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The heavy quarkonia

The Charmonium and bottomonium systems were discovered in the 1970s
Experimentally clear spectrum of narrow states below the open-flavor threshold
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Eichten et al. Rev. Mod. Phys. 80 (2008)

v Heavy quarkonia are bound states of a heavy quark and its antiquark
(c€ charmonium and bb bottomonium).

They can be classified in terms of the quantum numbers of a non-relativistic bound state
— Similar to the positronium [(e™e™)-bound state] in QED.

Heavy quarkonia are a very well established multi-scale system which can serve as an ideal
laboratory for testing all regimes of QCD.
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The nonrelativistic expansion

= Heavy quarkonium is a non-relativistic system: QCD/QED
Ve ~ 0557 Vp ~ 0.32 (vlight = 10) m-+
perturbative matching | perturbative matching
= Heavy quarkonium is a multi-scale system: "
M>p~1/r~Mv>>E~ M2
mv-—+
= Scales are entangled in full QCD NRQCD/NRQED
.......................................... N
mgyv o | non—perturbative perturbative matching
§ é U - 200 Ma MV parching
mgyv?

pNRQCD/pNRQED

= Systematic expansions in the small heavy-quark velocity v may be implemented at the
Lagrangian level by constructing suitable effective field theories (EFTs):

@ Expanding QCD in p/M, E/M leads to NRQCD.
— Bodwin, Braaten, and Lepage. Phys. Rev. D51 (1995)

o Expanding NRQCD in E/p leads to pNRQCD.
— Brambilla et al. Nucl. Phys. B566 (2000)
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There is another scale in QCD: Aqcp
= The matching of QCD to NRQCD

M>>NAqco  —  Perturbative matching. Quarkmasses (in MS at y=2 GeV)
= The matching of NRQCD to pNRQCD A /I\
. . 10F E
p~1/r>Nqco —  Weak coupling regime. E op ]
Perturbative matching. F heaVy ) tl. 1
[ ottom 7
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Potential nonrelativistic QCD at weak coupling

In summary...
= Provides a QM description from FT: the matching coefficients are the interaction potentials
and the leading order dynamical equation is of the Schrédinger type.

= The degrees of freedom in pPNRQCD (at weak coupling) are color singlet and octet fields and
ultra-soft gluon fields.

== Account for non-potential terms as well. Singlet to Octet transitions via ultra-soft gluons
provide loop corrections to the leading potential picture.

= The Quantum Mechanical divergences are canceled by the NRQCD matching coefficients.

= Poincaré invariance is realized via exact relations between different matching coefficients.

Potential non-relativistic QCD is the state-of-the-art tool
for addressing Quarkonium bound state properties.

== Conventional meson spectrum: higher order perturbative corrections in v and as.
= |nclusive and semi-inclusive decays, E1 and M1 transitions, EM line-shapes.

== Doubly- and triply-heavy baryons.

= Precise extraction of Standard Model parameters: mc, mp, as, ...

== Exotic states such as gluelumps and hybrids.

= Properties of Quarkonium systems at finite temperature.
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Electromagnetic transitions

Y

R Aim: Compute the electric dipole (E1) transitions:
(ky, k)
Xbs(1P) — 4T T(1S) with J =0,1,2
hy(1P) = ymb(15)

Pn = (My,0) using the EFT called potential non-relativistic QCD.

Py = (\/k2 + M2, —K)
H'
= Electromagnetic transitions are often significant decay modes of heavy quarkonium states

that are below the open-flavor threshold.

= They can be classified in a series of electric and magnetic multipoles. The electric dipole
(E1) and the magnetic dipole (M1) are the most important ones.

= Large set of accurate experimental data taken by B-factories, 7-charm facilities and
proton-proton colliders ask for a systematic and model-independent analysis.
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Decay rate of electric dipole transitions
1= The LO decay width, which scales as ~ k3/(mv)2 is

0 4
r(El) =g Ce/m eQ [ (nl —n 0)]
== A probe of the internal structure of hadrons:
p oo . dk
II(V )(né —n'l) = /o drrV R,/ (1) |:W R,,g(r):|

= Up to order k,?/m2, the expressions we use for the decay rates under study are:

ky K2 10(n1 - n'0
[(n%P) = '35 1) =@ 14 RE=1 )~ fo Kol (1= n'0)
6m 60 /{9 (p1 — n0)

3

18] / (0) ’

+[J(J+1),2} (1+ e/m> kw+7(1+2e/m)2 (n1—>r(1)0)-i-2l1 (n1 — n’0)
2 2m 13( )(n1 — n'0)

2 ,(0)
M(n'Py — n'1So +17) = r®/ 4+ RS0 _ Ll — k—vils (nt = n'0)
E 6m 60 /{9 (n1 — n'0)

o R5=1(J) and R°=0 include the initial and final state corrections due to higher order
potentials and higher order Fock states.
@ The remaining corrections within the brackets are the result of taking into account
O(v?)-suppressed electromagnetic interaction terms in the Lagrangian
° The terms proportional to the anomalous magnetic moment, n , go beyond our accuracy
are thherefor not con5|dered in the numerlcal ana)lxﬁ .
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Coulomb-like potential in the LO Hamiltonian

1= The states are solutions of the Schrédinger equation:

nlm( ) - nlm( )
1= Only the Coulomb-like term of the static potential is exactly included in the LO Hamiltonian
(Cr=4/3):

=2 =2
o V2 POy = Y Cras

2m, 2m, r

1= Therefore, 1/} (?) and E,(,O) can be written in the hydrogen-like form:

ném

GO (7)) = Roe(r) Yem(Qr) = Nog pl e 2 L2551 (p1) Yem(Q)
E(O) __ mye CE—QE

n
2n?

Pn:2r/f737 a:]./erFas, Nng\/(

3)3 (n—e¢—1)
na 2n[(n + £)!] ’

These states are not eigenstates of the complete Hamiltonian due to higher order potentials and
the presence of ultra-soft gluons that lead to singlet-to-octet transitions.

U

One has to consider corrections to the wave function which can contribute to the decay
rate at the required order of precision!
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Corrections due to higher order potentials (1)

i To account for O(v?)-corrections to the decay width, we need to consider the complete

Hamiltonian:

V2

2m,

H=——— 4 Vi(r)+ 6H

= The static potential is:

V(r) = VE(r)

1+ i (%)n an(v, r)]

= The known O(al) radiative corrections to the LO static potential are:

ai(v,r) = a1 + 2B In (veEr)
2
a(v,r) = an + %/53 + (4210 + 2B1) In (Ve Er) + 4532 In? (ve )
2 2 572 3
as(v,r) = a3 + a8 + Tﬁoﬁl + 16335
1

+ (271'253 + 6a200 + 4a181 + 262 + ;C,‘Zﬂ'2> In(veEr)

+ (12a1,8§ + 10[3061) In% (veVEr) + 883 In3 (veVEr)

+ 0a3°(v, vus) -
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Corrections due to higher order potentials (Il)

= The term dH encodes the relativistic corrections to the static potential and to the
non-relativistic kinetic operator:

T v v v

H=——_ Y
4m3

1
m m?2 m?2

1= At order 1/m?, we can split the contributions into spin-independent (SI) and spin-dependent
(SD) terms:

1 - -
V(0 = v+ 5v@ (0, -9+ vD(n I?
V(N = VR LS+ VR () §2 + VEl(n) Sz

= |n the weak-coupling case, the above potentials read at leading (non-vanishing) order in
perturbation theory:

2
V() = —ch,ias V() = 7Crass®)(F),
@, Cras @), _ Cras
sz (r)__fa VLZ()_ 2r3 }
3Cra 47 Cra .
02T - T
@, _ Cras
Vs (N =75
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Total matrix elements and decay widths [xp1(1P) — 7T T(15)]

Individual contributions Combined effect

80
60
40
20

1.0 15 20 25 3.0 1.0 15 20 25 3.0

I [keV]
I" [keV]

v [GeV] v [GeV]

= Observations:

o LO, NLO and NNLO contributions depend strongly on the renormalization scale v: running
of as(v) and radiative terms (o logs) of the static potential.
o Subleading contributions are of the same order of magnitude than the leading order term.

@ The renormalization scale dependence of the decay width is slightly reduced as the NLO and
NNLO corrections are included.

@ Setting the terms proportional to ai(v, r) and ax(v, r) to zero, the decay width exhibits a
different v-dependence (dotted green curve in the right panel).
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Static potential exactly included in the LO Hamiltonian

Improving convergence: The perturbative expansion in pNRQCD can be rearranged in such a
way that the static potential is exactly included in the LO Hamiltonian. J

= The new expansion scheme was applied for:

o studying inclusive EM decays of heavy quarkonium ( Kiyo, Pineda, and Signer. Nucl. Phys.
B841 (2010)).

o computing magnetic dipole transitions between low-lying heavy quarkonia ( Pineda and
Segovia. Phys. Rev. D87 (2013)).

= The exact treatment of the soft logarithms of the static potential made the factorization scale
dependence much smaller.

= We proceed herein to apply the same formalism to the electric dipole transitions under study

62
HQ), = —5—+ vV (r),

me

where the static potential is again approximated by a polynomial of order N + 1 in powers of as

N Qo K
1+3°(52) ak(w)}
k=1
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Subtraction of renormalon effects
= One first makes the substitution
(m, Vs(r)) = (mx + dmx, Vs x(r) — 26mx),

where

N
smPwe) = v > 6ml) (%) A 0)
k=0

represents a residual mass that encodes the pole mass renormalon contribution, and X stands for
the specific renormalon subtraction scheme.

= We mainly use the RS’ scheme:

ity o
Smgs),(%f) =Nm (f%) [S(l, b)LO(:’ vr) + (f—i) S(2, b)]
where Ky Y 2. T(n+1+b—k)
dk(”vl’f):ﬂk/QlJrz |n7f, 5(”7b):§)qmy

and b, ¢p, c1 and c are coefficients that only depend on the s, and Ny, is a constant.
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Renormalization group improvement

The last improvement to the static potential that we consider herein is the absorption of the

large logarithms into the running coupling constant.

)

=

g

) VM 25ml0| =N o vkt (v) ifr>u
Vers (1, vnr) = 9 1) (V) R I , 1
’ Vs + 26mRS’|U:1/r => o V. Rs s 1/r) ifr<uv -,

This has to be done carefully in order not to destroy the renormalon cancellation achieved
order by order in as.

Large values of v¢ imply a large infrared cutoff. This makes the scheme become closer to a
MS-like scheme. Such schemes still achieve renormalon cancellation but jeopardize the power
counting.

- Low values of vr are preferred with the constraint that one should still obtain the renormalon

cancellation.

> By also taking a low value of v, = v¢ we find that the convergence is accelerated and the

scale dependence is significantly reduced.
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T [keV]

Effects due to improvements

LO 70 T T .
70 xb1(1P) = yT(1S), vr = 0 xb1(1P) = ¥T(1S), v, = 1.0 GeV
60 60
NLO
50 s
N2LO Q
X, 50
N3LO =
10} =
30},
20
1.0 15 2.0 2.5 3.0 1.0 1.5 2.0 2.5 3.0
v [GeV] v [GeV]
o One gets a strong dependence on the factorization scale when solving the Schrédinger
equation with only the Coulomb-like term of the static potential.
@ The v-scale dependence becomes mild as NLO, NNLO and NNNLO terms of the static

potential are included in the Schrédinger equation.

The convergence of the perturbative series has improved considerably with respect the purely
analytical case. This feature is clearly seen at large values of v.

The convergence is seen in the whole range of v once the correct logarithmically modulated
short distance behavior of the static potential is included properly.
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Improved results (1)

30} — ]

> 28t 1
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~ /
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@ Dashed blue curve: leading order non-relativistic decay rate.
@ Dot-dashed orange curve: taking into account the relativistic contributions stemming from

higher order electromagnetic operators.

o Solid black: including the relativistic corrections to the wave function of the initial and final

states.

= Observations:

@ The leading order decay width depends weakly on v, this feature is translated to the cases in
which relativistic corrections are included.
@ Both relativistic contributions to the leading order decay rate are much more under control

than in the purely analytical case.

° Higher order EM operators tend to diminish the LO decay rate whereas the opposite effect is

E1 transltlons |n

cavy quarkonia using pN

en corrections to tb{e wave functl ns are incorporated.
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Improved results (I1)

46 . : . . T T T T T
44 P 1 60} emmmmmmmmmmmmmmns ]
= 3
[ , ] q) -
g 42 ,,/ 2 gl 7 ]
~ Vs ~ /
4o / ] /
/ Y,
7 50¢ 1
38 sz(lP) — ’YT(ls) hy(1P) = ymp(15)
1.0 1.5 2.0 2. 5 3.0 1.0 15 2.0 2 5 3.0
v [GeV] v [GeV]
= Legend:

o Dashed blue curve: leading order non-relativistic decay rate.

o Dot-dashed orange curve: taking into account the relativistic contributions stemming from
higher order electromagnetic operators.

@ Solid black: including the relativistic corrections to the wave function of the initial and final
states.

= Observations:
@ Similar conclusions to the ones already mentioned in the former slide apply here.

@ The relativistic corrections stemming from higher order EM operators are clearly smaller,
whereas the effect due to corrected wave functions is 2-3 times bigger.

@ The correction to the decay rate due to the modification of the initial and final state wave
functions is much larger for the hb(lP) — ~yT(1S) transition.
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Improved results (111)
15 Final values for the decay widths:

M(xpo(1P) =T
F(xp1(1P) =T
F(xp2(1P) =T
F(hs(1P) — v

w Comparison with several other theoretical approaches:

15)) = 2872 kev,
15)) = 3772 kev,
15)) = 4571 kev,
15)) = 6371 kev.

—~ o~ o~ =

Mode LO NNLO CQM R Gl BT LFQM  SNRgy,
xpo(1P) = vT(1S) 28.47 2838 28.07 299 238 25.7 - -
xp1(1P) = vT(1S) 36.04 37.35 3566 36.6 205 20.8 - -
xp2(1P) = vT(1S) 41.00 4476 39.15 402 328 33.0 - -
ho(1P) = ymy(1S) 5522 63.15 437 526 357 - 375  55.8/36.3

= Predicted total decay widths:

Mode B=T;/l[{] r r
xb0(1P) = YT(1S) (1.76£0.35)% 2872 kev  1.6793 Mev
xp1(1P) = AT(1S)  (33.94£22)% 3713 kev 11073 keV
xb2(1P) = AT(1S)  (19.1+£1.2)% 4571 kev 234713 keV
hp(1P) = ~vnp(1S) (527%)% 6371 kev  12171% kev

[t] PDG, Patrignani et al. Chin. Phys. C40 (2016)
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Epilogue

We have computed the electric dipole transitions xp;(1P) — yT(1S) with J = 0,1,2 and
hp(1P) — ynp(1S) within the weak coupling version of a low-energy effective field theory called
potential non-relativistic QCD.

= Only the Coulomb term of the static potential is included in the LO Hamiltonian:
@ The decay width reveals a severe dependence on the factorization scale v: running of as(v) and
radiative terms (o< logs) of the static potential.

o Most of the corrections to the decay rate induced by 1/m and 1/m? potentials are relatively small and
behave well with respect the renormalization scale v.

@ The general convergence of the perturbative series for all the studied electric dipole transitions is not as
good as expected.

=
&

* The static potential is exactly included in the leading order Hamiltonian:
@ The LO decay rate depends weakly on the factorization scale and this is translated to the result in
which relativistic corrections are included.

o Relativistic corrections induced by higher order electromagnetic operators and wave functions are much
more under control.

@ Our results are in fair agreement with the ones reported by other theoretical approaches
[F(hp(1P) — vnp(1S)) is slightly higher].
o Total decay widths of the x,;(1P)-family and the h,(1P) meson are predicted.
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Corrections due to higher order Fock states

e Diagrams 1la and 1b correspond to the 7
renormalization of the initial and final wave T i Py Lo
functions.

agrB” er- B
o Diagrams 2, 3a and 3b account for the )

correction of the initial and final wave functions
due to the presence of octet states.

o Diagram 4 represents an electric dipole transition
mediated by the intermediate octet state.

o The first two diagrams contribute to relative
order /\écD/(mv)2 whereas the remaining ones
scales as /\%CD/(m“"v“).

@ We do not consider these contributions herein
because in the (strict) weak-coupling regime,

E ~ mv? > AQcp, one can argue that they
should be negligible.

Brambilla, Pietrulewicz, and Vairo. Phys. Rev. D85
(2012)




Nonrelativistic QCD

= Physics at the scale M: Quarkonium annihilation and production.

xc(as(M), )

P

QCD NRQCD

= The effective Lagrangian is organized as an expansion in 1/M and «as(M):

cn(as(M),
LNrRQCD = ) % X On(p, Mv, MV2,..)

n
o LnrQcep is made of all low-energy operators O, that may be built from the effective degrees
of freedom and are consistent with the symmetries of Lqcp.

o The Wilson coefficients ¢, encode the high energy physics. They are calculated by imposing
that Lnrqep and Lqcp describe the same physics at = M.



Potential nonrelativistic QCD at weak coupling

== Physics at the scale Mv: Quarkonium formation.

S
r M

+ : + o + & +
. \ T
o

1
E—p*/m=V(ru )
NRQCD pNRQCD
1= The effective Lagrangian is organized as an expansion in 1/M, as(M) and 1/p ~ r:
" cn(as(M),
LpNRQCD = / ey % X Vipse(ry 1, ) s O/, MV2, )
n k

where a multipole expansion of the gluon field has been performed.
= The Wilson coefficients of pPNRQCD depends on the distance r (and scales p, u'):

@ V) 0 are the potentials in the Schrédinger equation.

@ V; k0 are the couplings with the low-energy degrees of freedom, which provide corrections
to the potential picture.



Standard quantum mechanics perturbation theory

w First order correction to the wave function (|n¢)(® = |n¢) and E,(,O) = Ep):

/
|n€>(1) _ Z <n Z‘Vln@ |n/£>
E,— E,
n’#n

w Second order correction to the wave function:

@ _ (ke€)V |kof) (kot|V|n€)  (k1€]V|n€)(nf|V|nt)
n)® =3 Z(E—E)(E—E)_ (En — Egy )2 lfaf)
ka#n Lkazn -0 7 Shk/AEN T ha n— Eiq
(kat|V|nt)|?
Z | 2€| ‘ne |2 |n€>
2 — Ey,)

= |dentification with the Coulomb Green function:

ey(n’¢ e)(n'¢ 1 P,
Z |’7 (“ | Z [n"£) | =(~1) x lim _ 0
E, —E/ E-E,\E—-H E-E,

= Definition of the Coulomb Green function:

oo 2041
G(A, B E)=Y o PP R2)Ge(r, 2 E)
=

- “\ R R,
(i E) = 3 mpa? (L) Rue(pa1)Rue(pr2)
v=~0+1 A v—2A



Higher order electromagnetic operators [xp1(1P) — 7T (1S)]

0 S=1 ky
. [1 R
) k- 1 (142 GM) /7(1)(/11 — n'0) + 2/1<0>(nl — n'0)
L )— + —= + 257 =
2m - m? v Iéo)(nl — n’0)
Combined effect Individual contributions
70 2l T -
of 4T
< 50 o
S v
2 w0 I B
~ 30 Z -2
20
10 -4
1.0 1.5 2.0 25 3.0 1.0 15 2.0 25 30
V [GeV] V [Gev]

= Observations:

@ The leading order decay width depends strongly on the typical scale v of the heavy quarkonia
involved in the reactions.

@ The relativistic effects from higher order electromagnetic terms are small, as expected. This
can be understood analyzing each contribution separately.



Wave function corrections [Xbl(lP) — 77‘(15)]
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