. Nakamura,⁷ M. Nakao,⁷ Z. Natkaniec,²⁵ S. Nishida,⁷ O. Nitoh,⁴⁶ T. Nozaki,⁷ S. Ogawa,⁴⁰ Y. Ogawa,⁷ K. Ohmi,⁷ Y. Ohnishi,⁷ T. Ohshima,²⁰ N. Ohuchi,⁷ K. Oide,⁷ T. Okabe,²⁰ S. Okuno,¹³ W. Ostrowicz,²⁵ H. Ozaki,⁷ H. Palka,²⁵ H. Park,15 N. Parslow,38 L. E. Piilonen,50 H. Sagawa,7 S. Saitoh,7 Y. Sakai,7 T. R. Sarangi,49 M. Satapathy,46 A. Satpathy, 7.3 O. Schneider, 16 A. J. Schwartz, 3 S. Semenov, 11 K. Senvo, 20 R. Seuster, 6 M. E. Sevior, 19 H. Shibuya, 40 T. Shidara,⁷ B. Shwartz, ¹V. Sidorov,¹ N. Soni,³⁰ S. Stanič,^{48,†} M. Starič,¹² A. Sugiyama,³⁴ T. Sumiyoshi,⁴⁵ S. Suzuki,⁵¹ F Takasaki,⁷ K. Tamai,⁷ N. Tamura,²⁷ M. Tanaka,⁷ M. Tawada,⁷ G. N. Taylor,¹⁰ Y. Teramoto,²⁸ T. Tomura,⁴³ K. Trabelsi,⁶ T. Tsukamoto, 7 S. Uehara, 7 K. Ueno, 24 Y. Unno, 2 S. Uno, 7 G. Varner, 6 K. E. Varvell, 38 C. C. Wang, 24 C. H. Wang, 23 J. G. Wang,⁵⁰ Y. Watanabe,⁴⁴ E. Won,¹⁴ B. D. Yabsley,⁵⁰ Y. Yamada,⁷ A. Yamaguchi,⁴² Y. Yamashita,²⁶ H. Yanai,²⁷ Heyoung Yang, 36 J. Ying, 31 M. Yoshida, 7 C. C. Zhang, 9 Z. P. Zhang, 35 and D. Žontar^{17,12}

(Belle Collaboration)

- Discovery Mode : $B \rightarrow I/\psi \pi^+ \pi^- K$
- $M = 3872.0 \pm$ $0.6 \pm 0.5 \text{ MeV}$
- $\Gamma < 2.3 \text{ MeV}$
 - $I^{PC} =$ 1++ [LHCb] [PRL110, 22201(2013)]

X, Y, Z, P_c and Charmonium States

[S.L. Olsen, T. Skwarnicki, D. Zieminska, arxiv: 1708.04012]

Bottomonium and Bottomonium-like States

[S.L. Olsen, T. Skwarnicki, D. Zieminska, arxiv: 1708.04012]

Models for XYZ Mesons

Quarkonium Tetraquarks

- compact tetraquark
- meson molecule

- diquark-onium
- hadro-quarkonium

• quarkonium adjoint meson

Ja

One gluon exchange model [Jaffe,Phys.Rept.(2005)]

✓ Color factor determines binding:
 Negative sign → Attractive

One gluon exchange model [Jaffe,Phys.Rept.(2005)]

- ✓ Color factor determines binding:
 Negative sign → Attractive
- Quarks in diquark transform as:

 $\mathbf{3}\otimes\mathbf{3}=\mathbf{\bar{3}}\oplus\mathbf{6}$

One gluon exchange model [Jaffe,Phys.Rept.(2005)]

→ Color factor determines binding:
 Negative sign → Attractive

Quarks in diquark transform as:

$$\mathbf{3}\otimes\mathbf{3}=\mathbf{\bar{3}}\oplus\mathbf{6}$$

 $qq \text{ bound state color factor:} t^a_{ij}t^a_{kl} = -\frac{2}{3} \underbrace{(\delta_{ij}\delta_{kl} - \delta_{il}\delta_{kj})/2}_{\text{antisymmetric: projects } \bar{3}} + \frac{1}{3} \underbrace{(\delta_{ij}\delta_{kl} + \delta_{il}\delta_{kj})/2}_{\text{symmetric: projects } 6}$

One gluon exchange model [Jaffe,Phys.Rept.(2005)]

- ✓ Color factor determines binding:
 Negative sign → Attractive
- Quarks in diquark transform as:

$$\mathbf{3}\otimes\mathbf{3}=\mathbf{\bar{3}}\oplus\mathbf{6}$$

$$qq \text{ bound state color factor:} t^a_{ij}t^a_{kl} = \underbrace{-\frac{2}{3}}_{\text{antisymmetric: projects } \bar{3}} \underbrace{(\delta_{ij}\delta_{kl} - \delta_{il}\delta_{kj})/2}_{\text{symmetric: projects } \bar{3}} + \frac{1}{3}\underbrace{(\delta_{ij}\delta_{kl} + \delta_{il}\delta_{kj})/2}_{\text{symmetric: projects } 6}$$

Diquarks: Spin representation

Diquarks: Spin representation

Lattice simulations for light quarks [Alexandrou, Forcrand, Lucini, PRL (2006)]:

- Calculation of 2 quark correlation strength
- Decreasing distance
- Increasing strength for "good" diquarks
- Diquark size $\mathcal{O}(1 \text{fm})$

Diquarks: Spin representation

s=1/2 s=0 s=1

Lattice simulations for light quarks [Alexandrou, Forcrand, Lucini, PRL (2006)]:

- Binding for "good" spin 0 diquarks
- No binding for "bad" spin 1 diquarks

Calculation of 2 quark correlation strength

- Decreasing distance
- Increasing strength for "good" diquarks
 Diquark size O(1fm)

Spin decoupling in HQ-Limit

 "Bad" diquarks in *b*-sector might bind

Diquark Model of Tetra- and Pentaquarks

Diquarks and Anti-diquarks are the building blocks of Tetraquarks Color representation: $3 \otimes 3 = \overline{3} \oplus 6$; only $\overline{3}$ is attractive; $C_{\overline{3}} = 1/2 C_3$

Interpolating diquark operators for the two spin-states of diquarks

 $\begin{array}{rcl} \text{Scalar:} & 0^+ & \mathcal{Q}_{i\alpha} &= & \epsilon_{\alpha\beta\gamma}(\bar{c}_c^\beta\gamma_5 q_i^\gamma - \bar{q}_{i_c}^\beta\gamma_5 c^\gamma) \\ \text{Axial-Vector:} & 1^+ & \vec{\mathcal{Q}}_{i\alpha} &= & \epsilon_{\alpha\beta\gamma}(\bar{c}_c^\beta\vec{\gamma}q_i^\gamma + \bar{q}_{i_c}^\beta\vec{\gamma}c^\gamma) \end{array}$

Diquark Model of Tetra- and Pentaquarks

Diquarks and Anti-diquarks are the building blocks of Tetraquarks Color representation: $3 \otimes 3 = \overline{3} \oplus 6$; only $\overline{3}$ is attractive; $C_{\overline{3}} = 1/2 C_3$

Interpolating diquark operators for the two spin-states of diquarks

Scalar: $0^+ \quad Q_{i\alpha} = \epsilon_{\alpha\beta\gamma} (\bar{c}_c^\beta \gamma_5 q_i^\gamma - \bar{q}_{i_c}^\beta \gamma_5 c^\gamma)$ Axial-Vector: $1^+ \quad \bar{Q}_{i\alpha} = \epsilon_{\alpha\beta\gamma} (\bar{c}_c^\beta \vec{\gamma} q_i^\gamma + \bar{q}_{i_c}^\beta \vec{\gamma} c^\gamma)$ NR limit: States parametrized by Pauli matrices : Scalar: $0^+ \quad \Gamma^0 = \frac{\sigma_2}{\sqrt{2}}$ Axial-Vector: $1^+ \quad \vec{\Gamma} = \frac{\sigma_2 \vec{\sigma}}{\sqrt{2}}$

Diquark Model of Tetra- and Pentaquarks

Diquarks and Anti-diquarks are the building blocks of Tetraquarks Color representation: $3 \otimes 3 = \overline{3} \oplus 6$; only $\overline{3}$ is attractive; $C_{\overline{3}} = 1/2 C_3$

Interpolating diquark operators for the two spin-states of diquarks

Scalar: $0^+ \quad Q_{i\alpha} = \epsilon_{\alpha\beta\gamma} (\bar{c}^{\beta}_c \gamma_5 q^{\gamma}_i - \bar{q}^{\beta}_{i_c} \gamma_5 c^{\gamma}) \qquad _{\alpha,\beta,\gamma: SU(3)_c \text{ indices}}$ Axial-Vector: $1^+ \vec{Q}_{i\alpha} = \epsilon_{\alpha\beta\gamma}(\bar{c}^{\beta}_{c}\vec{\gamma}q^{\gamma}_{i} + \bar{q}^{\beta}_{i\alpha}\vec{\gamma}c^{\gamma})$ NR limit: States parametrized by Pauli matrices : Scalar: $0^+ \Gamma^0 = \frac{\sigma_2}{\sqrt{2}}$ Axial-Vector: 1^+ $\vec{\Gamma} = \frac{\sigma_2 \vec{\sigma}}{\sqrt{2}}$ Diquark spin $s_{\mathcal{O}} \rightarrow \text{tetraquark total angular momentum } J$: $|Y_{[bq]}\rangle = |s_{\mathcal{Q}}, s_{\bar{\mathcal{Q}}}; J\rangle$ $|0_{\mathcal{Q}}, 0_{\bar{\mathcal{Q}}}; 0_I\rangle = \Gamma^0 \otimes \Gamma^0$ → Tetraquarks: $|1_{\mathcal{Q}}, 1_{\mathcal{Q}}; 0_{J}\rangle = \frac{1}{\sqrt{3}}\Gamma^{i} \otimes \Gamma_{i} \dots$ $|0_{\mathcal{O}}, 1_{\bar{\mathcal{O}}}; 1_I\rangle = \Gamma^0 \otimes \Gamma^i$

9 / 22

Involves constituent diquark mass, spin-spin, spin-orbit, and tensor forces $H = 2m_Q + H_{SS}^{(qq)} + H_{SS}^{(q\bar{q})} + H_{SL} + H_{LL} + H_T$

In the following, assume $\kappa_{q\bar{q}'} \simeq 0$

$$H_{\rm eff}(X,Y,Z) = 2m_{Q} + \frac{B_{Q}}{2}L^{2} + 2A_{Q}(L \cdot S) + 2\kappa_{qQ}[s_{\bar{q}} \cdot s_{Q} + s_{\bar{q}} \cdot s_{\bar{Q}}] + b_{\rm Y}\frac{S_{12}}{4}$$

Involves constituent diquark mass, spin-spin, spin-orbit, and tensor forces $H = 2m_Q + H_{SS}^{(q\bar{q})} + H_{SL}^{(q\bar{q})} + H_{LL} + H_T$ with

constituent mass

$$= b_{\mathbf{Y}} \left[\Im(\mathbf{S}_{\mathcal{Q}} \cdot \mathbf{n}) (\mathbf{S}_{\bar{\mathcal{Q}}} \cdot \mathbf{n}) - (\mathbf{S}_{\mathcal{Q}} \cdot \mathbf{S}_{\bar{\mathcal{Q}}}) \right]; \ (\mathbf{n} = \text{unit vector})$$

In the following, assume $\kappa_{q\bar{q}'} \simeq 0$

$$H_{\rm eff}(X,Y,Z) = 2m_{Q} + \frac{B_{Q}}{2}L^{2} + 2A_{Q}(L \cdot S) + 2\kappa_{qQ}[s_{q} \cdot s_{Q} + s_{\bar{q}} \cdot s_{\bar{Q}}] + b_{Y}\frac{S_{12}}{4}$$

$$= b_{\mathbf{Y}} \left[\Im(\mathbf{S}_{\mathcal{Q}} \cdot \mathbf{n}) (\mathbf{S}_{\bar{\mathcal{Q}}} \cdot \mathbf{n}) - (\mathbf{S}_{\mathcal{Q}} \cdot \mathbf{S}_{\bar{\mathcal{Q}}}) \right]; \ (\mathbf{n} = \text{unit vector})$$

In the following, assume $\kappa_{q\bar{q}'} \simeq 0$

$$H_{\rm eff}(X,Y,Z) = 2m_{\mathcal{Q}} + \frac{B_Q}{2}L^2 + 2A_Q(L \cdot S) + 2\kappa_{qQ}\left[s_q \cdot s_Q + s_{\bar{q}} \cdot s_{\bar{Q}}\right] + b_Y \frac{S_{12}}{4}$$

In the following, assume $\kappa_{q\bar{q}'} \simeq 0$

$$H_{\rm eff}(X,Y,Z) = 2m_{Q} + \frac{B_{Q}}{2}L^{2} + 2A_{Q}(L \cdot S) + 2\kappa_{qQ}[s_{q} \cdot s_{Q} + s_{\bar{q}} \cdot s_{\bar{Q}}] + b_{Y}\frac{S_{12}}{4}$$

Involves constituent diquark mass, spin-spin, spin-orbit, and tensor forces $H = 2m_Q + H_{SS}^{(q\bar{q})} + H_{SS}^{(q\bar{q}\bar{q})} + H_{SL} + H_{LL} + H_T$

with

$$H_{SS}^{(q\bar{q})} = 2(\mathcal{K}_{cq})_{\bar{3}}[(\mathbf{S}_{c} \cdot \mathbf{S}_{q}) + (\mathbf{S}_{\bar{c}} \cdot \mathbf{S}_{\bar{q}})]$$

$$H_{SS}^{(q\bar{q})} = 2(\mathcal{K}_{c\bar{q}})(\mathbf{S}_{c} \cdot \mathbf{S}_{\bar{q}} + \mathbf{S}_{\bar{c}} \cdot \mathbf{S}_{q})$$

$$+ 2\mathcal{K}_{c\bar{c}}(\mathbf{S}_{c} \cdot \mathbf{S}_{\bar{c}}) + 2\mathcal{K}_{q\bar{q}}(\mathbf{S}_{q} \cdot \mathbf{S}_{\bar{q}})$$

$$H_{SL} = 2A_{\mathcal{Q}}(\mathbf{S}_{\mathcal{Q}} \cdot \mathbf{L} + \mathbf{S}_{\bar{\mathcal{Q}}} \cdot \mathbf{L})$$

$$H_{LL} = B_{\mathcal{Q}}\frac{L_{\mathcal{Q}\bar{\mathcal{Q}}}(L_{\mathcal{Q}\bar{\mathcal{Q}}} + 1)}{2}$$

$$H_{T} = b_{\mathbf{Y}}\frac{S_{12}}{4} = b_{\mathbf{Y}}\left[3(\mathbf{S}_{\mathcal{Q}} \cdot \mathbf{n})(\mathbf{S}_{\bar{\mathcal{Q}}} \cdot \mathbf{n}) - (\mathbf{S}_{\mathcal{Q}} \cdot \mathbf{S}_{\bar{\mathcal{Q}}})\right]; \quad (\mathbf{n} = \text{unit vector})$$

In the following, assume $\kappa_{q\bar{q}'} \simeq 0$

$$H_{\rm eff}(X,Y,Z) = 2m_{\mathcal{Q}} + \frac{B_Q}{2}L^2 + 2A_Q(L \cdot S) + 2\kappa_{qQ}\left[s_q \cdot s_Q + s_{\bar{q}} \cdot s_{\bar{Q}}\right] + b_Y \frac{S_{12}}{4}$$

Low-lying S-Wave Tetraquark States

In the $|s_{qQ}, s_{\bar{q}\bar{Q}}; S, L\rangle_J$ and $|s_{q\bar{q}}, s_{Q\bar{Q}}; S', L'\rangle_J$ bases, the positive parity *S*-wave tetraquarks are listed below; $M_{00} = 2m_Q$

Label	J ^{PC}	$ s_{qQ}, s_{\bar{q}\bar{Q}}; S, L\rangle_J$	$ s_{q\bar{q}}, s_{Q\bar{Q}}; S', L'\rangle_J$	Mass
X ₀	0++	$ 0,0;0,0\rangle_{0}$	$(0,0;0,0\rangle_0 + \sqrt{3} 1,1;0,0\rangle_0)/2$	$M_{00} - 3\kappa_{qQ}$
X'_0	0++	$ 1,1;0,0\rangle_{0}$	$\left(\sqrt{3} 0,0;0,0\rangle_{0}- 1,1;0,0\rangle_{0}\right)/2$	$M_{00} + \kappa_{qQ}$
X_1	1^{++}	$(1,0;1,0\rangle_1 + 0,1;1,0\rangle_1)/\sqrt{2}$	$ 1,1;1,0\rangle_1$	$M_{00} - \kappa_{qQ}$
Ζ	1^{+-}	$(1,0;1,0\rangle_1 - 0,1;1,0\rangle_1)/\sqrt{2}$	$(1,0;1,0\rangle_1 - 0,1;1,0\rangle_1)/\sqrt{2}$	$M_{00} - \kappa_{qQ}$
Z'	1^{+-}	$ 1,1;1,0\rangle_1$	$(1,0;1,0\rangle_1 + 0,1;1,0\rangle_1)/\sqrt{2}$	$M_{00} + \kappa_{qQ}$
X_2	2++	1,1;2,0 ₂	$ 1,1;2,0\rangle_{2}$	$M_{00} + \kappa_{qQ}$

- The spectrum of these states depends on just two parameters, $M_{00}(Q)$ and κ_{qQ} , Q = c, b, hence very predictive
- Some of the states, such as X₀, X'₀, X₂, still missing and are being searched for at the LHC

Charmonium-like and Bottomonium-like Tetraquark Spectrum

Parameters in the Mass Formula

	charmonium-like	bottomonium-like
<i>M</i> ₀₀ [MeV]	3957	10630
κ_{qQ} [MeV]	67	22.5

		charmonium-like		bottomonium-like	
Label	J^{PC}	State	Mass [MeV]	State	Mass [MeV]
X_0	0++		3756		10562
X'_0	0++		4024		10652
X_1°	1++	X(3872)	3890		10607
Ζ	1+-	$Z_c^+(3900)$	3890	$Z_{h}^{+,0}(10610)$	10607
Z'	1+-	$Z_{c}^{+}(4020)$	4024	$\check{Z}_{h}^{+}(10650)$	10652
X_2	2++		4024		10652

A new look at the Y tetraquarks and the excited Ω_c states in the Diquark model

- Observation of 5 narrow excited Ω_c baryons in $\Omega_c \to \Xi_c^+ K^-$ [LHCb, PRL 118, 182001 (2017)]
- Measured masses (in MeV) [LHCb] and plausible J^P quantum numbers, assuming diquark model $\Omega_c(=css) = c[ss]$ [M. Karliner, J.L. Rosner, PR D95, 114012 (2017)]

$M(\Omega_c(3000))$	=	$3000.4 \pm 0.2 \pm 0.1; J^P = 1/2^-$
$M(\Omega_c(3050))$	=	$3050.2 \pm 0.1 \pm 0.1; J^P = 1/2^-$
$M(\Omega_c(3066))$	=	$3065.6 \pm 0.1 \pm 0.3; J^P = 3/2^-$
$M(\Omega_c(3090))$	=	$3090.2 \pm 0.3 \pm 0.5; J^P = 3/2^-$
$M(\Omega_c(3119))$	=	$3119.1 \pm 0.3 \pm 0.9; J^P = 5/2^-$

For the *P* states, important to take into account the tensor couplings

$$H_{\text{eff}} = m_c + m_{[ss]} + \kappa_{ss}S_s \cdot S_s + \frac{B_Q}{2}L^2 + V_{SD},$$

$$V_{SD} = a_1L \cdot S_{[ss]} + a_2L \cdot S_c + b\frac{\langle S_{12} \rangle}{4} + c S_{[ss]} \cdot S_c$$

Analysis of the excited Ω_c states in the Diquark-Quark model

b $\langle S_{12} \rangle$ /4 represents the matrix element of the tensor interaction

$$\frac{S_{12}}{4} = Q(S_1, S_2) = 3(S_1 \cdot n)(S_2 \cdot n) - (S_1 \cdot S_2)$$

- $S_1 = S_{[ss]}$ and $S_2 = S_c$ are the spins of the diquark and the charm quark, respectively, $\vec{n} = \vec{r}/r$ is the unit vector along the radius vector
- The scalar operator above can be expressed as the convolution $3S_1^i S_2^j N_{ij}$ $N_{ij} = n_i n_j - \frac{1}{3} \delta_{ij}$
- Need matrix elements of this operator between the states with the same fixed value *L* of the angular momentum operator *L*, using an identity from Landau and Lifshitz :

$$\langle N_{ij}\rangle = a(L)(L_iL_j + L_jL_i - \frac{2}{3}\delta_{ij}L(L+1))$$

where $a(L) = \frac{-1}{(2L-1)(2L+3)}$ $\longrightarrow \langle Q(S_X, S_X) \rangle = -\frac{3}{5} \langle [2(L \cdot S_X)^2 + (L \cdot S_X) - \frac{4}{3}(S_X \cdot S_X)] \rangle$ where $S_X = S_{[ss]}, S_c, S = S_{[ss]} + S_c$

Analysis of the excited Ω_c states in the Diquark-Quark model-contd.

For L = 1, and $S_{[ss]} = 1$, all three terms are non-zero, as opposed to the charmonium case, and one has to calculate the matrix element

 $\langle L, S'; J | L \cdot S_X | L, S; J \rangle$

$$\frac{\langle S_{12} \rangle}{2} = \langle 2Q(S_{[ss]}, S_c) \rangle = \langle Q(S, S) - Q(S_c, S_c) - Q(S_{[ss]}, S_{[ss]}) \rangle$$

Tensor operator mixes the two J = 1/2, and the two J = 3/2 states

$$J = 1/2: \quad \frac{1}{4} \langle S_{12} \rangle = \begin{pmatrix} 0 & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -1 \end{pmatrix}$$
$$J = 3/2: \quad \frac{1}{4} \langle S_{12} \rangle = \begin{pmatrix} 0 & -\frac{1}{2\sqrt{5}} \\ -\frac{1}{2\sqrt{5}} & \frac{4}{5} \end{pmatrix}$$
$$J = 5/2: \quad \frac{1}{4} \langle S_{12} \rangle = -\frac{1}{5}$$

10 1

Analysis of the excited Ω_c states in the Diquark-Quark model- contd.

■ Coeffs. determined from the masses of the *J*^{*P*} states (in MeV)

<i>a</i> ₁	<i>a</i> ₂	b	С	M_0
26.95	25.75	13.52	4.07	3079.94

Analysis of the tetraquark Y states in the diquark model

$$H_{\text{eff}} = 2m_{\mathcal{Q}} + \frac{B_{\mathcal{Q}}}{2}L^2 - 3\kappa_{cq} + 2a_YL \cdot S + b_Y \frac{\langle S_{12} \rangle}{4} + \kappa_{cq} [2(S_q \cdot S_c + S_{\bar{q}} \cdot S_{\bar{c}}) + 3] \frac{1}{4} \langle S_{12} \rangle = \begin{pmatrix} 0 & 2/\sqrt{5} \\ 2/\sqrt{5} & -7/5 \end{pmatrix}$$

• There are four L = 1 and one L = 3 tetraquark states with $J^{PC} = 1^{--}$

Tensor couplings non-vanishing only for the states with $S_Q = S_{\bar{Q}} = 1$

		T-wave $(j = 1)$) states
Label	JPC	$ s_{qQ}, s_{\bar{q}\bar{Q}}; S, L\rangle_J$	Mass
Y1	1	0,0;0,1	$M_{00} - 3\kappa_{qQ} + B_Q \equiv \tilde{M}_{00}$
Y_2	$1^{}$	$(1,0;1,1\rangle_1 + 0,1;1,1\rangle_1)/\sqrt{2}$	$\tilde{M}_{00} + 2\kappa_{qQ} - 2A_Q$
Y_3	$1^{}$	$ 1,1;0,1\rangle_1$	$\tilde{M}_{00} + 4\kappa_{qQ} + E_+$
Y_4	$1^{}$	$ 1,1;2,1\rangle_1$	$\tilde{M}_{00} + 4\kappa_{qQ} + E_{-}$
Y_5	1	$ 1,1;2,3\rangle_1$	$M_{Y_2} + 2\kappa_{qQ} - 14A_Q + 5B_Q - 8/5b_Y$

P-wave $(J^{PC} = 1^{--})$ states

$$E_{\pm} = \frac{1}{10} \left(-30A_Q - 7b_Y \mp \sqrt{3}\sqrt{300A_Q^2 + 140A_Qb_Y + 43b_Y^2} \right)$$

Experimental situation with the tetraquark Y states rather confusing

Summary of the Y states observed in Initial State Radiation (ISR) processes in e⁺e⁻ annihilation [BaBaR, Belle, CLEO]

 $e^+e^- \to \gamma_{\rm ISR} J/\psi\pi^+\pi^-; \gamma_{\rm ISR} \psi'\pi^+\pi^ \implies Y(4008), Y(4260), Y(4360), Y(4660)$

Ahmed Ali (DESY, Hamburg)

 $e^+e^- \rightarrow J/\psi \pi^+\pi^-$ cross section at $\sqrt{s} = (3.77 - 4.60)$ GeV (BESIII, PRL 118, 092001 (2017)

Y(4008) is not confirmed; Y(4260) is split into 2 resonances: Y(4220) and Y(4320), with the Y(4220) probably the same as Y(4260)

Two Experimental Scenarios for the Y States

[AA, L. Maiani, A. Borisov, I. Ahmed, A. Rehman, M.J. Aslam, A. Parkhomenko, A.D. Polosa, arxiv:1708.04650]

- SI (Based on CLEO, BaBaR, Belle): Y(4008), Y(4260), Y(4360), Y(4660)
- SII (BESIII, PRL 118, 092001 (2017): Y(4220), Y(4320), with Y(4390), Y(4660) the same as in SI

SII (based on BESIII data) is favored, with a_Y and κ_{cq} values similar to the Ω_c analysis

Correlations (Contd.)

Fixing $\kappa_{cq} = 67$ MeV(from the *S* states); fitted the two scenarios \implies clear preference for SII, with the following parameters (in MeV)

Scenario	M_{00}	a _Y	b_Y	$\chi^2_{\rm min}/{\rm n.d.f.}$
SI	4321 ± 79	2 ± 41	-141 ± 63	12.8/1
SII	4421 ± 6	22 ± 3	-136 ± 6	1.3/1

- $\blacksquare \quad \text{SII:} M_{00} \equiv 2m_{\mathcal{Q}} + B_{\mathcal{Q}} \Longrightarrow B_{\mathcal{Q}} = 442 \text{ MeV}$
- Comparable to the orbital angular momentum excitation energy in charmonia

$$B_Q(c\bar{c}) = M(h_c) - \frac{1}{4} [3M(J/\psi) + M(\eta_c)] = 457 \text{ MeV}$$

 κ_{cq} and a_Y for *Y* states similar to the ones in (*X*, *Z*) and Ω_c

Precise data on the Y-states is needed to confirm or refute the diquark picture Ahmed Ali (DESY, Hambure)

Summary

- A new facet of QCD is opened by the discovery of the exotic *X*, *Y*, *Z*, and the pentaquark states $\mathbb{P}(4380)$ and $\mathbb{P}(4450)$, but a dynamical theory still lacking
- A very rich spectrum of tetraquark and pentaquark states is anticipated, including the ones with a single *c*, or a single *b* quark, as well as those with multiple heavy quarks

Important puzzles remain in the complex:

- What is the nature of $Y_c(4260)$? A tetraquark? or a $c\bar{c}g$ hybrid? Is $Y_c(4260)$ split? How many *P* states are there? We do expect a tower of radial and orbital excited states in the diquark picture!
- What exactly is Y(10888)? Is it just Y(5S)? Does $Y_b(10890)$ still exist?
- We look forward to decisive experimental results from BESIII, Belle-II, and the LHC