

Search for charmonium-like states decay into light hadrons at BESIII

Ke LI (like@ihep.ac.cn)

on behalf of BESIII collaboration

Outline

- Introduction
- $e^+e^- \rightarrow p\bar{p}\pi^0$
- $e^+e^- \rightarrow \phi \phi \phi(\omega)$
- $e^+e^- \rightarrow \eta Y(2175)$
- Summary

Introduction

A series vector charmonium-like states, e.g.Y(4260) only observed in charmonium transitions, not hadronic decays.

R- value is around 4 at $\sqrt{s} = 4 - 4.6$ GeV, so total cross section is ~16 nb, 10 nb for open-charm, what about other 6 nb? only charmonium transition?

Y(4260) could have sizeable charmless decay fraction in some theoretical models^R PLB628,215, CPC39,063102

6

5

4

3

2

Cross section of $e^+e^- \rightarrow p\overline{p}\pi^0$

- Cross sections around 3.77 GeV were measured, two solutions with interference, one has $\sigma(\psi(3770) \rightarrow p\bar{p}\pi^0) = 33.8 \pm 1.8 \pm 2.1$ pb, one has upper limit 0.22 pb at 90% C.L.
- Search for vector charmonium decaying to $p\bar{p}\pi^0$
- Can be used to estimate the cross section of $p\bar{p} \rightarrow X\pi^0$ at PANDA

Event selections

- \succ Two charged tracks with opposite charge.
- Combine time of flight and dE/dx to calculate the confidence level for π , K and p hypothesis. $Prob_p > Prob_{\pi}$, $Prob_p > Prob_K$
- > One proton, one anti-proton.
- ➢ At least two EMC showers, $E_{EMC} > 25$ MeV in barrel, $E_{EMC} > 50$ MeV in endcap.
- ➢ Angle between photon and anti-proton larger than 30 degree.
- \geq 4 constraints kinematic fit. Use the one combination with least χ^2_{4C}
- $\geq |M(\gamma\gamma) M_{\pi^0}| < 15 \text{ MeV}$
- Substitution Background come from $\gamma p \bar{p}, \gamma \gamma p \bar{p}, \gamma \gamma p \bar{p}$, estimated using π^0 sideband.

Dalitz plot at 4.258 GeV

6

Partial wave analysis

- Covariant tensor formalism (J. Phys. G28,233)
- Parameterization of $\rho^*/N^*/\Delta^*$: Breit-Wigner (RPD80,052004)
- Direct process of $e^+e^- \rightarrow p\bar{p}\pi^0$: 1⁻⁻ or 3⁻⁻ $p\bar{p}$ system
- Resonance with significance larger than 5σ are retained

Result:

Data at $\sqrt{s} = 4.189 - 4.600$ GeV, Described by N(1440), $\rho(2150)$, $\rho_3(1990)$ and 1⁻⁻ phase space. Data at $\sqrt{s} = 4.008 - 4.085$ GeV: Described by N(1520), N(2570), $\rho(2150)$, $\rho_3(1990)$ and 1⁻⁻ phase space

Born cross section

$$\sigma^B = \frac{N^{\text{obs}}}{\mathcal{L} \cdot (1 + \delta^r) \cdot (1 + \delta^v) \cdot \epsilon \cdot \mathcal{B}_{\pi^0}},$$

$(1 \perp \delta^r)$	\sqrt{s} (GeV)	\mathcal{L} [pb ⁻¹]	$(1 + \delta^r)$	$(1 + \delta^v)$	$N^{ m obs}$	ϵ [%]	$\sigma^B[{ m pb}]$
(1+0):	4.008	482.0	0.967	1.044	1074 ± 33	43.9 ± 0.9	$5.09 \pm 0.18^{+0.26}_{-0.24}$
radiative correction	4.085	52.6	0.992	1.052	106 ± 11	43.7 ± 1.4	$4.47 \pm 0.46^{+0.27}_{-0.21}$
$(1 + S^{12})$	4.189	43.1	1.025	1.056	75 ± 9	44.7 ± 1.0	$3.64 \pm 0.43^{+0.18}_{-0.19}$
$(1 + 0^{\nu})$:	4.208	54.6	1.031	1.057	93 ± 10	44.9 ± 1.6	$3.52 \pm 0.39^{+0.17}_{-0.22}$
vacuum polarization corrections,	4.217	54.1	1.034	1.057	82 ± 10	43.4 ± 1.3	$3.24 \pm 0.37 \pm 0.18$
	4.226	1047.3	1.037	1.056	1611 ± 41	45.2 ± 0.5	$3.15 \pm 0.08 \pm 0.14$
	4.242	55.6	1.042	1.056	89 ± 9	44.6 ± 1.1	$3.30 \pm 0.36^{+0.19}_{-0.15}$
	4.258	825.6	1.048	1.054	1203 ± 35	43.4 ± 0.5	$3.08 \pm 0.10^{+0.14}_{-0.15}$
Efficiency comes from PWA	4.308	44.9	1.063	1.053	53 ± 8	46.0 ± 1.4	$2.32 \pm 0.33^{+0.15}_{-0.10}$
	4.358	539.8	1.081	1.051	668 ± 26	44.7 ± 1.1	$2.48 \pm 0.11^{+0.13}_{-0.12}$
	4.387	55.2	1.087	1.051	57 ± 8	47.5 ± 1.8	$1.92 \pm 0.26 \pm 0.10$
	4.416	1028.9	1.098	1.053	1133 ± 34	44.6 ± 0.6	$2.16 \pm 0.10^{+0.10}_{-0.11}$
	4.600	566.9	1.124	1.055	474 ± 22	43.8 ± 0.8	$1.63 \pm 0.08 \pm 0.08$

Born cross sections

No significant signal of any vector charmonium

$$\sigma(s) = \left| \sqrt{\sigma_{\rm con}} + \sqrt{\sigma_Y} \frac{m\Gamma}{s - m^2 + im\Gamma} \exp(i\phi) \right|^2$$

cross section of continuum process

 $\sqrt{\sigma_{con}} \propto \frac{1}{s^n}$ Second item represents the vector charmonium (Y(4260)), mass (m) and width Γ are fixed to PDG.

Upper limit of
$$\sigma(e^+e^- \rightarrow Y(4260) \rightarrow p\overline{p}\pi^0)$$

is 0.01 pb at 90\% C.L.
 $n = 4.2 \pm 0.4$

Cross sections of $e^+e^- \rightarrow \phi \phi \phi(\omega)$

- Large ratio $\sigma(e^+e^- \rightarrow J/\psi c \bar{c})/\sigma(e^+e^- \rightarrow J/\psi X) \sim 0.6$ from BaBar and Belle.
- Surprisingly large fraction of $\sigma(e^+e^- \rightarrow J/\psi X)$
- Validate theoretical investigations with double/triple quarkonia
- Study multi stangeonia at BESIII
- Search for the vector charmonium-like states
- Ratio $\frac{\sigma(e^+e^- \to \phi \phi \omega)}{\sigma(e^+e^- \to \phi \phi \phi)} \approx \frac{\sigma(e^+e^- \to \gamma^* gg \to 2(s\bar{s}) + (u\bar{u} + d\bar{d})/\sqrt{s})}{\sigma(e^+e^- \to \gamma^* gg \to 3(s\bar{s}))} \text{ range from 1 to 2.5}$
- Helpful to understand the production mechanism of e^+e^- to multi quarkonia

• Reconstruct two ϕ (K^+K^-) and investigate the recoil system

• Recoil mass
$$RM(\phi\phi) = \sqrt{(E_{cms} - E_{\phi\phi})^2 - p_{\phi\phi}^2}$$

2D sidebands to estimate backgrounds. Determine the normalized factor with 2D fit. Clear ω and ϕ signal. Black circles are background from 2D sidebands

Born cross sections

 $\sigma^{\mathrm{B}} = \frac{N^{\mathrm{obs}}}{\mathcal{L}_{\mathrm{int}} \cdot (1 + \delta^{r}) \cdot (1 + \delta^{v}) \cdot \epsilon \cdot \mathcal{B}^{2}}$

Efficiency of the reconstructed two ϕ depends on their angle θ , Weight the phase space MC on $\cos \theta$

No obvious signal of any vector charmonium-like state.

QWG2017

Born cross sections

Consist with the expectation.

Triple charmonia at Belle II/LHCb?

4.2

4.4

Observation of $e^+e^- \rightarrow \eta Y(2175)$ above 3.7 GeV

arXiv:1709.04323

- BABAR using ISR $\phi f_0(980)$ observed Y(2175)
- mass: $(2175 \pm 10 \pm 15) \text{ MeV}/c^2$, width: $(58 \pm 16 \pm 20) \text{ MeV}$
 - Confirmed by Belle, BESII and BESIII
- Similar with Y(4260) and Y(10860),
- Could be charged $Z_s \to \phi \pi$ in $Y(2175) \to \phi \pi^+ \pi^-$, close to $K\overline{K^*} \not \to K^*\overline{K^*}$ threshold (EPJC72,2008)
- High background
- BESIII has largest data at 3.7-4.6GeV, can be used to search for $e^+e^- \rightarrow \eta Y(2175)$

Event selections

- Four good charged tracks with net charge zero.
- At least two good photons to reconstruct η
- Identify K and π
- 4 constraint kinematic fit, and $\chi^2 < 60$

The $\pi^+\pi^-$ should be dominant by $f_0(980)$. Clear signal of $Y(2175) \rightarrow \phi f_0(980)$ Use the events of $M(\pi^+\pi^-) \in [0.868, 1.089]$ GeV

Simultaneous fit for all data above 3.7 GeV with same signal shape:

 $\left(\left| \frac{M\Gamma}{M^2 - m^2 - iM\Gamma} \right|^2 \cdot \frac{\Phi(m)}{\Phi(M)} \cdot \epsilon(m) \right) \otimes G(m; 0, \sigma),$ $\Phi \text{ is the phase space factor for two body P-wave system.}_{QWG2017}$

15

Results of simultaneous fit

Clear signal. Lower background level compared to other product processes.

```
Mass M
(2135 ± 8 ± 9) MeV,
Width \Gamma
(104 ± 24 ± 12) MeV
```

$Y(2175) \rightarrow \phi \pi^+ \pi^-$ Dalitz plot

Remove the requirement of $f_0(980)$ mass window. Search for the charged Z_s . No obvious signal. Background level is lower, with more data, maybe sensitive to search for Z_s

Born cross sections

\sqrt{s} (GeV	/) \mathcal{L}_{int} (pb ⁻¹)	N^{obs}	$(1+\delta) \cdot \epsilon$	$1+\delta^{\rm vac}$	$\sigma^{ m B}$ (pb)	Significance
3.686	666	19.0±9.0	0.0861	-	$1.72 \pm 0.82 \pm 1.00$	1.5σ
3.773	2917	47.4±9.1	0.0865	1.057	$0.93 \pm 0.18 \pm 0.15$	6.2σ
4.008	482	$3.8{\pm}2.6$	0.0976	1.044	$0.40 \pm 0.27 \pm 0.34$	1.0σ
4.226	1092	$12.3{\pm}4.1$	0.1052	1.056	$0.53 \pm 0.17 \pm 0.05$	3.8σ
4.258	826	11.6±3.7	0.1067	1.054	$0.65 \pm 0.21 \pm 0.08$	4.2σ
4.358	540	$6.4{\pm}2.7$	0.1113	1.051	$0.53 \pm 0.22 \pm 0.07$	2.9σ
4.416	1029	$10.8{\pm}4.1$	0.1135	1.053	$0.46 \pm 0.17 \pm 0.21$	3.2σ
4.600	567	$2.7{\pm}1.9$	0.1164	1.055	$0.20 \pm 0.14 \pm 0.02$	1.5σ

No obvious signal from charmonium(like), similar with other VP channel: $\sigma(s) \propto \frac{1}{s^n}$.

QWG2017

 $n = 2.65 \pm 0.86$,

Get the Born cross section by iteration

2017/11/7

Branching fraction of $\psi(3686) \rightarrow \eta Y(2175)$

- 50 Use data above 3.7 GeV to estimate √s = 3.686 GeV Events/(0.050 GeV/c²) the QED contribution 40 f₀ sideband $\mathcal{B}(\psi(3686) \rightarrow \eta Y(2175) \rightarrow \eta \phi f_0(980))$ 🕅 🗄 sideband 30 $= (0.81 \pm 0.97 \pm 0.47) \times 10^{-6}$ Combine with the branching fraction 20 of J/ψ and consider the P wave 10 phase space difference: $\mathcal{B}^*(\psi(3686) \rightarrow \eta Y(2175))/\mathcal{B}^*(J/\psi \rightarrow \eta Y(2175))$ 2.2 2.6 2.8 2.4 $= (0.23 \pm 0.29 \pm 0.13)\%$ $M(\phi f_{0}(980)) (GeV/c^{2})$
 - Huge suppression compared to 12% rule Background level is higher since the contribution of $\psi(3686)$

Parameters consist with previous results

No clear signal of $\eta' Y(2175)$, $R = \frac{N_{\eta'Y(2175)}^{\text{obs}}}{N_{\etaY(2175)}^{\text{obs}}} \cdot \frac{\mathcal{B}_{\eta}}{\mathcal{B}_{\eta'}} \cdot \frac{\sum_{i} \sigma_{\etaY(2175)}^{i} \cdot \mathcal{L}_{\text{int}}^{i} \cdot \epsilon_{\etaY(2175)}^{i} \cdot (1+\delta)^{i} \cdot (1+\delta^{\text{vac}})^{i}}{\sum_{j} \sigma_{\etaY(2175)}^{j} \cdot \mathcal{L}_{\text{int}}^{j} \cdot \epsilon_{\eta'Y(2175)}^{j} \cdot (1+\delta)^{j} \cdot (1+\delta^{\text{vac}})^{j}}.$ Assume the ratio between $\eta' Y(2175)$ and $\eta Y(2175)$ are the same, R < 0.43,90% C.L.

QWG2017

Summary

The cross section of $e^+e^- \rightarrow p\overline{p}\pi^0$, $\phi\phi\phi$, $\phi\phi\omega$ and $\eta Y(2175)$ are measured with higher energy data at BESIII. No obvious signal of any charmonium-like state. Any theoretical predictions on the light hadron decays of Y(4260)?

Thanks for your attention.