Hough Transform Based Track Finding for BESIII

Zhang Yao June 5 2017

BESIII Drift Chamber (MDC)

- Design of MDC
 - Axial and stereo wires in grouped to super layers
 - Continuous axial/stereo layers
 - Big "gap" between axial & stereo layers
 - Max solid angle coverage is 0.93%
- MDC track finding algorithms
 - High pt tracks: Segment based finders
 - Curled tracks: Road hit searching method
- Requirement for a new tracking algorithm
 - Tracking efficiency can be improved for low Pt
 - Inner drift chamber will be replaced with a Cylindrical GEM detector

Why need a new tracking algorithm(1) ----Improve curling track efficiency

- 1. BESIII tracking Segment based finders :PAT & TSF
 - Find segment in super-layers by template matching or hit searching in window area
 - group segment to track

Track segment design in super layers Angle coverage is limited by segment design

Sensitive to detector design, track Pt, hit inefficient and noise

高能物理计算和软件会议 成都

Why need a new tracking algorithm(1) ----Improve curling track efficiency

- 2. Road method for curled track: CurlFinder
 - Select continuous hits in same axial layer
 - Pick up hits on road by hit neighbors
 - Effect by noise or background on the road

Fig. 2. The definition of neighbor: x represents one fired wire and 0–5 represent the sequentially numbered neighbor wires.

Tracking efficiency of π^- with P_T

Low p_T tracking can be improved

Why need a new tracking algorithm(2) ----Inner chamber upgrade

• Inner drift chamber will be replaced with a Cylindrical GEM detector

- Current tracking algorithms are limited by the geometrical acceptance
 - w/o inner chamber, **not enough stereo hits** for tracking when $|\cos\theta|>0.9$

The combine tracking of CGEM and ODC is needed

Introduction to Hough transform

• Global method

- All hits are treated equally

Mathematical

- Transform of real space hits into a mathematical space in which the track candidates can be found more conveniently and insensitive to detecor design
- Voting schemes
 - Let each feature vote for all the models that are compatible with it

Advantages

- More hits can be included at first step
 - Find track using all axial/stereo layers or with axial and stereo layer simultaneously
- Noise resistant
 - Hopefully the noise features will not vote consistently for any single model

Hit inefficient resistant

- Missing data doesn't matter as long as there are enough features remaining to agree on a good model
- Quick

Introduction to Hough transform

Hough transform : a mathematical transformation •Transform a point in real space to a line or a curve in parameter space •Points rest on a line in real space $\leftarrow \rightarrow$ lines or curves focus in Hough space

Overview of Hough tracking Development

- Manpower
 - Zhang Jin, Zhang Yao, Liu Huaimin (IHEP)
 - Zhang Xueyao (Shandong University)
 - Huang Zhen is work on CGEM-ODC tracking
- History and status
 - Coding all by ourselves, start from Oct. 2014
 - Now as a supplementary to PAT&TSF
 - Have been released for physical use @ BOSS 702.p02
 - CGEM-ODC tracking using Hough is under development

Implementation of Hough method

Timeline

2D finding

From mapping wire position to use hit drift distance

3D finding

- Calculate z and flight length alone track (S) by circle track and drift distance
- In S/Z plane calculate every line of points in same super layers
- Each two points add (0,0) to fit a straight line
- Chi2 cut && z0cut && tanl cut ->candidate line
- Fill candidate line in (tanl,z0) Hough space

Resolution of tan λ and z0 by s/z Hough transform is good

高能物理计算和软件会议 成都

Multi turn tracks

By S/Z Hough transform as first step , noise & hits from other turn may be reduced

CGEM+ODC tracking

A preliminary CGEM+ODC tracking have been realized
– CGEM cluster have been used for 2D track finding

HOUGH tracking release

- Validation before release
 - Increments of computing time and memory are acceptable
 - No effect on original tracking
 - Improvement is consistent with previous study
- HOUGH method have been released in BOSS 7.0.2.p02
- But not used in official release
 - Won't influence the official tracking by default
- To use this package , modify the reconstruction job option file: replace #include "\$MDCXRECOROOT/share/jobOptions_MdcPatTsfRec.txt" with

#include "\$MDCHOUGHFINDERROOT/share/jobOptions_MdcPatTsfHoughRec.txt

Tracking efficiency check with MC $\Psi(2s) \rightarrow \pi^+\pi^-J/\Psi$, $J/\Psi \rightarrow J^+I^-$

Signal MC with background mixing, 500k events

Tracking efficiency increased ~4.5% for 50MeV<pt<100MeV , relative increased ~6.5%

Clone Track Rate $\Psi(2s) \rightarrow \pi^+\pi^-J/\Psi$, $J/\Psi \rightarrow |+|^-$

find 5 tracks passed tracking selection : a ghost track in this event

Most ghost tracks are from multi turn tracks

	N=3,4,5	N=4	N=5	N5/N(3,4,5)		
PATTSF	207338	189847	240	1.16%		
PATTSF+HOUGH	209211	193313	336	1.60%		
clone track rate is acceptable						

Tracking efficiency vs cos θ $\Psi(2s) \rightarrow \pi^+\pi^-J/\Psi$, $J/\Psi \rightarrow |+|^-$

- Reason of low efficiency
 - small dip angle($|\cos \theta| < 0.2$): bad vertex , hit overlap
 - large dip angle ($|\cos \theta| > 0.83$): hit overlap, noise, insufficient hits

Examples of salvaged tracks with HOUGH

Salvage high p_T track

Salvage low p_T track

Tracking performance check with $J/\psi \to p \overline{p} \pi^+ \pi^-$

Tracking efficiency increased for barrel pion at 50MeV<pt<100MeV Detailed study is on going

Preliminary performance check by

Tracking efficiency \uparrow 2.6% relatively \uparrow 5% with HOUGH

Preliminary performance check by

Thanks to Luyu's help

Ds⁻ -> K⁻Ks π ⁰, Ks -> π ⁺ π ⁻

number of taged Ds **↑** 1.87% after HOUGH in preliminary result

高能物理计算和软件会议 成都

Ds Signal Yields By H.L. Ma and S.F. Zhang

Check the Ds yields using 4180 data at run 45427 ~ 45855

- Version 702p01 : w/o HOUGH ٠
- Version 702p02 + HOUGH

Tag Mode	$M_{D_s^+}$ window (GeV/c ²)	yields(702p01)	$N_{\rm bkg}(702{\rm p}01)$	yields(702p02)	$N_{\rm bkg}(702{\rm p}02)$
$K^+K^-\pi^+$	[1.950, 1.986]	19704 ± 241	25336 ± 189	19746 ± 240	25132 ± 188
$K^+K^-\pi^+\pi^0$	[1.947, 1.982]	5897 ± 438	32187 ± 290	5828 ± 267	32419 ± 226
$\pi^+\pi^+\pi^-$	[1.952, 1.984]	5147 ± 353	44397 ± 271	5120 ± 354	45569 ± 274
$K_S^0 K^+$	[1.948, 1.991]	4706 ± 116	2700 ± 166	4701 ± 109	2638 ± 138
$K_S^0 K^+ \pi^0$	[1.946, 1.987]	1670 ± 348	7836 ± 217	1725 ± 219	7780 ± 151
$K^+\pi^+\pi^-$	[1.953, 1.983]	2384 ± 337	36090 ± 246	2415 ± 339	36473 ± 250
$K^0_S K^0_S \pi^+$	[1.951, 1.986]	769 ± 62	1577 ± 49	815 ± 64	1635 ± 50
$K^0_S K^- \pi^+ \pi^+$	[1.953, 1.983]	1911 ± 92	3875 ± 74	1970 ± 95	3978 ± 75
$K^0_S K^+ \pi^+ \pi^-$	[1.958, 1.980]	1002 ± 96	5344 ± 83	1055 ± 104	5486 ± 85
$\eta_{\gamma\gamma}\pi^+$	[1.930, 2.000]	2768 ± 173	8203 ± 149	2810 ± 175	8285 ± 151
$\eta_{\pi^+\pi^-\pi^0}\pi^+$	[1.941, 1.990]	795 ± 62	1633 ± 52	820 ± 87	1689 ± 64
$\eta'_{\pi^+\pi^-\eta_{\gamma\gamma}}\pi^+$	[1.940, 1.996]	1380 ± 59	700 ± 39	1416 ± 60	766 ± 41
Total		48133 ± 825	169878 ± 608	48421 ± 703	171850 ± 557

 $Ds -> K^{+}K^{-}\pi^{+}$

Ds mass window : [1.950,1.986]

Version 702p01

Tag Mode	$M_{D_s^+}$ window (GeV/c ²)	yields(702p01)	$N_{\rm bkg}(702{\rm p}01)$	yields(702p02)	$N_{\rm bkg}(702{\rm p}02)$
$K^+K^-\pi^+$	[1.950, 1.986]	19704 ± 241	25336 ± 189	19746 ± 240	25132 ± 188

Version 702p02 + HOUGH 3500 3500 Nsig = 19704 +/- 241 Nsig = 19746 +/- 240 opencharm Nbkg = 97999 +/- 372 opencharm Nbkg = 97189 +/- 370 Signal Region: [1.950, 1.986] GeV/c2 Signal Region: [1.950, 1.986] GeV/c2 3000 qqbar 3000 qqbar $\chi^2 = 0.80$ $\chi^2 = 0.81$ other bkg other bkg 0.0014 0.0014 2500 2500 2000 2000 Events / Events / 1500 1500 1000 1000 500 500 1.9 1.92 1.94 1.96 2 2.02 1.9 1.92 1.94 1.96 1.98 2 2.02 1.98 M_{D_s} (GeV/c²) M_{D_c} (GeV/c²)

Improvement can be seen after using HOUGH tracking

Summary and Outlook

- Hough tracking is released for physical test in BOSS 7.0.2.p02
 - Not yet been included in the default reconstruction flow
- Improvement can be seen at low p_T from physical channels
 - Efficiency have 3~4% improvement in 50-120MeV
- More validations will be done using low p_T channels
- Outlook
 - Used for official data reconstruction at next released
 - Can be used on outer drift chamber + CGEM tracking