Collecting Efficiency

(Weekly Report)

(Pei-Zhu Lai)

Apr 10, 2017 National Central University, Taiwan

Content

- Motivation
- Event selection
- Collecting efficiency
 - **Background**
 - **X** Signal
- Summary
- back up

Motivation

- To learn the sensitive of our detector as function of diameter of beam pipe.
- Particle collecting efficiency is defined as number of events wherein all visible particles within detector acceptance divided by number of event.
- Energy collecting efficiency is defined as energy of visible particles within detector acceptance divided by overall visible particles energy.

Particle_collecting_efficiency =

Number of events wherein all visible particles within detector acceptance

Number of events

Energy_collecting_efficiency=

Energy of visible particles within detector acceptance

Overall visible particle energy

Event Selection

- ***** Particle collecting efficiency :
 - Use MC Trust
 - NParent = 0
 - **For electron and positron: skip the photon**
 - **For parton: PID < 6**
 - **For lepton: PID = 11, 13, 15**
- ***** Energy collecting efficiency:
 - Use MC Trust
 - VTX.Mag() < 10 && EndP.Mag() > 10
 - Visible particle
 - Consider impact of magnetic field

Background 2 Fermions Background 2 Fermions Particle Collecting Efficiency 0.0800 8000 1 Energy Collecting Efficiency 0. 80 80 1 CEPC CEPC Preliminary Preliminary $e^+e^- \rightarrow e^+e^$ $e^+e^- \rightarrow e^+e^-$ 0.4 0.4 $e^+e^- \rightarrow \mu\mu$ $e^+e^- \rightarrow \mu\mu$ • $e^+e^- \rightarrow q\overline{q}$ 0.2 0.2 $e^+e^- \rightarrow q\overline{q}$ 0<u>`</u> 0 0.5 0.9 0.92 0.94 0.96 0.1 0.2 0.98 0.3 0.4 1 Tanθ Cosθ

Background 4 Fermions Background 4 Fermions Particle Collecting Efficiency 0.8860 8000 Energy Collecting Efficiency 0.8 9.4 8.4 8.4 CEPC CEPC Preliminary Preliminary 0.4 0.4 sznu_sl sznu_sl 0.2 0.2 sznu_l 🔻 sznu l 0 0 0 0.9 0.92 0.94 0.96 0.98 0.1 0.2 0.3 0.4 0.5 1 Tanθ Cosθ <u>sznu sl</u> e^+ e^+ v_e ν_e <u>sznu</u> Ve ν_e up Ζ Z uр μ Pei-Zhu Lai (NCU, Taiwan) Apr 10, 2017

Pei-Zhu Lai (NCU, Taiwan)

Background 4 Fermions

Background 4 Fermions

Background 4 Fermions

Background 4 Fermions

Pei-Zhu Lai (NCU, Taiwan)

Apr 10, 2017

Higgs Signal Branching Ratio

$$\begin{array}{ll} \mathbf{2P_v} & H \to b\overline{b}, c\overline{c}, gg, \tau\tau, \gamma\gamma \\ vvH & \\ H \to \frac{WW}{ZZ} \to llvv, qqvv \end{array}$$

$$\begin{array}{cc} \mathbf{5P_v} \\ qq \ / \ llH \end{array} \quad H \rightarrow ww \rightarrow lvqq \end{array}$$

$$H \rightarrow ww \rightarrow lvqq$$

$$\begin{array}{ccc} \mathbf{6P_v} & H \to WW & Illqq \\ qq/llH & H \to ZZ & 4q \\ & 4l \end{array}$$

$$\begin{array}{l} \mathbf{4P_{v}} \\ qq / llH \\ H \rightarrow b\overline{b}, c\overline{c}, gg, \tau\tau, \gamma\gamma \\ H \rightarrow \frac{WW}{ZZ} \rightarrow llvv, qqvv \\ vvH \\ H \rightarrow llqq \end{array}$$

Category	
2Pv	2.3x10 ⁻¹
3Pv	2.8x10 ⁻²
4P _v	5.8x10 ⁻¹
5Pv	6.6x10 ⁻²
6Pv	8.0x10 ⁻²

Higgs Signal Collecting Efficiency

Pei-Zhu Lai (NCU, Taiwan)

Higgs Signal Collecting Efficiency

Higgs Bosons Signal

Higgs Signal Effective Cross Section

	Cos θ	2P _v	3P _v	4P _v	5Pv	6P _v	Total
	0.900	144715	15816	272963	27745	30428	491667
	0.905	146230	16044	279661	28595	31541	502071
	0.910	147719	16311	286492	29469	32729	512720
	0.915	149201	16579	293480	30387	33928	523575
	0.920	150819	16827	300600	31308	35178	534732
	0.925	152414	17087	307880	32211	36397	545989
	0.930	153954	17366	315587	33185	37742	557834
	0.935	155536	17631	323261	34210	39149	569787
	0.940	157180	17916	331167	35321	40495	582079
	0.945	158859	18192	339033	36376	41903	594363
	0.950	160495	18464	347272	37452	43366	607049
	0.955	162156	18774	355545	38574	44897	619946
	0.960	163822	19096	364112	39675	46486	633191
	0.965	165508	19397	373040	40915	48113	646973
	0.970	167227	19697	381900	42132	49733	660689
	0.975	168909	20008	391154	43368	51413	674852
	0.980	170663	20278	400535	44577	53167	689220
	0.985	172410	20587	410033	45806	55001	703837 T
	0.990	174221	20878	419771	47163	56855	718888
	0.995	175953	21197	429373	48560	58789	733872 =
(1	1.000	177747	21510	438678	49917	60648	748500

Pei-Zhu Lai (Itee, iawan)

Higgs Signal Effective Cross Section

Cos θ	2Pv	3P _v	4P _v	5Pv	6Pv
0.900	0.814163	0.735286	0.62224	0.555823	0.501715
0.905	0.822686	0.745886	0.637509	0.572851	0.520067
0.910	0.831063	0.758298	0.65308	0.59036	0.539655
0.915	0.839401	0.770758	0.66901	0.608751	0.559425
0.920	0.848504	0.782287	0.685241	0.627201	0.580036
0.925	0.857477	0.794375	0.701836	0.645291	0.600135
0.930	0.866141	0.807345	0.719405	0.664804	0.622312
0.935	0.875041	0.819665	0.736898	0.685338	0.645512
0.940	0.884291	0.832915	0.75492	0.707595	0.667705
0.945	0.893737	0.845746	0.772852	0.72873	0.690921
0.950	0.902941	0.858391	0.791633	0.750285	0.715044
0.955	0.912285	0.872803	0.810492	0.772763	0.740288
0.960	0.921658	0.887773	0.830021	0.794819	0.766489
0.965	0.931144	0.901767	0.850373	0.819661	0.793316
0.970	0.940815	0.915714	0.87057	0.844041	0.820027
0.975	0.950278	0.930172	0.891665	0.868802	0.847728
0.980	0.960146	0.942724	0.91305	0.893022	0.876649
0.985	0.969974	0.95709	0.934702	0.917643	0.906889
0.990	0.980163	0.970618	0.9569	0.944828	0.937459
0.995	0.989907	0.985449	0.978789	0.972815	0.969348
1.000	1	1	1	1	1

Z Bosons Signal Collecting Efficiency

Z Bosons Signal

Partilce Collecting Efficiency 0 0 0 9 8 1 CEPC CEPC Preliminary Preliminary $e^+e^- \rightarrow Z \rightarrow e^+e^$ $e^+e^- \rightarrow Z \rightarrow e^+e^-$ 0.4 0.4 $\Box e^+e^- \rightarrow Z \rightarrow \mu\mu$ $\Box e^+e^- \rightarrow Z \rightarrow \mu\mu$ 0.2 0.2 * $e^+e^- \rightarrow Z \rightarrow q\overline{q}$ $e^+e^- \rightarrow Z \rightarrow q\overline{q}$ Ж 0 0 0 0.5 Tanθ 0.9 0.92 0.94 0.96 0.98 0.1 0.2 0.3 0.4 Cosθ

Z Bosons Signal

Summary

■ The cos *θ* from 0.98 to 0.9, particle collecting efficiency decreases by about 20% ~ 30% in the Higgs signal region. The CEPC is designed to run for 10 years. However, due to the decreasing particle collecting efficiency, it needs to run for 2 more years in order to recover the same luminosity used in the beginning. The price of operating CEPC for one full year is similar to the price of the detector itself. Thus, this study is of great significance as it can support the accelerator and detector group vital information on the beam pipe and detector design. Hence, good design can save both time and money.

To Do

- Study how many of coverage should the bench mark channel have.
- Study the relationship between coverage and S/B ratio
- Analysis note

- The more precise branching ratio.
- **Feynman dygram**

The More Precision Branching Ratio

Processing event 1 of 100451
Processing event 1 of 99952
Processing event 1 of 224788
Processing event 1 of 323636
2Pv : 0.237367
3Pv : 0.0287249
4Pv : 0.58582
5Pv : 0.0666603
6Pv : 0.0809907
tot: 0.999563

zz_l

<u>ww_h</u>

23

ww sl

<u>ww_</u>|

zzorww_h

ZZORWW

<u>sze_sl</u>

<u>sznu_l</u>

<u>sznu_sl</u>

<u>sw_sl</u>

szeorsw_l

Background 2 Fermions totMaxcos1D Particle Collecting Efficiency 0.0800 8000 1 ∩ ₩ 0.2 CEPC qq Preliminary 0.18 e2e2 0.16 e1e1 0.14 0.12 0.1 $e^+e^- \rightarrow e^+e^-$ 0.08 • 0.4 $e^+e^- \rightarrow \mu\mu$ 0.06 0.04 • $e^+e^- \rightarrow q\overline{q}$ 0.2 0.02 0 0.65 0.9 0.92 0.94 0.96 0.98 0.7 0.75 0.85 0.95 0.8 0.9 1 IMaxcosθl Cosθ

Background 2 Fermions Reconstruction

<pre>! Automatically generated set of cuts ! Process bhabha:</pre>	Automatically generated set of cuts ! Process qq:
! e a-e -≻ e a-e gamma	! e a-e -> u a-u
! 16 8 -> 1 2 4	! e a-e -> d a-d
process bhabha	! ea-e-> sa-s
cut M of 3 within 1.00000E+01 1.00000E+99	9 ! e a-e -> c a-c
cut M of 5 within 1.00000E+01 1.00000E+99	9 ! ea-e-> ba-b
cut M of 6 within 1.00000E+01 1.00000E+99	9 ! 8 4 -> 1 2
cut M of 17 within -1.00000E+99 -1.00000E+01	L process ag
cut M of 20 within -1.00000E+99 -1.00000E+01	L cut M of 3 within 1.00000E+01 1.00000E
cut M of 10 within -1.00000E+99 -1.00000E+01	
cut M of 12 within -1.00000E+99 -1.00000E+01	

$e^+e^- \rightarrow e^+e^-$ Kinematic Distribution

Pei-Zhu Lai (NCU, Taiwan)

Apr 10, 2017

$e^+e^- \rightarrow \mu^+\mu^-$ Kinematic Distribution

eachP2D

Pei-Zhu Lai (NCU, Taiwan)

Apr 10, 2017

$e^+e^- \rightarrow q\overline{q}$ Kinematic Distribution

Background 4 Fermions Collecting Efficiency

Background 4 Fermions totMaxcos1D _0.16 ⊃ ∀ Particle Collecting Efficiency 0. 8. CEPC sznu_sl Preliminary 0.14 sznu_l 0.12 0.1 0.08 0.06 0.4 sznu_sl 0.04 0.2 0.02 ▼ sznu_l 0 0.9 0.92 0.94 0.96 0.98 0.1 0.2 0.9 1 0.3 0.4 0.5 0.6 0.7 0.8 lMaxcosθl Cosθ <u>sznu sl</u> e^+ e^+ v_e ν_e <u>sznu</u> v_e v_e up Z Z μ uр μ Pei-Zhu Lai (NCU, Taiwan) Apr 10, 2017 4

Process sznu_sl0nu_down: e a-e -> nu_e a-nu_e d a-d e a-e -> nu_e a-nu_e d a-s d a-b e a-e -> nu_e a-nu_e s a-d -> nu_e a-nu_e a-s e a-e -> nu_e a-nu_e s a-b -> nu_e a-nu_e -> nu_e a-nu_e a-d e a-e -> nu_e a-nu_e a-s e a-e -> nu_e a-nu_e b a-b 2 8 process sznu_sl0nu_down within 1.00000E+01 1.00000E+99

Automatically generated set of cuts					
! Process sznu_sl0nu_up:					
! e a-e	-> nu_e	a-nu_e	u a-u		
! е а-е	-> nu_e	a-nu_e	u a-c		
! е а-е	-> nu_e	a-nu_e	c a-u		
l e a-e	-≻ nu_e	a-nu_e	c a-c		
! 32 16	-> 1	2	4 8		
process sznu_sl0nu_up					
cut M of	12	within	1,00000E+01	1,00000E+99	

sznu_sl Kinematic Distribution

43

sznu | Kinematic Distribution

44

e

Background 4 Fermions Collecting Efficiency

Background 4 Fermions totMaxcos1D 0:035 V Particle Collecting Efficiency 0.80 80 1 ww I **CEPC** zzorww l Preliminary 0.03 ww_sl ww h 0.025 zzorww h 0.02 0.015 ∧ ww I 0.4 ☆ zzorww 🛛 0.01 ♦ ww sl 0.2 0.005 ww_h 💥 zzorww h 0 0 0.92 0.94 0.96 0.98 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.9 0.1 1 lMaxcosθl Cosθ ۳μ aquq e vτ e e ww h zzorww WW zzorww WW S e^+ v_{τ} squ uqW Z Z ν_{μ} dqZ dqdown Z up uq uq μ

Pei-Zhu Lai (NCU, Taiwan)

Pei-Zhu Lai (NCU, Taiwan)

Pei-Zhu Lai (NCU, Taiwan)

ww_l Kinematic Distribution

zzorww | Kinematic Distribution

ww_sl Kinematic Distribution

50

ww_h Kinematic Distribution

51

zzorww_h Kinematic Distribution

52

Background 4 Fermions Collecting Efficiency

Background 4 Fermions totMaxcos1D _0.25 ⊃. ∀ Particle Collecting Efficiency 0.80 80 1 CEPC zz_h Preliminary zz_sl 0.2 zz_l 0.15 0.1 ◊ zz_h 0.4 ★ ZZ_S 0.05 0.2 **₽ ZZ** 0 0 0.92 0.5 0.94 0.96 0.98 0.7 0.9 0.6 0.8 0.9 1 lMaxcosθl Cosθ up e^{-} ۴μ,τ e⊤ <u>zz h</u> <u>zz sl</u> ZZ $\nu_{\mu,\tau}$ up z upup \mathbf{Z} Ζ Z uр up τ e⁻ Pei-Zhu Lai (NCU, Taiwan) 53 Apr 10, 2017

Apr 10, 2017

zz_h Kinematic Distribution

55

zz_sl Kinematic Distribution

zz_l Kinematic Distribution

Background 4 Fermions Collecting Efficiency

Background 4 Fermions

totMaxcos1D

Pei-Zhu Lai (NCU, Taiwan)

Pei-Zhu Lai (NCU, Taiwan)

Pei-Zhu Lai (NCU, Taiwan)

Pei-Zhu Lai (NCU, Taiwan)

Pei-Zhu Lai (NCU, Taiwan)

sw_l Kinematic Distribution

63

lCosθl

szeorsw_I Kinematic Distribution

sw_sl Kinematic Distribution

65

totcos1D

sze_sl Kinematic Distribution

66

 e^*

sze | Kinematic Distribution

2017

0.98

1

lCosθl

Pei-Z

Z Bosons Signal Collecting Efficiency

Partilce Collecting Efficiency 0 0 0 9 8 1 ₽0.02 **CEPC** e2e2 zpole Preliminary 0.018 e1e1_zpole 0.016 qq_zpole 0.014 0.012 0.01 $e^+e^- \rightarrow Z \rightarrow e^+e^-$ 0.008 0.4 0.006 \Box e⁺e⁻ \rightarrow Z \rightarrow µµ 0.004 0.2 * $e^+e^- \rightarrow Z \rightarrow q\overline{q}$ 0.002 0^L 0 0 0.9 0.92 0.94 0.96 0.98 0.1 0.2 0.5 0.6 0.3 0.4 Cosθ

! Automatically generated set of cuts	! Automatically generated set of cuts
! Process bhabha:	I Process og
$168 \rightarrow 124$! e a-e -≻ u a-u
process bhabha	! e a-e -> d a-d
cut M of 3 within 1.00000E+01 1.00000E+99	! e a-e -> s a-s
cut M of 5 within 1.00000E+01 1.00000E+99	! e a-e -> c a-c
cut M of 6 within 1.00000E+01 1.00000E+99	! e a-e -> b a-b
cut M of 17 within -1.00000E+99 -1.00000E+01	
cut M of 20 within -1.00000E+99 -1.00000E+01	: 0 4 -> 1 2
cut M of 10 within -1.00000E+99 -1.00000E+01	process qq
cut M of 12 within -1.00000E+99 -1.00000E+01	cut M of 3 within 1.00000E+01 1.00000E+99

Z Bosons Signal

totMaxcos1D

Pei-Zhu Lai (NCU, Taiwan)

0.9

lMaxcosθl

0.8

0.7

Background 2 Fermions v.s. Z Signal

Z Boson Signal Mass Reconstruction

$e^+e^- \rightarrow Z \rightarrow e^+e^-$ Kinematic Distribution

$e^+e^- \rightarrow Z \rightarrow \mu^+\mu^-$ Kinematic Distribution

Pei-Z
$e^+e^- \rightarrow Z \rightarrow q\overline{q}$ Kinematic Distribution

Pei-Z

2017