A precise digitization of Si detectors

Wu Zhigang

March 21, 2017

Wu Zhigang A precise digitization of Si detectors

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Introduction

overview of the Si detector and digitization key issues in digitization

the 1st version code condition implement

result resolution simulation

overview of the Si detector and digitization key issues in digitization

principle of Si detector

- pixel detector
 - CMOS
 - SOI
 - hybrid
 - DEPFET
- micro strip detector

◆□ → ◆□ → ◆三 → ◆三 → ●目目 つへで

overview of the Si detector and digitization key issues in digitization

process of digitization^[1]

 $\blacktriangleright SimTrackHits \rightarrow TrackerPluser \rightarrow TrackerHits \rightarrow Clustering$

- SimTrackerHits: the hits in Mokka(center point of each step)
- TrackerPluser: the charge collected in the diode(transport of electrons and holes)
- TrackerHits: a cluster of hitting pixels(electric noise ENC)
- Clustering: the final poisition(special algorithm)

overview of the Si detector and digitization key issues in digitization

transport of electron and hole

- Drift and Diffusion
 - Drift: main power of charge collection
 - Diffusion: main reason for a cluster in small incidence angle
- Lorentz angle
 - $tan(\theta) = \mu_H \times B$

overview of the Si detector and digitization key issues in digitization

readout and algorithm

- analog readout
 - ► COG algorithm: when the cluster size ≤ 2
 - ▶ η algorithm: when the energy deposited is nonlinear and cluster size $\leqslant 2$
 - head-tail algorithm: when the cluster size > 2
- digital readout
 - don't find algorithms specially for digital readout
 - may be deduced from analog algorithm

= 200

condition implement

condition

- detector model: P-N junction
- Lorentz angle: 10 degree
- noise and threshold are considered
 - threshold = $5 \times \text{noise}$
- algorithm
 - analog: COG and head-tail
 - digital: head-tail
- very primary!

condition implement

SimTrackHits \rightarrow *TrackerPluser*

- get hit track from VXDCollection
- calculate the number of electrons ionizing from the track(Poisson sampling)

•
$$N_{electron} = \frac{EDep}{3.65eV}$$

- For every electron calculate the final position when it reaches the surface of sensitive layer
- Map all the electrons to pixel array, calculate pixel center and electron numbers it collects.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

condition implement

$TrackerPluser \rightarrow TrackerHits$

- get the cluster of hitting pixels
- ► smear electron numbers with ENC(noise in e⁻)
- compare with the threshold(e⁻), if > threshold, the number will be set to 1, else to 0

condition implement

TrackerHits → *Clustering*

use head-tail algorithm to calculate the final position

- ▶ $x_{hit} = \frac{x_{min} + x_{max}}{2} (x_{min}, x_{max})$ present the leftmost and rightmost pixels
- ▶ $y_{hit} = \frac{y_{min} + y_{max}}{2} (y_{min}, y_{max})$ present the leftmost and rightmost pixels

◆□ > ◆□ > ◆目 > ◆日 > ●□ ● ● ●

resolution simulation

resolution

- condition
 - ► 50000 10GeV µ⁻, normal incidence, pitch=16um, T=300K, ENC=20e⁻, Threshold=100e⁻, digital readout
 - ▶ cut: -0.05mm < residual < 0.05mm
- result in local coordinate
 - ▶ Residual = detector measured position actual position

resolution simulation

resolution

change along with pixel pitch

Wu Zhigang A precise digitization of Si detectors

★ 문 ▶ _ 문 범

resolution simulation

resolution

change along with ENC

Wu Zhigang A precise digitization of Si detectors

토 🕨 토

formula of electron's transportation

$$\mu(x) = \frac{\mu_0}{(1 + (\frac{E(x)}{E_c})^\beta)^{\frac{1}{\beta}}}$$
$$\upsilon(x) = \mu(x)E(x)$$

$$t = \int \frac{1}{v(x)} dx$$

$$\sigma = \sqrt{2Dt}$$
 while $D = \frac{kT}{q}\mu(\bar{x})$

- ► E(x): the electric field
- μ : electron mobility
- t: drift time
- D: diffusion coefficient

● PP C* E ★ E ★ E ★ ● P P P P

σ: cluster size

transportation equation for P-N junction model

P-N junction electric field $E_{pn}(x) = \frac{qN}{\varepsilon}(x - W)$ $\mu(x) = \mu_0$ $t = \int_{x_0}^{0} \frac{dy}{\mu_0 E(x)} = \frac{\varepsilon}{qN\mu} ln(\frac{W}{W - x_0})$ $\sigma = \sqrt{\frac{2\varepsilon kT}{q^2N} ln(\frac{W}{W - x_0})}$ Drift instance

- ▲ 문 ▶ - 문

algorithm^[2]

COG algorithm

•
$$x_{COG} = \frac{\sum_{cluster} x_i q_i}{\sum_{cluster} q_i}$$

η algorithm

$$\blacktriangleright \ x_{\eta} = x_{left} + pitch \frac{\int_{0}^{\eta_{0}} \frac{dN}{d\eta} d\eta}{\int_{0}^{1} \frac{dN}{d\eta} d\eta} \quad \text{while } \eta = \frac{q_{R}}{q_{R} + q_{L}}$$

head-tail algorithm

•
$$x_{headtail} = \frac{x_R + x_L}{2} + \frac{q_R - q_L}{2\bar{q_{ln}}} pitch$$

◆□> ◆□> ◆三> ◆三> ●目目 のへの

silicon detector parameters^[3, 4, 5, 6, 7, 8, 9, 10]

type	name	pitch	thickness	efficiency	power	cluster	resolution	fake hit	frequency
HV-CMOS	-	21um	50um	98%	3.05uW/pixel	6pixels	3um	-	20KHz
CMOS	ALPIDE	30um	50um	99%	40mW/cm. ²	2-3pixels	5um	< 10 ⁻⁶	100KHz
CMOS	MIMOSA	21um	50um	99.5%	150mW/cm. ²	5×5pixels	4um	< 10 ⁻⁴	5KHz
DEPFET	-	50um	50um	100%	5W	1-2pixels	9um	-	50KHz
SOI	CPV	16um	75um	100%	-	-	-	-	-

Z. Drasal, K. Prothmann, and B. Schwenker, "Silicon Simulation Code for Belle II and ILC," in Proceedings of "The 20th Anniversary International Workshop on Vertex Detectors" (Vertex 2011). June 19-24, 2011. Rust, Lake Neusiedl, Austria. Published online at jA

href="http://pos.sissa.it/cgi-bin/reader/conf.cgi?confid=137"¿http://pos.sissa.it/cgi-bin/reader/conf.cgi?confid=137i/A¿., id.27, p. 27, 2011.

R. Turchetta, "Spatial resolution of silicon microstrip detectors," Nuclear Instruments and Methods in Physics Research Section

A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 335, no. 1, pp. 44 - 58, 1993.

M. ?ulji?, "Alpide: the monolithic active pixel sensor for the alice its upgrade," Journal of Instrumentation, vol. 11, no. 11,

p. C11025, 2016.

I. Valin, C. Hu-Guo, J. Baudot, G. Bertolone, A. Besson, C. Colledani, G. Claus, A. Dorokhov, G. Dozire, W. Dulinski, M. Gelin, M. Goffe, A. Himmi, K. Jaaskelainen, F. Morel, H. Pham, C. Santos, S. Senyukov, M. Specht, G. Voutsinas, J. Wang, and M. Winter, "A reticle size cmos pixel sensor dedicated to the star hft," *Journal of Instrumentation*, vol. 7, no. 01, p. C01102, 2012.

W. Zhao, T. Wang, H. Pham, C. Hu-Guo, A. Dorokhov, and Y. Hu, "Development of cmos pixel sensors with digital pixel dedicated to future particle physics experiments," *Journal of Instrumentation*, vol. 9, no. 02, p. C02004, 2014.

T. Miyoshi, Y. Arai, T. Chiba, Y. Fujita, K. Hara, S. Honda, Y. Igarashi, Y. Ikegami, Y. Ikemoto, T. Kohriki, M. Ohno, Y. Ono, N. Shinoda, A. Takeda, K. Tauchi, T. Tsuboyama, H. Tadokoro, Y. Unno, and M. Yanagihara, "Monolithic pixel detectors with fd-soi pixel process technology," *Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment*, vol. 732, pp. 530 – 534, 2013.

Vienna Conference on Instrumentation 2013.

I. Peri?, P. Fischer, C. Kreidl, H. H. Nguyen, H. Augustin, N. Berger, M. Kiehn, A.-K. Perrevoort, A. Sch?ning, D. Wiedner,

S. Feigl, T. Heim, L. Meng, D. Mnstermann, M. Benoit, D. Dannheim, F. Bompard, P. Breugnon, J.-C. Clemens, D. Fougeron,

J. Liu, P. Pangaud, A. Rozanov, M. Barbero, M. Backhaus, F. Hgging, H. Krger, F. Ltticke, C. Mari?as, T. Obermann,

M. Garcia-Sciveres, B. Schwenker, A. Dierlamm, A. L. Rosa, and A. Miucci, "High-voltage pixel detectors in commercial

{CMOS} technologies for atlas, {CLIC} and mu3e experiments," Nuclear Instruments and Methods in Physics Research Section

A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 731, pp. 131-136, 2013.

{PIXEL} 2012.

M. Winter, "Achievements and perspectives of {CMOS} pixel sensors for charged particle tracking," *Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment*, vol. 623, no. 1, pp. 192 – 194, 2010.

1st International Conference on Technology and Instrumentation in Particle Physics.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- L. Zhang, F. Morel, C. Hu-Guo, A. Himmi, A. Dorokhov, and Y. Hu, "A cmos pixel sensor prototype for the outer layers of linear collider vertex detector," *Journal of Instrumentation*, vol. 10, no. 01, p. C01026, 2015.
- I. Peri?, "A novel monolithic pixelated particle detector implemented in high-voltage {CMOS} technology," Nuclear Instruments

and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 582, no. 3,

pp. 876 - 885, 2007.

{VERTEX} 2006Proceedings of the 15th International Workshop on Vertex Detectors.

◆□ → ◆□ → ◆三 → ◆三 → ●目目 つへで