Current result of WW fusion, $H \rightarrow bb$ Cross-section measurement

Hao Liang 12.4 2017

Outline

- Sample Generation
- Cut Chain
- Extraction of the WW fusion cross section by fit
- Kinematic fit
 - Jet energy & direction resolution for *b* jets
- The result

Sample Generation for both pdf and fake data

- Higgs sample:
 - 100k WW fusion(signal) , H->anything
 - 100k ZH (background), H->anything events
 - Sample for interference between ZH and WW fusion can't be generated
- SM sample:
 - 5ab^-1 2fermions + 4fermions

Cut Chain

- Defintion:
 - $N_{PFO} > 20$
 - $105 < E < 155 \&\& P_t > 13$
 - Isolep veto
 - $100 < M < 135 \&\& 65 < M_{recoil} < 135$
 - $y_{12} > 0.15 \&\& y_{23} < 0.06 \&\& y_{34} < 0.01$
 - $-0.98 < \theta_{2jets} < -0.4$
 - bb likeness > 0.4 (bb likeness = bb/(bb + (1 b)(1 b)))

	WW fusion, H->bb	ZH, H->bb	qqbar	sw-sl	sznu-sl	ww-sl	zz-sl
Cut chain	52.8%	64.9%	25630	124	5745	3230	9764
Fit window with kinematic fit	51.2%(~10k @5ab^-1)	63.8%(~79k @5ab^-1)	22980	112	4018	2187	6503

Recoil mass

• We can extract the WW fusion events number by fitting the recoil mass or recoil angle

Kinematic fit(1)

- Constraints:
 - $M_{2jets,fit} = m_H = 125 \text{GeV}$
 - Use a rude approximation that:
 - $M_{each jet, fit} = M_{each jet, raw}$ for each jet

WW fusion

Kinematic fit (2)

• Minimize χ^2 to determine the fitted 4-momenta

$$\chi^2 = \sum_{i=1,2} \left(\frac{\theta_i - \theta_i'}{\sigma_{\theta,i}} \right)^2 + \left(\frac{\phi_i - \phi_i'}{\sigma_{\phi,i}} \right)^2 + \left(\frac{E_i - E_i'}{\sigma_{E,i}} \right)^2$$

Estimation of Jet energy & direction resolution (1)

- Sample
 - Alternative ~130k events, vvH, H->bb
 - 6 energy bins: 0GeV, 50GeV, 60GeV, 70GeV, 80GeV, 95GeV and 250GeV
 - 10 equal cos(polar angle) bins

Estimation of Jet energy & direction resolution(2)

- Match quark and reconstructed jet
 - 1st approach: Minimize a χ^2
 - $\chi^2 = \sum_{j=1}^2 (\boldsymbol{p}_{j,jet} \boldsymbol{p}_{j,quark})^2$
 - 2nd approach: Find the root of every particles in a jets using MC truth and link information (See Gang Li's FSClasser)
 - The results from these two approaches seem same. But the latter approach was used finally.

Jet energy & direction resolution(3)

- Resolution
 - Energy scale: E_{jet}/E_{quark}
 - $\Delta \phi: \phi_{jet} \phi_{quark}$
 - $\Delta \theta: \theta_{jet} \theta_{quark}$
 - The resolution can be described by a covariance matrix

• E.g The
$$\sigma^2(scale) = cov(scale, scale) = (scale - \overline{scale})^2$$
 etc.

Covariance matrix as a function of jet energy and polar angle scale Direction angle Polar angle

Covariance matrix as a function of jet energy and polar angle Scale Direction angle Polar angle

How to fit to extract the ww fusion, H->bb cross-section (1)

- Backgrounds (except ZH, Z->vv, H->bb) can be determined very well in theory and experiments. The signal stress of those were fixed to be 1.
- The expected number of ZH, Z->vv,H->bb would be measured via eeH, $\mu\mu$ H and qqH channels:
 - The uncertainties of coupling constants concerns only electroweak part are assumed to be neglegible.
 - Three signal stresses are proportianal to ZH, Z->vv,H->bb at tree leve

• The uncertainty of ZH, Z->vv, H->bb =
$$1/\sqrt{\frac{1}{\sigma_{eeH,H\to bb}^2} + \frac{1}{\sigma_{\mu\mu H,H\to bb}^2} + \frac{1}{\sigma_{qqH,H\to bb}^2}} = 1/\sqrt{(\frac{1}{1.2\%})^2 + (\frac{1}{1.1\%})^2 + (\frac{1}{0.4\%})^2} = 0.375\%$$

How to fit to extract the ww fusion, H->bb cross-section(2)

Construct the likelihood as

•
$$-\log L = 0.5 \left(\frac{\mu_{zH}-1}{0.375\%}\right)^2 - \log P(data|\mu_{ZH}N_{ZH}pdf_{ZH} + \mu_{zh}N_{wwf}pdf_{wwf} + N_{bkg}pdf_{bkg})$$

- The μ_{zh} , μ_{wwf} are events numbers normalized by SM prediction for ZH, Z->vv, H->bb and WW fusion, H->bb respectively.
- The statistical uncertainty was determined via the hessian matrix at maximum point of the minus log likelihood.

Recoil mass with kinematic fit

raw

A simple but effective approach to do kinematic fit

• Scale the momenta of di-jet with same factor such that their invariant mass is m_H

Result

5 ab ⁻¹	Fit recoil mass of 2 jets	Fit recoil mass and $oldsymbol{ heta}$ of 2 jets	
Raw data	3.9%	3.8%	
Kinematic fit	3.2%	3.1%	
Simple Kinematic fit	3.2%	3.1%	

Pre-CDR (Zhenxing based on fast simulation): 2.8%

Junping Tian's result @ ICL, 250GeV & 250 fb^{-1} is 8.1% which would be **1.8%** at integrated luminosity of $5ab^{-1}$. (Note that the beam polariation and environments are different.)