Current result of
 WW fusion, $H \rightarrow b b$ Crosssection measurement

Hao Liang

12.42017

Outline

- Sample Generation
- Cut Chain
- Extraction of the WW fusion cross section by fit
- Kinematic fit
- Jet energy \& direction resolution for b jets
- The result

Sample Generation for both pof and fake data

- Higgs sample:
- 100k WW fusion(signal) , H->anything
- 100 kH (background), H->anything events
- Sample for interference between ZH and WW fusion can't be generated
- SM sample:
- 5ab^-1 2fermions + 4fermions

Cut Chain

- Defintion:
- $N_{\text {PFO }}>20$
- $105<E<155 \& \& P_{t}>13$
- Isolep veto
- $100<M<135 \& \& 65<M_{\text {recoil }}<135$
- $y_{12}>0.15 \& \& y_{23}<0.06 \& \& y 34<0.01$
- $-0.98<\theta_{2 j e t s}<-0.4$
- $b b-$ likeness $>0.4(b b-$ likeness $=b b /(b b+(1-b)(1-b)))$

	WW fusion, H->bb	ZH, H->bb	qqbar	sw-sl	sznu-sl	ww-sl	2z-sl
Cut chain	52.8%	64.9%	25630	124	5745	3230	9764
Fit window with kinematic fit	$51.2 \%(\sim 10 k$ @5ab^-1)	$63.8 \%(\sim 79 k$ $@ 5 a b \wedge-1)$	22980	112	4018	2187	6503

Recoil mass

- We can extract the WW fusion events number by fitting the recoil mass or recoil angle

Kinematic fit(1)

- Constraints:
- $M_{2 j e t s, f i t}=m_{H}=125 \mathrm{GeV}$
- Use a rude approximation that:
- $M_{\text {each jet,fit }}=M_{\text {each jet,raw }}$ for each jet

WW fusion

Kinematic fit (2)

- Minimize $\chi^{\wedge} 2$ to determine the fitted 4-momenta

$$
\chi^{2}=\sum_{i=1,2}\left(\frac{\theta_{i}-\theta_{i}^{\prime}}{\sigma_{\theta, i}}\right)^{2}+\left(\frac{\phi_{i}-\phi_{i}^{\prime}}{\sigma_{\phi, i}}\right)^{2}+\left(\frac{E_{i}-E_{i}^{\prime}}{\sigma_{E, i}}\right)^{2}
$$

Estimation of Jet energy \& direction resolution (1)

- Sample
- Alternative ~130k events, vvH, H->bb
- 6 energy bins: 0 GeV , $50 \mathrm{GeV}, 60 \mathrm{GeV}, 70 \mathrm{GeV}, 80 \mathrm{GeV}, 95 \mathrm{GeV}$ and 250 GeV
- 10 equal cos(polar angle) bins
energy

Estimation of Jet energy \& direction resolution(2)

- Match quark and reconstructed jet
- $1^{\text {st }}$ approach: Minimize a χ^{2}
- $\chi^{2}=\sum_{j=1}^{2}\left(\boldsymbol{p}_{j, j e t}-\boldsymbol{p}_{j, \text { quark }}\right)^{2}$
- $2^{\text {nd }}$ approach: Find the root of every particles in a jets using MC truth and link information (See Gang Li's FSClasser)
- The results from these two approaches seem same. But the latter approach was used finally.

Jet energy \& direction resolution(3)

- Resolution
- Energy scale: $E_{j e t} / E_{q u a r k}$
- $\Delta \phi: \phi_{j e t}-\phi_{q u a r k}$
- $\Delta \theta: \theta_{\text {jet }}-\theta_{\text {quark }}$
- The resolution can be described by a covariance matrix
- E.g The $\sigma^{2}($ scale $)=\operatorname{cov}($ scale, scale $)=\overline{(\text { scale }-\overline{\text { scale }})^{2}}$ etc.
scale hist @ energy center \& $\cos (\theta) \sim 0.6$

delta phi hist @ energy center \& $\cos (\theta) \sim 0.6$

delta theta hist @ energy center \& $\cos (\theta) \sim 0.6$

Covariance matrix as a function of jet energy and polar angle

Covariance matrix as a function of jet energy and polar angle

How to fit to extract the ww fusion, $\mathrm{H}->\mathrm{bb}$ cross-section (1)

- Backgrounds (except ZH, Z->vv, H->bb) can be determined very well in theory and experiments. The signal stress of those were fixed to be 1.
- The expected number of ZH, Z->vv,H->bb would be measured via eeH, $\mu \mu \mathrm{H}$ and qqH channels:
- The uncertainties of coupling constants concerns only electroweak part are assumed to be neglegible.
- Three signal stresses are proportianal to $\mathrm{ZH}, \mathrm{Z}->\mathrm{vv}, \mathrm{H}->\mathrm{bb}$ at tree leve
- The uncertainty of $\mathrm{ZH}, \mathrm{Z}->\mathrm{Vv}, \mathrm{H}->\mathrm{bb}=1 / \sqrt{\frac{1}{\sigma_{e e H, H \rightarrow b b}^{2}}+\frac{1}{\sigma_{\mu \mu H, H \rightarrow b b}^{2}}+\frac{1}{\sigma_{q q H, H \rightarrow b b}^{2}}}=$

$$
=1 / \sqrt{\left(\frac{1}{1.2 \%}\right)^{2}+\left(\frac{1}{1.1 \%}\right)^{2}+\left(\frac{1}{0.4 \%}\right)^{2}}=0.375 \%
$$

How to fit to extract the ww fusion, $\mathrm{H}->\mathrm{bb}$ cross-section(2)

- Construct the likelihood as
- $-\log L=0.5\left(\frac{\mu_{z H}-1}{0.375 \%}\right)^{2}-\log P\left(\right.$ data $\mid \mu_{Z H} N_{Z H} p d f_{Z H}+\mu_{z h} N_{w w f} p d f_{w w f}+$ $\left.N_{b k g} p d f_{b k g}\right)$
- The $\mu_{z h}, \mu_{w w f}$ are events numbers normalized by SM prediction for $\mathrm{ZH}, \mathrm{Z}->\mathrm{vv}$, $\mathrm{H}->\mathrm{bb}$ and WW fusion, $\mathrm{H}->\mathrm{bb}$ respectively.
- The statistical uncertainty was determined via the hessian matrix at maximum point of the minus log likelihood.

Recoil mass with kinematic fit

raw

A simple but effective approach to do kinematic fit

- Scale the momenta of di-jet with same factor such that their invariant mass is m_{H}

Result

$5 \mathrm{ab}^{-1}$	Fit recoil mass of $\mathbf{2}$ jets	
Raw data	3.9%	3.8%
Kinematic fit	3.2%	3.1%
Simple Kinematic fit	3.2%	3.1%

Pre-CDR (Zhenxing based on fast simulation): 2.8%
Junping Tian's result @ ICL, $250 \mathrm{GeV} \& 250 \mathrm{fb}^{-1}$ is 8.1% which would be 1.8% at integrated luminosity of $5 \mathrm{ab}^{-1}$. (Note that the beam polariation and enviroments are different.)

