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The heavy quarkonia
The Charmonium and bottomonium systems were discovered in the 1970s

Experimentally clear spectrum of narrow states below the open-flavor threshold

Eichten et al. Rev. Mod. Phys. 80 (2008)

+ Heavy quarkonia are bound states of a heavy quark and its antiquark
(cc̄ charmonium and bb̄ bottomonium).

+ They can be classified in terms of the quantum numbers of a non-relativistic bound state
→ Similar to the positronium [(e+e−)-bound state] in QED.

+ Heavy quarkonia are a very well established multi-scale system which can serve as an ideal
laboratory for testing all regimes of QCD.
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The nonrelativistic expansion

+ Heavy quarkonium is a non-relativistic system:

vc ∼ 0.55, vb ∼ 0.32 (vlight = 1.0)

+ Heavy quarkonium is a multi-scale system:

M � p ∼ 1/r ∼ Mv � E ∼ Mv2

+ Scales are entangled in full QCD

+ Systematic expansions in the small heavy-quark velocity v may be implemented at the
Lagrangian level by constructing suitable effective field theories (EFTs):

Expanding QCD in p/M, E/M leads to NRQCD.
→ Bodwin, Braaten, and Lepage. Phys. Rev. D51 (1995)

Expanding NRQCD in E/p leads to pNRQCD.
→ Brambilla et al. Nucl. Phys. B566 (2000)
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There is another scale in QCD: ΛQCD
+ The matching of QCD to NRQCD

M � ΛQCD → Perturbative matching.

+ The matching of NRQCD to pNRQCD

p ∼ 1/r � ΛQCD → Weak coupling regime.
Perturbative matching.

p ∼ 1/r & ΛQCD → Strong coupling regime.
Nonperturbative matching.
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Potential nonrelativistic QCD at weak coupling

In summary...

+ Provides a QM description from FT: the matching coefficients are the interaction potentials
and the leading order dynamical equation is of the Schrödinger type.

+ The degrees of freedom in pNRQCD (at weak coupling) are color singlet and octet fields and
ultra-soft gluon fields.

+ Account for non-potential terms as well. Singlet to Octet transitions via ultra-soft gluons
provide loop corrections to the leading potential picture.

+ The Quantum Mechanical divergences are canceled by the NRQCD matching coefficients.

+ Poincaré invariance is realized via exact relations between different matching coefficients.

Potential non-relativistic QCD is the state-of-the-art tool
for addressing Quarkonium bound state properties.

+ Conventional meson spectrum: higher order perturbative corrections in v and αs .

+ Inclusive and semi-inclusive decays, E1 and M1 transitions, EM line-shapes.

+ Doubly- and triply-heavy baryons.

+ Precise extraction of Standard Model parameters: mc , mb, αs , ...

+ Exotic states such as gluelumps and hybrids.

+ Properties of Quarkonium systems at finite temperature.
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Electromagnetic transitions

H

γ

H

PH = (MH ,~0 )

PH′ =
(√

k2
γ + M2

H′ ,−~k
)

(kγ , ~k )
Aim: Compute the electric dipole (E1) transitions:

χbJ(1P)→ γΥ(1S) with J = 0, 1, 2

hb(1P)→ γηb(1S)

using the EFT called potential non-relativistic QCD.

+ Electromagnetic transitions are often significant decay modes of heavy quarkonium states
that are below the open-flavor threshold.

+ They can be classified in a series of electric and magnetic multipoles. The electric dipole
(E1) and the magnetic dipole (M1) are the most important ones.

+ Large set of accurate experimental data taken by B-factories, τ -charm facilities and
proton-proton colliders ask for a systematic and model-independent analysis.
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Decay rate of electric dipole transitions
+ The LO decay width, which scales as ∼ k3

γ/(mv)2, is

Γ
(0)
E1 =

4
9
αe/m e2

Q k3
γ

[
I

(0)
3 (n1→ n′0)

]2
+ A probe of the internal structure of hadrons:

I
(k)
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∫ ∞
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]
+ Up to order k3

γ/m
2, the expressions we use for the decay rates under study are:
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RS=1(J) and RS=0 include the initial and final state corrections due to higher order
potentials and higher order Fock states.
The remaining corrections within the brackets are the result of taking into account
O(v2)-suppressed electromagnetic interaction terms in the Lagrangian.
The terms proportional to the anomalous magnetic moment, κem

Q , go beyond our accuracy
and are therefore not considered in the numerical analysis.
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Coulomb-like potential in the LO Hamiltonian
+ The states are solutions of the Schrödinger equation:

H(0)ψ
(0)
n`m(~r ) = E

(0)
n ψ

(0)
n`m(~r )

+ Only the Coulomb-like term of the static potential is exactly included in the LO Hamiltonian
(CF = 4/3):

H(0) = −
~∇2

2mr
+ V

(0)
s (r) = −

~∇2

2mr
−

CFαs

r

+ Therefore, ψ(0)
n`m(~r ) and E

(0)
n can be written in the hydrogen-like form:

ψ
(0)
n`m(~r ) = Rn`(r)Y`m(Ωr ) = Nn` ρ

`
n e
− ρn2 L2`+1

n−`−1(ρn)Y`m(Ωr )

E
(0)
n = −

mrC2
Fα

2
s

2n2

ρn = 2r/na , a = 1/mrCFαs , Nn` =

√(
2
na

)3 (n − `− 1)!

2n[(n + `)!]
.

These states are not eigenstates of the complete Hamiltonian due to higher order potentials and
the presence of ultra-soft gluons that lead to singlet-to-octet transitions.

⇓

One has to consider corrections to the wave function which can contribute to the decay
rate at the required order of precision!
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Corrections due to higher order potentials (I)

+ To account for O(v2)-corrections to the decay width, we need to consider the complete
Hamiltonian:

H = −
~∇2

2mr
+ Vs(r) + δH

+ The static potential is:

Vs(r) = V
(0)
s (r)

[
1 +

∞∑
n=1

(αs

4π

)n
an(ν, r)

]

+ The known O(αn
s ) radiative corrections to the LO static potential are:

a1(ν, r) = a1 + 2β0 ln (νeγE r)

a2(ν, r) = a2 +
π2

3
β2

0 + (4a1β0 + 2β1) ln (νeγE r) + 4β2
0 ln

2 (νeγE r)

a3(ν, r) = a3 + a1β
2
0π

2 +
5π2

6
β0β1 + 16ζ3β3

0

+

(
2π2β3

0 + 6a2β0 + 4a1β1 + 2β2 +
16
3
C3
Aπ

2
)

ln (νeγE r)

+

(
12a1β

2
0 + 10β0β1

)
ln2 (νeγE r) + 8β3

0 ln
3 (νeγE r)

+ δaus
3 (ν, νus) .
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Corrections due to higher order potentials (II)
+ The term δH encodes the relativistic corrections to the static potential and to the
non-relativistic kinetic operator:

δH = −
~∇4

4m3 +
V (1)

m
+

V
(2)
SI
m2 +

V
(2)
SD
m2

+ At order 1/m2, we can split the contributions into spin-independent (SI) and spin-dependent
(SD) terms:

V
(2)
SI (r) = V

(2)
r (r) +

1
2
{V (2)

p2 (r),−~∇2}+ V
(2)

L2 (r) ~L 2

V
(2)
SD (r) = V

(2)
LS (r) ~L · ~S + V

(2)

S2 (r) ~S 2 + V
(2)
S12

(r) S12

+ In the weak-coupling case, the above potentials read at leading (non-vanishing) order in
perturbation theory:

V (1)(r) = −
CFCAα

2
s

2r2
, V

(2)
r (r) = πCFαsδ

(3)(~r ) ,

V
(2)

p2 (r) = −
CFαs

r
, V

(2)

L2 (r) =
CFαs

2r3
,

V
(2)
LS (r) =

3CFαs

2r3
, V

(2)

S2 (r) =
4πCFαs

3
δ(3)(~r ) ,

V
(2)
S12

(r) =
CFαs

4r3
.
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Total matrix elements and decay widths [χb1(1P) → γΥ(1S)]
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+ Observations:

LO, NLO and NNLO contributions depend strongly on the renormalization scale ν: running
of αs(ν) and radiative terms (∝ logs) of the static potential.

Subleading contributions are of the same order of magnitude than the leading order term.

The renormalization scale dependence of the decay width is slightly reduced as the NLO and
NNLO corrections are included.

Setting the terms proportional to a1(ν, r) and a2(ν, r) to zero, the decay width exhibits a
different ν-dependence (dotted green curve in the right panel).
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Static potential exactly included in the LO Hamiltonian

Improving convergence: The perturbative expansion in pNRQCD can be rearranged in such a
way that the static potential is exactly included in the LO Hamiltonian.

+ The new expansion scheme was applied for:

studying inclusive EM decays of heavy quarkonium ( Kiyo, Pineda, and Signer. Nucl. Phys.
B841 (2010)).

computing magnetic dipole transitions between low-lying heavy quarkonia ( Pineda and
Segovia. Phys. Rev. D87 (2013)).

+ The exact treatment of the soft logarithms of the static potential made the factorization scale
dependence much smaller.

+ We proceed herein to apply the same formalism to the electric dipole transitions under study

H
(0)
new = −

~∇2

2mr
+ V

(N)
s (r) ,

where the static potential is again approximated by a polynomial of order N + 1 in powers of αs

V
(N)
s (r) = −

CFαs(ν)

r

[
1 +

N∑
k=1

(αs

4π

)k
ak (ν, r)

]
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Subtraction of renormalon effects
+ One first makes the substitution

(m,Vs(r)) = (mX + δmX ,Vs,X (r)− 2δmX ) ,

where

δm
(N)
X (νf ) = νf

N∑
k=0

δm
(k)
X

(νf
ν

)
αk+1
s (ν)

represents a residual mass that encodes the pole mass renormalon contribution, and X stands for
the specific renormalon subtraction scheme.

+ We mainly use the RS’ scheme:

δm
(0)

RS’
= 0

δm
(1)

RS’

( νf
ν

)
= Nm

β0
2π

S(1, b)

δm
(2)

RS’

( νf
ν

)
= Nm

(
β0
2π

) [
S(1, b)

2d0(ν, νf )

π
+

(
β0
2π

)
S(2, b)

]

δm
(3)

RS’

( νf
ν

)
= Nm

(
β0
2π

)S(1, b)
3d20 (ν, νf ) + 2d1(ν, νf )

π2
+

(
β0
2π

)
S(2, b)

3d0(ν, νf )

π
+

(
β0
2π

)2
S(3, b)



where

dk (ν, νf ) = βk/21+2k ln
ν

νf
, S(n, b) =

2∑
k=0

ck
Γ(n + 1 + b − k)

Γ(1 + b − k)
,

and b, c0, c1 and c2 are coefficients that only depend on the β’s, and Nm is a constant.
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Renormalization group improvement

The last improvement to the static potential that we consider herein is the absorption of the
large logarithms into the running coupling constant.

V
(N)
s,RS’(ν, νf , νr , r) =

{
V

(N)
s + 2δm(N)

RS’

∣∣
ν=ν
≡
∑N

k=0 V
(k)
s,RS’α

k+1
s (ν) if r > ν−1

r ,

V
(N)
s + 2δm(N)

RS’

∣∣
ν=1/r ≡

∑N
k=0 V

(k)
s,RS’α

k+1
s (1/r) if r < ν−1

r ,

+ This has to be done carefully in order not to destroy the renormalon cancellation achieved
order by order in αs .

+ Large values of νf imply a large infrared cutoff. This makes the scheme become closer to a
MS-like scheme. Such schemes still achieve renormalon cancellation but jeopardize the power
counting.

+ Low values of νf are preferred with the constraint that one should still obtain the renormalon
cancellation.

+ By also taking a low value of νr = νf we find that the convergence is accelerated and the
scale dependence is significantly reduced.
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Effects due to improvements
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One gets a strong dependence on the factorization scale when solving the Schrödinger
equation with only the Coulomb-like term of the static potential.

The ν-scale dependence becomes mild as NLO, NNLO and NNNLO terms of the static
potential are included in the Schrödinger equation.

The convergence of the perturbative series has improved considerably with respect the purely
analytical case. This feature is clearly seen at large values of ν.

The convergence is seen in the whole range of ν once the correct logarithmically modulated
short distance behavior of the static potential is included properly.
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Improved results (I)
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+ Legend:
Dashed blue curve: leading order non-relativistic decay rate.
Dot-dashed orange curve: taking into account the relativistic contributions stemming from
higher order electromagnetic operators.
Solid black: including the relativistic corrections to the wave function of the initial and final
states.

+ Observations:
The leading order decay width depends weakly on ν, this feature is translated to the cases in
which relativistic corrections are included.
Both relativistic contributions to the leading order decay rate are much more under control
than in the purely analytical case.
Higher order EM operators tend to diminish the LO decay rate whereas the opposite effect is
found when corrections to the wave functions are incorporated.
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Improved results (II)
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+ Legend:
Dashed blue curve: leading order non-relativistic decay rate.
Dot-dashed orange curve: taking into account the relativistic contributions stemming from
higher order electromagnetic operators.
Solid black: including the relativistic corrections to the wave function of the initial and final
states.

+ Observations:
Similar conclusions to the ones already mentioned in the former slide apply here.
The relativistic corrections stemming from higher order EM operators are clearly smaller,
whereas the effect due to corrected wave functions is 2-3 times bigger.
The correction to the decay rate due to the modification of the initial and final state wave
functions is much larger for the hb(1P)→ γΥ(1S) transition.
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Improved results (III)
+ Final values for the decay widths:

Γ(χb0(1P)→ γΥ(1S)) = 28+2
−1 keV ,

Γ(χb1(1P)→ γΥ(1S)) = 37+2
−1 keV ,

Γ(χb2(1P)→ γΥ(1S)) = 45+1
−1 keV ,

Γ(hb(1P)→ γηb(1S)) = 63+1
−1 keV .

+ Comparison with several other theoretical approaches:

Mode LO NNLO CQM R GI BT LFQM SNR0/1

χb0(1P)→ γΥ(1S) 28.47 28.38 28.07 29.9 23.8 25.7 - -
χb1(1P)→ γΥ(1S) 36.04 37.35 35.66 36.6 29.5 29.8 - -
χb2(1P)→ γΥ(1S) 41.00 44.76 39.15 40.2 32.8 33.0 - -
hb(1P)→ γηb(1S) 55.22 63.15 43.7 52.6 35.7 - 37.5 55.8/36.3

+ Predicted total decay widths:

Mode B = Γi/Γ [†] Γi Γ

χb0(1P)→ γΥ(1S) (1.76± 0.35)% 28+2
−1 keV 1.6+0.3

−0.3 MeV
χb1(1P)→ γΥ(1S) (33.9± 2.2)% 37+2

−1 keV 110+9
−8 keV

χb2(1P)→ γΥ(1S) (19.1± 1.2)% 45+1
−1 keV 234+15

−16 keV
hb(1P)→ γηb(1S) (52+6

−5)% 63+1
−1 keV 121+14

−12 keV

[†] PDG, Patrignani et al. Chin. Phys. C40 (2016)
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Epilogue

We have computed the electric dipole transitions χbJ(1P)→ γΥ(1S) with J = 0, 1, 2 and
hb(1P)→ γηb(1S) within the weak coupling version of a low-energy effective field theory called

potential non-relativistic QCD.

+ Only the Coulomb term of the static potential is included in the LO Hamiltonian:

The decay width reveals a severe dependence on the factorization scale ν: running of αs(ν) and
radiative terms (∝ logs) of the static potential.

Most of the corrections to the decay rate induced by 1/m and 1/m2 potentials are relatively small and
behave well with respect the renormalization scale ν.

The general convergence of the perturbative series for all the studied electric dipole transitions is not as
good as expected.

+ The static potential is exactly included in the leading order Hamiltonian:

The LO decay rate depends weakly on the factorization scale and this is translated to the result in
which relativistic corrections are included.

Relativistic corrections induced by higher order electromagnetic operators and wave functions are much
more under control.

Our results are in fair agreement with the ones reported by other theoretical approaches
[Γ(hb(1P)→ γηb(1S)) is slightly higher].

Total decay widths of the χbJ(1P)-family and the hb(1P) meson are predicted.
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BACKUP SLIDES



Corrections due to higher order Fock states

Diagrams 1a and 1b correspond to the
renormalization of the initial and final wave
functions.

Diagrams 2, 3a and 3b account for the
correction of the initial and final wave functions
due to the presence of octet states.

Diagram 4 represents an electric dipole transition
mediated by the intermediate octet state.

The first two diagrams contribute to relative
order Λ2

QCD/(mv)2 whereas the remaining ones
scales as Λ3

QCD/(m3v4).

We do not consider these contributions herein
because in the (strict) weak-coupling regime,
E ∼ mv2 � ΛQCD, one can argue that they
should be negligible.

Brambilla, Pietrulewicz, and Vairo. Phys. Rev. D85
(2012)

n3PJ n′3S1
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2 n3PJ n′3S1

δZn′3S1
2
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1a 1b

n3PJ
gr · E gr ·Em3PJ n′3S1

2

eeQr ·Eem

n3PJ m3S1 n′3S1
gr ·Egr ·E gr · Egr · E

n′3S1n3PJ m3DJ
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eeQr · Eem eeQr · Eem
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4



Nonrelativistic QCD

+ Physics at the scale M: Quarkonium annihilation and production.

+ The effective Lagrangian is organized as an expansion in 1/M and αs(M):

LNRQCD =
∑
n

cn(αs(M), µ)

Mn
×On(µ,Mv ,Mv2, . . .)

LNRQCD is made of all low-energy operators On that may be built from the effective degrees
of freedom and are consistent with the symmetries of LQCD.

The Wilson coefficients cn encode the high energy physics. They are calculated by imposing
that LNRQCD and LQCD describe the same physics at µ = M.



Potential nonrelativistic QCD at weak coupling
+ Physics at the scale Mv : Quarkonium formation.

+ The effective Lagrangian is organized as an expansion in 1/M, αs(M) and 1/p ∼ r :

LpNRQCD =

∫
d3r

∑
n

∑
k

cn(αs(M), µ)

Mn
× Vn,k (r , µ′, µ)rk ×Ok (µ′,Mv2, . . .)

where a multipole expansion of the gluon field has been performed.
+ The Wilson coefficients of pNRQCD depends on the distance r (and scales µ, µ′):

Vn,0 are the potentials in the Schrödinger equation.

Vn,k 6=0 are the couplings with the low-energy degrees of freedom, which provide corrections
to the potential picture.



Standard quantum mechanics perturbation theory
+ First order correction to the wave function (|n`〉(0) ≡ |n`〉 and E

(0)
n ≡ En):

|n`〉(1) =
∑
n′ 6=n

〈n′`|V |n`〉
En − En′

|n′`〉

+ Second order correction to the wave function:

|n`〉(2) =
∑
k1 6=n

[ ∑
k2 6=n

〈k1`|V |k2`〉〈k2`|V |n`〉
(En − Ek1 )(En − Ek2 )

−
〈k1`|V |n`〉〈n`|V |n`〉

(En − Ek1 )2

]
|k1`〉

−
1
2

∑
k2 6=n

|〈k2`|V |n`〉|2

(En − Ek2 )2
|n`〉

+ Identification with the Coulomb Green function:∑
n′

|n′`〉〈n′`|
En − En′

−
∑
n′=n

|n′`〉〈n′`|
En − En′

= (−1)× lim
E→En

(
1

E − H
−

Pn`

E − En

)
+ Definition of the Coulomb Green function:

G(~r1, ~r2;E) =
∞∑
`=0

2`+ 1
4π

P`(r̂1 · r̂2)G`(r1, r2;E)

G`(r1, r2;E) =
∞∑

ν=`+1

mra
2
(
ν4

λ

)
Rν`(ρλ,1)Rν`(ρλ,2)

ν − λ



Higher order electromagnetic operators [χb1(1P) → γΥ(1S)]

Γn3PJ→n′3S1 = Γ
(0)
E1

[
1 + RS=1(J)−

kγ

6m
−
k2
γ

60
I

(0)
5 (n1→ n′0)

I
(0)
3 (n1→ n′0)

+

(
J(J + 1)

2
− 2
)(
− (1 +�

�Z
Zκ

e/m
Q )

kγ

2m
+

1
m2 (1 +��

�HHH2κe/m
Q )

I
(1)
2 (n1→ n′0) + 2I (0)

1 (n1→ n′0)

I
(0)
3 (n1→ n′0)

) ]
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Combined effect Individual contributions

+ Observations:

The leading order decay width depends strongly on the typical scale ν of the heavy quarkonia
involved in the reactions.
The relativistic effects from higher order electromagnetic terms are small, as expected. This
can be understood analyzing each contribution separately.



Wave function corrections [χb1(1P) → γΥ(1S)]
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