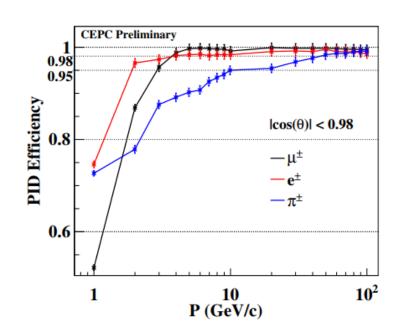
$H \rightarrow ee, \mu\mu \text{ at CEPC}$ and ISR with MadGraph

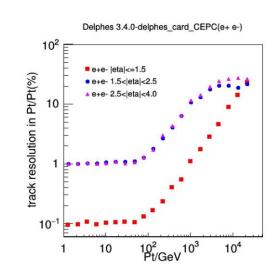
Cheng Chen, Zhengwei Cui, Gang Li, <u>Qiang Li</u>, Xin Mo, Manqi Ruan, Lei Wang, Qi-Shu Yan

Based on arXiv:1705.04486 and ongoing projects

Institute of High Energy Physics Chinese Academy of Sciences



- CEPC Samples
- ISR and Beamstrahlung
- Whizard Method
- ISR within MadGraph
- Crosscheck
- $\mathbf{H} \rightarrow ee$
- $H \rightarrow \mu\mu$
- Outlook: NLO, polarized case, ep collider



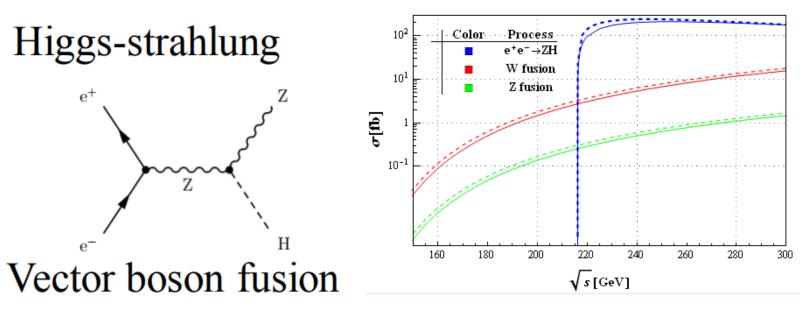
- Circular electron-positron collider
- 240-250 GeV
- 10 years Luminosity: 5 ab-1

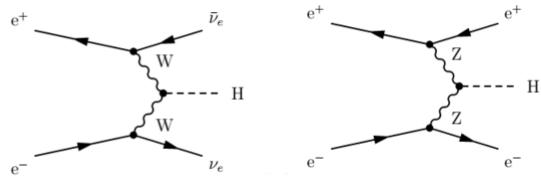
Improved recently by <u>Dan Yu</u>et.al. with MVA technique

Pre-CDR

Tracker resolution verified in Delphes by Chen Cheng et.al.

See more in Gang Li's talk

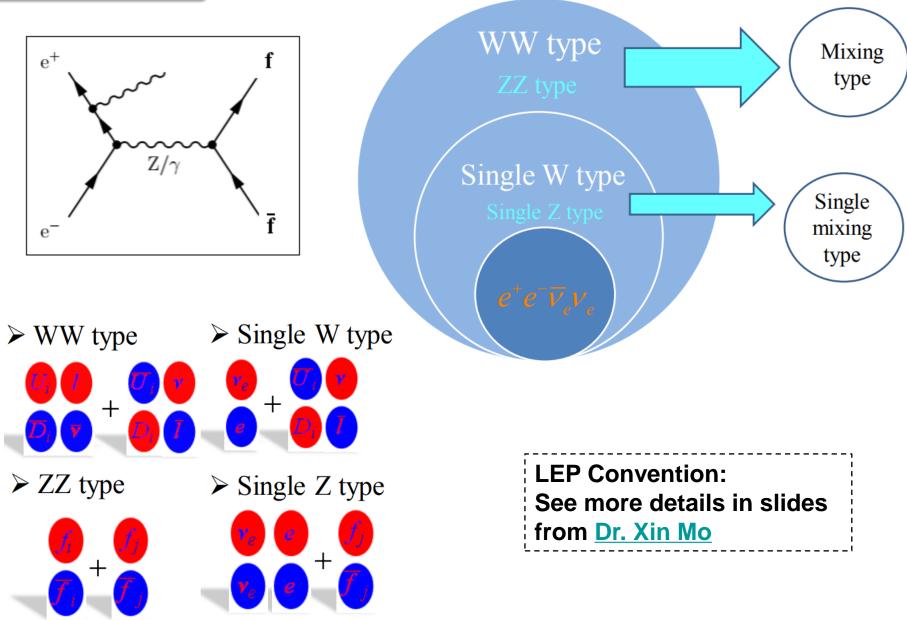

Background part


Signal part

- 2 fermions
- 4 fermions

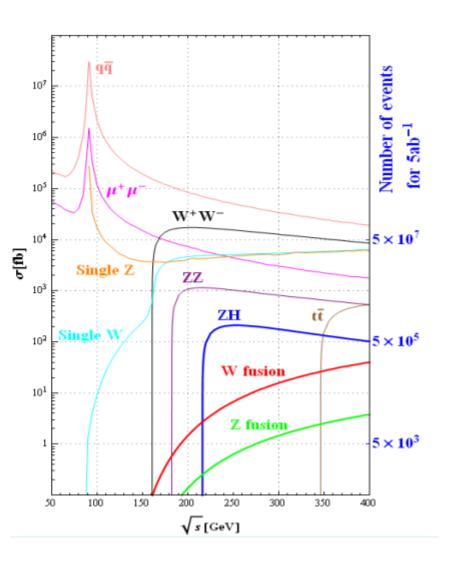
Physics Process	Measured Quantity	Critical Detector	Required Performance
$ZH \to \ell^+ \ell^- X$	Higgs mass, cross section	Tracker	$\Delta(1/p_{\rm T}) \sim 2 \times 10^{-5}$
$H \rightarrow \mu^+ \mu^-$	$BR(H \to \mu^+ \mu^-)$	Hacker	$\oplus 1 \times 10^{-3}/(p_{\rm T}\sin\theta)$
$H \rightarrow b \overline{b}, \ c \overline{c}, \ g g$	$BR(H \rightarrow b\overline{b}, c\overline{c}, gg)$	Vertex	$\sigma_{r\phi} \sim 5 \oplus 10/(p \sin^{3/2} \theta) \ \mu m$
$H \to q \bar{q}, \ V V$	$BR(H \rightarrow q\bar{q}, VV)$	ECAL, HCAL	$\sigma_E^{\rm jet}/E\sim 3-4\%$
$H\to\gamma\gamma$	${\rm BR}(H\to\gamma\gamma)$	ECAL	$\sigma_E \sim 16\%/\sqrt{E} \oplus 1\%~({\rm GeV})$

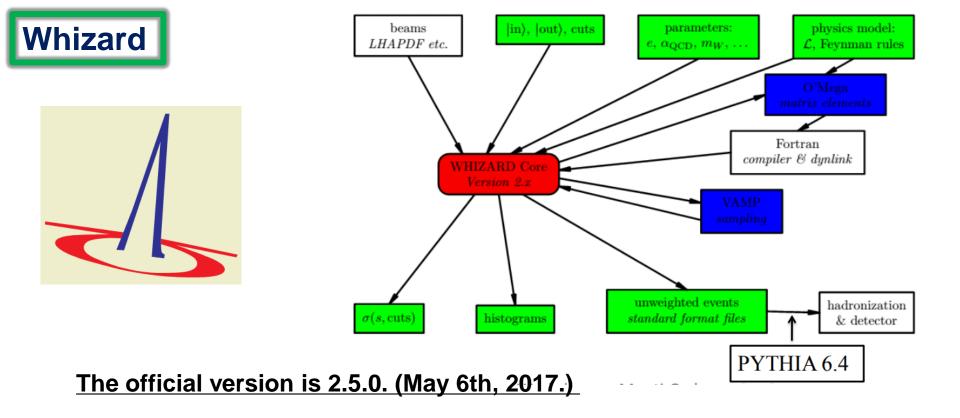
Higgs Signal



Dashed: w/o ISR Solid: w/ ISR

Xin Mo, Gang Li, Manqi Ruan, Xinchou Lou


Background


Classification of 4 fermions

Cross sections [fb]

	240GeV	250GeV
qq	54662	50216
$\mu^+\mu^-$	4685	4405
single Z	4538	4734
single W	5086	5144
W^+W^-	16004	15484
ZZ	1079	1033
ZH	203	212
W fusion	5.36	6.72
Z fusion	0.50	0.63

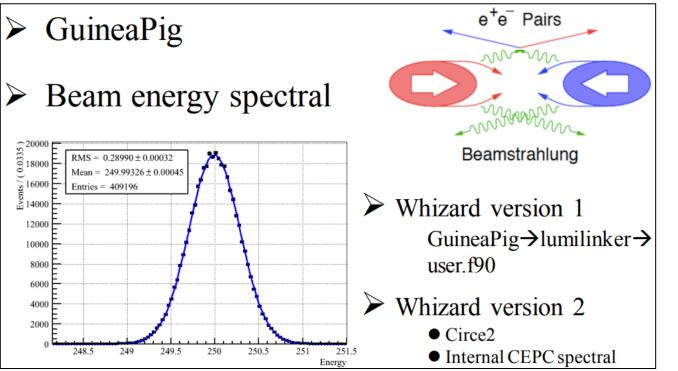
The WHIZARD Event Generator

The Generator of Monte Carlo Event Generators for Tevatron, LHC, ILC, CLIC, CEPC, FCC-ee, FCC-hh, SppC and other High Energy Physics Experiments

W,HIggs,Z And Respective Decays

Structured Beams

Hadron Colliders structured beams


- LHAPDF interface
- CERN-/PDFLIB support no longer available
- Most prominent PDFs directly included
- ISR and FSR (two different own implementations, interface to PYTHIA) (cf. Talk S. Schmidt)
- Matching matrix elements/showers (MLM) (cf. Talk S. Schmidt)
- Underlying event/multiple interactions (cf. Talk H. Boschmann)

Lepton Colliders structured beams

- ISR (implemented: Skrzypek/Jadach, Kuraev/Fadin, incl. *p*_T distributions)
- arbitrarily polarized beams (density matrices)
- Beamstrahlung (CIRCE module)
- Photon collider spectra (CIRCE2 module)
- external beam spectra can be read in (files/generating code)
- FSR (e.g. YFS) not (yet) implemented (charged mesons/hadrons)
- Hadronic events/hadronic decays
 - through PYTHIA interface (or HERWIG or Sherpa)

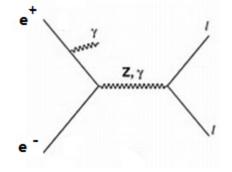
Beamstrahlung

Generator of Unwanted Interactions for Numerical Experiment Analysis Program Interfaced to GEANT

Macroscopic em interactions. One bunch bent by the field of the other bunch. There will be special kind of synchrotron radiation

At CEPC, this effect is small

	ISR [fb]	ISR & Beamstrahlung [fb]
$\sigma(e^+e^- \!\rightarrow\! ZH)$	212	211
$\sigma(e^+e^-\!\rightarrow\!\nu\bar{\nu}H)$	6.72	6.72
$\sigma(e^+e^-\!\rightarrow\!e^+e^-H)$	0.63	0.63
$\sigma(e^+e^-\!\rightarrow\!q\bar{q})$	50216	50416
$\sigma(e^+e^- \mathop{\rightarrow} W^+W^-)$	15484	15440
$\sigma(e^+e^-\!\rightarrow\!ZZ)$	1033	1030


Qinglei Xiu, Hongbo Zhu, Xinchou Lou

Xin Mo, Gang Li, Manqi Ruan, Xinchou Lou

Whizard cepc

Initial State Radiation

lepton-collider processes are strongly affected by electromagnetic initial-state radiation (ISR).

WHIZARD implements ISR in a <u>standard structure</u> function formalism that **resum the corrections from infrared (leading) and collinear (3rd order)** radiation and implements them in kinematics and dynamics, if requested.

-x

$$\begin{aligned} f_0(x) &= \epsilon (1-x)^{-1+\epsilon} \\ f_1(x) &= g_1(\epsilon) f_0(x) - \frac{\epsilon}{2} (1+x) \\ f_2(x) &= g_2(\epsilon) f_0(x) - \frac{\epsilon}{2} (1+x) \\ &- \frac{\epsilon^2}{8} \left(\frac{1+3x^2}{1-x} \ln x + 4(1+x) \ln(1-x) + 5 + x \right) \\ f_3(x) &= g_3(\epsilon) f_0(x) - \frac{\epsilon}{2} (1+x) \\ &- \frac{\epsilon^2}{8} \left(\frac{1+3x^2}{1-x} \ln x + 4(1+x) \ln(1-x) + 5 + x \right) \\ &- \frac{\epsilon^3}{8} \left((1+x) \left[6 \operatorname{Li}_2(x) + 12 \ln^2(1-x) - 3\pi^2 \right] + 6(x+5) \ln(1-x) \\ &+ \frac{1}{1-x} \left[\frac{3}{2} (1+8x+3x^2) \ln x + 12(1+x^2) \ln x \ln(1-x) \\ &- \frac{1}{2} (1+7x^2) \ln^2 x + \frac{1}{4} (39-24x-15x^2) \right] \right) \\ g(\epsilon) &= \frac{\exp\left(\epsilon(-\gamma_E + \frac{3}{4})\right)}{\Gamma(1+\epsilon)} \end{aligned}$$

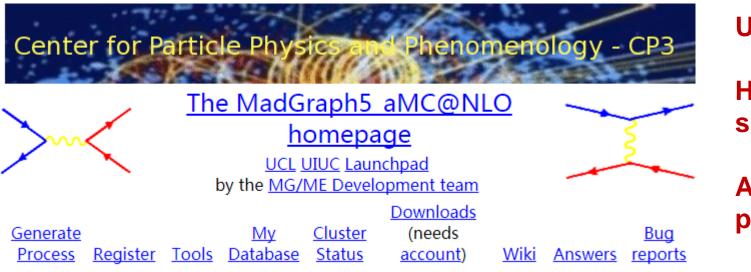
Parameter	Default	Meaning
isr_alpha	0/intrinsic	value of α_{QED} for ISR
isr_order	3	max. order of hard-collinear photon emission
isr_mass	0/intrinsic	mass of the radiating lepton
isr_q_max	$0/\sqrt{s}$	upper cutoff for ISR
?isr_recoil	false	flag to switch on recoil/ p_T
?isr_keep_energy	false	recoil flag to conserve energy in splitting

$$x = 1 - (1 - x')^{1/\epsilon}$$

MC Mapping to avoid inefficiency See more in Sec.15.6 in Whizard Manual

Initial State Radiation

./bin/whizard zh.sin


```
process proc = "e+", "e-" => "Z", "H"
compile
sqrts = 250 GeV
beams = "e+", "e-" => isr
integrate(proc)
simulate (proc) {
n_events = 2000
$sample = "my_events"
sample_format = lhef
```

<pre>Initializing integration for process proc: Beam structure: e+, e- Beam data (collision): e+ (mass = 5.1099700E-04 GeV) e- (mass = 5.1099700E-04 GeV) sqrts = 2.50000000000E+02 GeV</pre>	<pre>Initializing integration for process proc: Beam structure: e+, e- => isr Beam data (collision): e+ (mass = 5.1099700E-04 GeV) e- (mass = 5.1099700E-04 GeV) sqrts = 2.500000000000E+02 GeV</pre>
<pre>Process [scattering]: 'proc' Library name = 'default_lib' Process index = 1 Process components: 1: 'proc_i1': e+, e- => Z, H [omega]</pre>	<pre>Process [scattering]: 'proc' Library name = 'default_lib' Process index = 1 Process components: 1: 'proc_i1': e+, e- => Z, H [omega]</pre>
It Calls Integral[fb] Error[fb] Err[%] Acc Eff[%]	It Calls Integral[fb] Error[fb] Err[%] Acc Eff[%]
VAMP: parameter mismatch, discarding grid file 'proc_m1.vg' 1	VAMP: using grids and results from file 'proc m1.vg'
2 800 2.4016919E+02 4.74E-02 0.02 0.01* 50.86	1 1000 2.1561167E+02 3.04E+00 1.41 0.45* 45.91
3 800 2.4018463E+02 4.98E-02 0.02 0.01 65.36	2 1000 2.1558059E+02 1.98E+00 0.92 0.29* 27.42
3 2400 2.4014992E+02 2.93E-02 0.01 0.01 65.36	3 1000 2.1076954E+02 1.59E+00 0.75 0.24* 51.51
4 9984 2.4015210E+02 4.29E-03 0.00 0.00* 65.35	3 3000 2.1306671E+02 1.15E+00 0.54 0.29 51.51
5 9984 2.4015829E+02 4.25E-03 0.00 0.00* 65.35	VAMP: using grids and results from file 'proc ml.vg'
6 9984 2.4015343E+02 4.24E-03 0.00 0.00* 65.35	4 10000 2.1186554E+02 5.10E-01 0.24 0.24 49.07
	5 10000 2.1033709E+02 5.27E-01 0.25 0.25 48.71
6 29952 2.4015462E+02 2.46E-03 0.00 0.00 65.35	6 10000 2.1245617E+02 4.96E-01 0.23 0.23* 45.38

No ISR: ~240fb

With ISR: ~212fb

MadGraph for CEPC

User friendly

High precision simulation

Advanced for pp colliders

Note: stdhep package should be adjusted to match CEPC framework

MadGraph for CEPC

c/ c/ c/ c/

c/

С

С

Effective Photon approximation Source/PDF/PhotonFlux.f

Improving the Weizsäcker-Williams Approximation in Electron-Proton Collisions hep-ph/9310350

$$f_{\gamma}^{(e)}(y) = \frac{\alpha_{em}}{2\pi} \left[2m_e^2 y \left(\frac{1}{q_{max}^2} - \frac{1}{q_{min}^2} \right) + \frac{1 + (1 - y)^2}{y} \log \frac{q_{min}^2}{q_{max}^2} \right]$$
If Naïvely starting from here, and change y to 1-x.

-> Large instability! Singular when x -> 1

$$f_e(x)dx = \frac{\alpha}{2\pi} \left[\frac{1+x^2}{1-x}\right] \log \frac{Q}{m_e} dx$$

arXiv:1002.0204

MadGraph for CEPC

Singular when x -> 1, -> ISR structure function as in Whizard

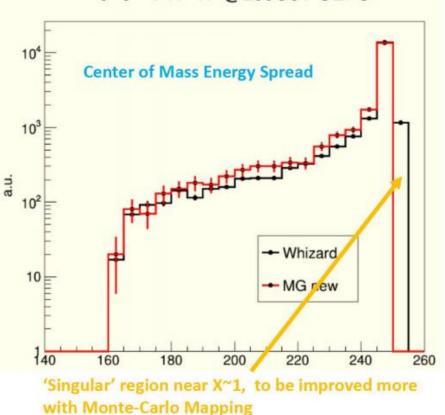
15.6.1 Physics V

Whizard Manual

The ISR structure function is in the most crude approximation (LLA without α corrections, i.e. ϵ^{0})

$$f_0(x) = \epsilon (1-x)^{-1+\epsilon}$$
 with $\epsilon = \frac{\alpha}{\pi} q_e^2 \ln \frac{s}{m^2}$, (15.27)

Including ϵ , ϵ^2 , and ϵ^3 corrections, the successive approximation of the ISR structure function read

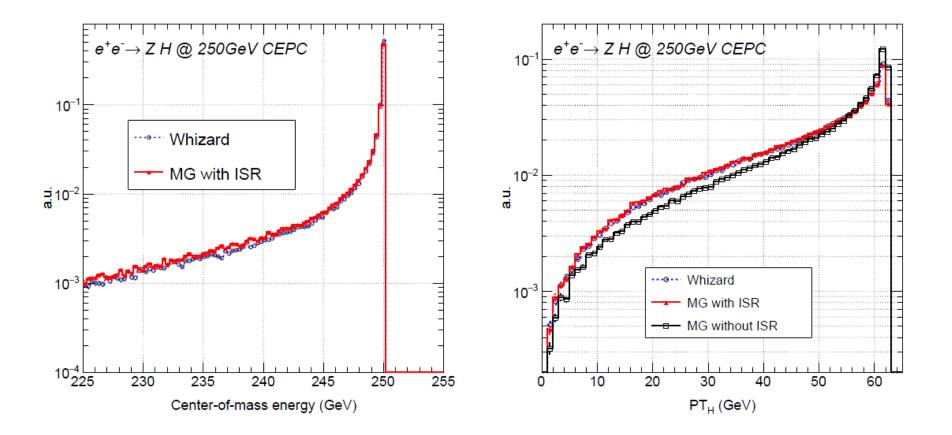

$$f_0(x) = \epsilon (1-x)^{-1+\epsilon}$$
 (15.33)

$$f_1(x) = g_1(\epsilon) f_0(x) - \frac{\epsilon}{2}(1+x)$$
(15.34)

$$f_2(x) = g_2(\epsilon) f_0(x) - \frac{\epsilon}{2}(1+x) - \frac{\epsilon^2}{8} \left(\frac{1+3x^2}{1-x} \ln x + 4(1+x)\ln(1-x) + 5+x \right)$$
(15.35)

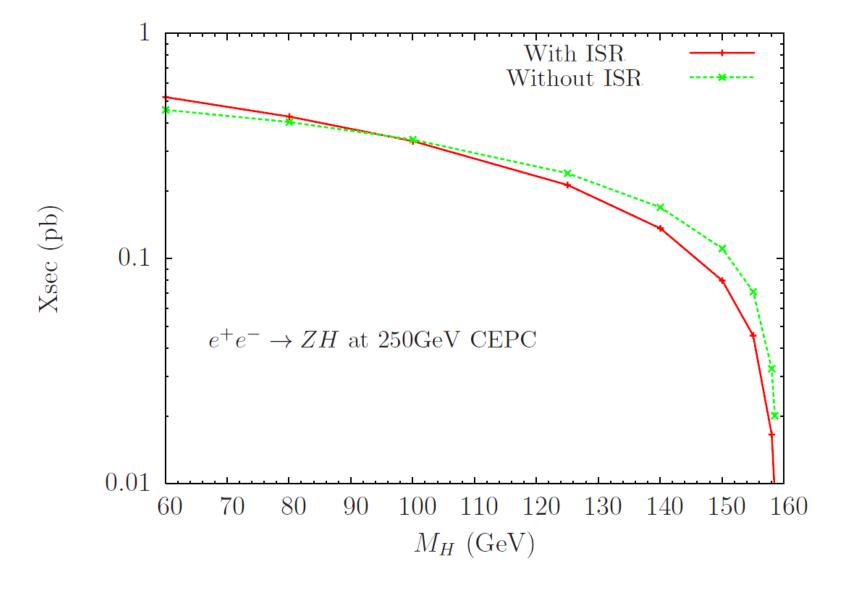
$$\begin{aligned} f_3(x) &= g_3(\epsilon) f_0(x) - \frac{\epsilon}{2}(1+x) \\ &- \frac{\epsilon^2}{8} \left(\frac{1+3x^2}{1-x} \ln x + 4(1+x) \ln(1-x) + 5+x \right) \\ &- \frac{\epsilon^3}{48} \left((1+x) \left[6\operatorname{Li}_2(x) + 12\ln^2(1-x) - 3\pi^2 \right] + 6(x+5)\ln(1-x) \right. \\ &+ \frac{1}{1-x} \left[\frac{3}{2}(1+8x+3x^2) \ln x + 12(1+x^2) \ln x \ln(1-x) \right. \\ &\left. - \frac{1}{2}(1+7x^2) \ln^2 x + \frac{1}{4}(39-24x-15x^2) \right] \right) \end{aligned}$$
(15.36)

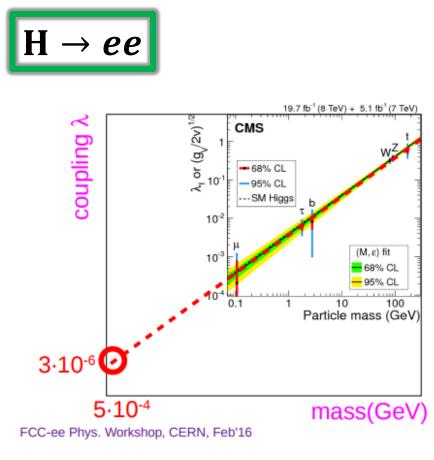
e⁺ e⁻ → W⁺ W⁻ @250GeV CEPC

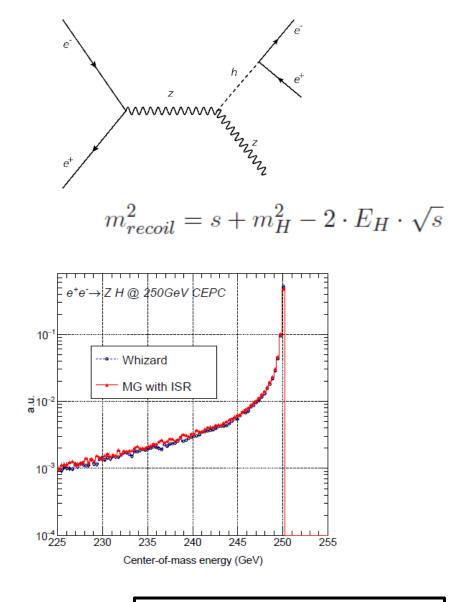

-> Improved by MC mapping, should adjust the phase space generating code

ISR with MG

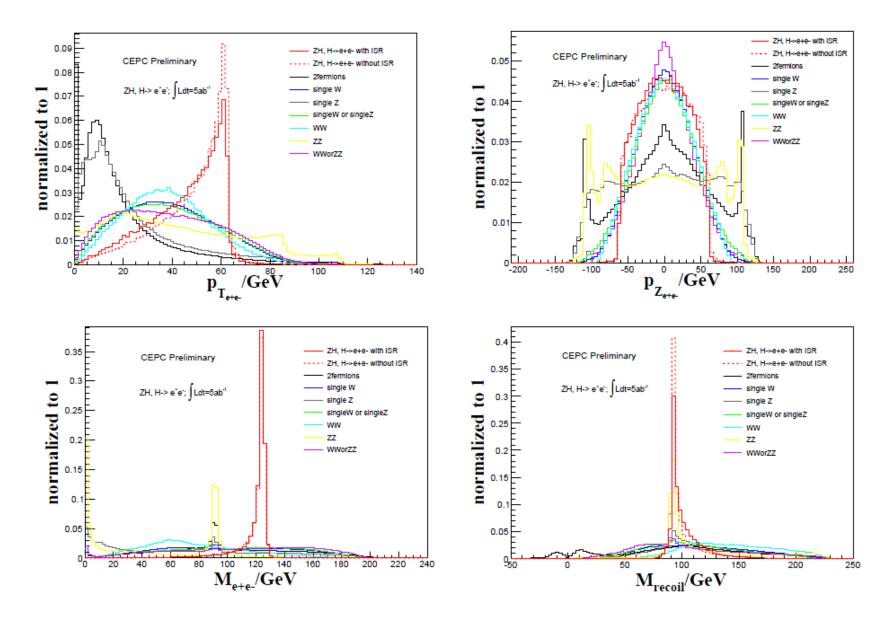
```
tar xavf MG5_aMC_v2.5.5.tar.gz
cd MG5 aMC v2 5 5/
./bin/mg5_aMC
MG5_aMC>generate e + e - > z h
MG5_aMC>output eezh
replace eezh/Subprocesses/genps.f with this new file
replace eezh/Source/PDF/pdg2pdf.f with this new file
MG5 aMC>launch eezh/
run card.dat
3 = lpp1 ! beam 1 type
-3 = lpp2 ! beam 2 type
125.0 = ebeam1 ! beam 1 total energy in GeV
125.0 = ebeam2 ! beam 2 total energy in GeV
=== Results Summary for run: run_01 tag: tag_1 ===
Cross-section : 0.2129 +- 0.0003121 pb
```


0 = lpp1 ! beam 1 type 0 = lpp2 ! beam 2 type Cross-section : 0.2401 +- 6.395e-05 pb



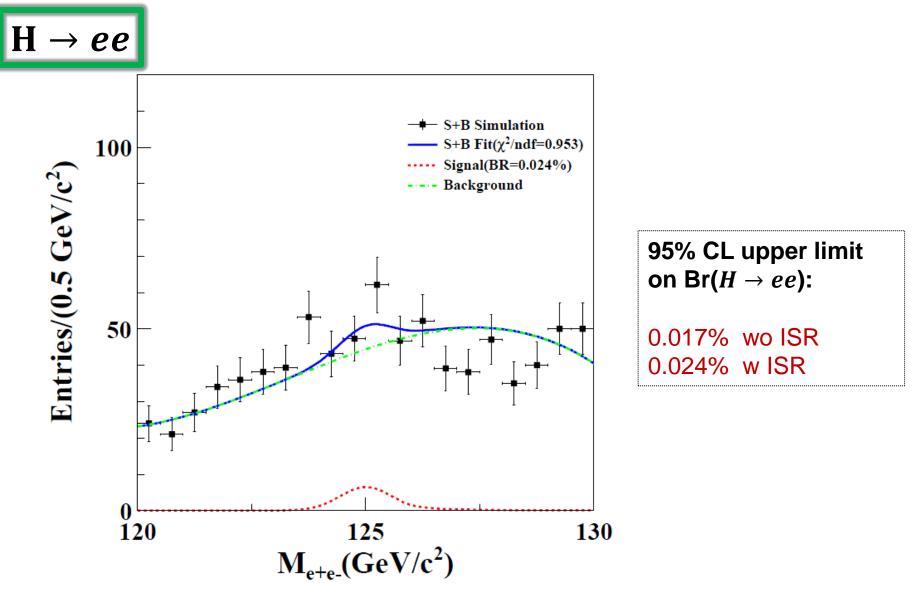

Similar checks have also been done for other processes including $e^+e^- \rightarrow W^+W^-$, W^+W^-Z

Non-Standard Higgs


CMS Run1: 95% CL upper limit as 0.19% <u>FCC-ee:</u> resonant s-channel can be sensitive to around 2 times SM prediction, but depends much on beam energy control

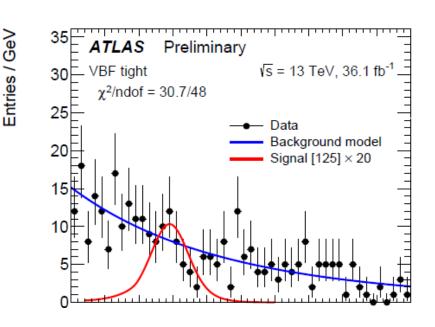
Signal Samples from MG; Bkg samples from CEPC official productions

$H \rightarrow ee$


Distributions of $p_{\text{Te}^+e^-}$, $p_{\text{Ze}^+e^-}$, $M_{e^+e^-}$ and M_{recoil} for signals and backgrounds.

Category	signal	2 fermions	single ZorW	single Z	single W
total	50000	418194802	1259165	7913405	17190655
$N_{e^+} \ge 1, N_{e^-} \ge 1$	47418	36822471	978594	3480494	2260761
$120 \text{ GeV} < M_{e^+e^-} < 130 \text{ GeV}$	34463	1954192	71193	126094	151950
$90 \text{ GeV} < M_{recoil} < 93 \text{ GeV}$	12362	61089	3564	6954	7255
$46 \text{ GeV} < p_{\text{Te^+e^-}} < 63 \text{ GeV}$	8582	6816	1863	1861	3652
$-42 \text{ GeV} < p_{\text{Ze}^+e^-} < 41 \text{ GeV}$	8511	6372	1783	1750	3468
$\Delta \phi < 166^{\circ}$	7404	5131	1696	1651	3233
$\cos_{e^+} \ge -0.07, \ \cos_{e^-} \le 0.14$	3564	241	86	48	161
Category	WW	ZZ	WWorZZ	total back	ground
total	49115	769 496715	2 21902983	520543931	
$N_{e^+} \ge 1, N_{e^-} \ge 1$	64083	9 758732	814608	45756499	
$120 \text{ GeV} < M_{e^+e^-} < 130 \text{ GeV}$	26731	7593	55196	2392949	
$90 \text{ GeV} < M_{recoil} < 93 \text{ GeV}$	1783	1464	2434	84543	
$46 \text{ GeV} < p_{\text{Te^+e^-}} < 63 \text{ GeV}$	868	682	1297	17039	
$-42 \text{ GeV} < p_{\text{Ze}^+e^-} < 41 \text{ GeV}$	837	647	1247	16104	
$\Delta \phi > 166^{\circ}$	702	566	1182	14161	
$\cos_{e^+} \ge -0.07, \cos_{e^-} \le 0.14$	20	178	70	804	

Signal Efficiency: 10.4% wo ISR; 7.1% w ISR

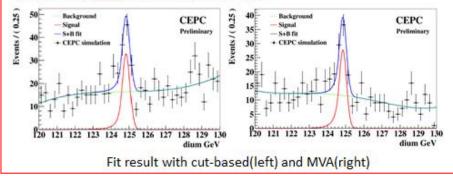

The invariant mass spectrum of e +e – in the inclusive analysis. The dots with error bars represent data from CEPC simulation. The solid (blue) line indicates the fit. The dashed (red) shows the signal (assuming B(H – \rightarrow e +e –)=0.024%) and the long-dashed (green) line is the background.

н					
11	Detector	Signal	luminosity(fb ⁻¹)	\sqrt{s} (TeV)	Significance or Precision
\rightarrow	ILC	vvH	500	1	2.75
	arXiv:1603.04718 arXiv:0911.0006	qqH	250	0.25	1.1
μμ		vvH	250	0.25	1.8

ATL-PHYS-PUB-2013-014 CMS NOTE-13-002

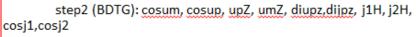
		µ-hat error			
	ℒ(fb⁻¹)	Scenario I	Scenario 2		
ATLAS	300	± 0.39	± 0.38		
CMS	300	± 0.42	± 0.40		
ATLAS	3000	± 0.16	± 0.12		
CMS	3000	± 0.20	± 0.14		

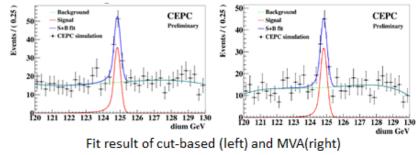
ATLAS scenarios: 1- full sys 2- no theory sys CMS scenarios: 1- run-1 sys 2- reduced sys


The observed (expected) upper limit is 2.8(2.9) times the Standard Model prediction. ATLAS-CONF-2017-14

Inclusive analysis

 Cut-based 	Category	signal	ZZ	WW	ZZorWW	SingleZ	2f
	Preselection	207.3	311312	129869	501590	63658	174037
	120 <dium<130< td=""><td>189.7</td><td>5479</td><td>17126</td><td>57405</td><td>1868</td><td>52525</td></dium<130<>	189.7	5479	17126	57405	1868	52525
	90.8 <recoilu<93.4< td=""><td>118.4</td><td>1207</td><td>868</td><td>2115</td><td>164</td><td>1157</td></recoilu<93.4<>	118.4	1207	868	2115	164	1157
	25 <diupt<62,4< td=""><td>109.5</td><td>951</td><td>697</td><td>1675</td><td>121</td><td>439</td></diupt<62,4<>	109.5	951	697	1675	121	439
	-55.2 <diupz<55.2< td=""><td>107.1</td><td>897</td><td>647</td><td>1613</td><td>112</td><td>391</td></diupz<55.2<>	107.1	897	647	1613	112	391
	cosum<0.28	69.7	480	55	277	55	164
	cosup>-0.28	58.3	348	29	142	44	116
	puu>-0.996	58.0	346	27	142	43	70
	efficiency	28.0%					


• MVA(BDTG) :muon momentum and angles



•ZqqHuu analysis

 Cut-based 	Category	signal	ZZ	WW	ZZorWW	SingleZ	2f
	Preselection	207.3	390775	183751	463361	101164	0
	120 <invariant mass<130<="" td=""><td>141.6</td><td>3786</td><td>181</td><td>227</td><td>244</td><td>0</td></invariant>	141.6	3786	181	227	244	0
	jet1m<4.2 jet2m<2.8	133.0	3216	111	0	9	0
	dijm>76.0	127.5	2917	2	0	8	0
	90.9 <recoilu<93.5< td=""><td>78.7</td><td>893</td><td>0</td><td>0</td><td>0</td><td>0</td></recoilu<93.5<>	78.7	893	0	0	0	0
	20 <diupt<62.3< td=""><td>74.9</td><td>743</td><td>0</td><td>0</td><td>0</td><td>0</td></diupt<62.3<>	74.9	743	0	0	0	0
	-58 <diupz<58< td=""><td>74.2</td><td>714</td><td>0</td><td>0</td><td>0</td><td>0</td></diupz<58<>	74.2	714	0	0	0	0
	cosup>-0.94	73.0	691	0	0	0	0
	cosum<0.94	71.6	665	0	0	0	0
	efficiency	50.6%					

TMVA step1 (MLP): jet1m,jet2m,dijm,recoil

Significance (σ)						
	Inclusive $Z \rightarrow qq$ $Z \rightarrow vv$					
MVA	7.37	8.17	2.62			
Cut	7.67	8.12	1.91			

To appear soon

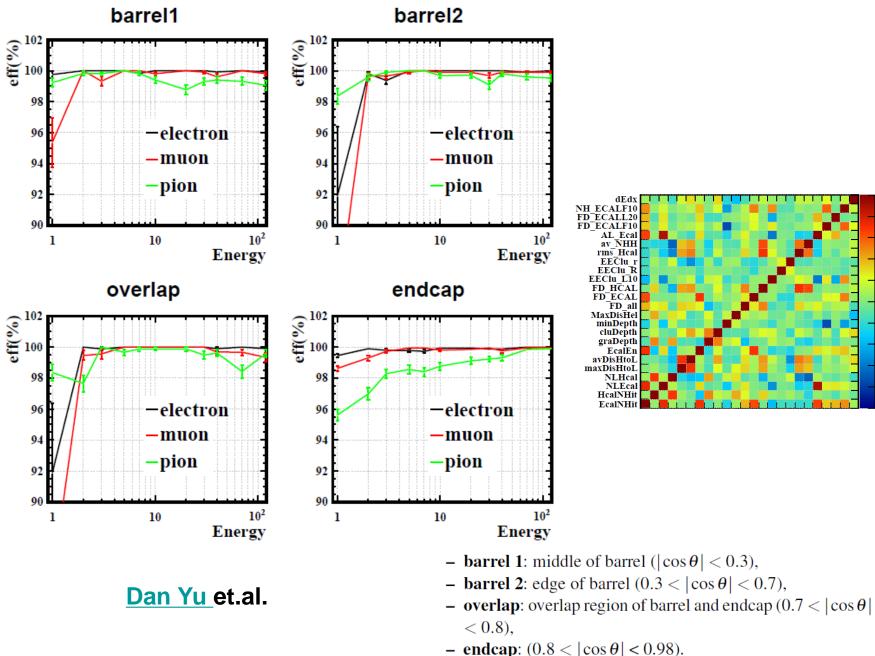
Together with optimization results on tracker size and magnetic field in CDR

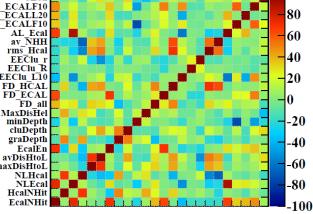
 $1.04_{-0.13}^{+0.13}$

Improved from +-17% in pre-CDR

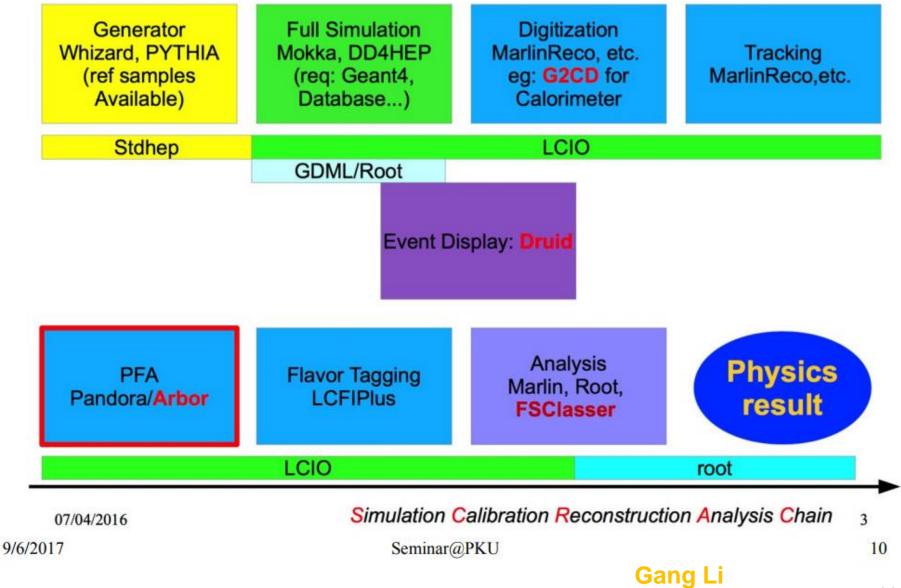
- Initial State Radiation Effect has been implemented in MadGraph
- <u>A recipe</u> for LO simulation is ready
- More extensions: NLO, polarized beam, ep collider...
- Start contacting MG team for more possibilities and more support for CEPC
- $H \rightarrow ee, \mu\mu$ results from CEPC
- Being finalized to add into CDR, together with detector optimization results
- Exploited also as Validation for Fast Simulation (See next talk by Dr. Gang Li)

Thanks a lot!


Parameters	\mathbf{Symbol}	LEP2	CEPC	ILC250	ILC500
Center of mass energy	E_{cm} [GeV]	209	240	250	5 00
Bunch population	$N \; [\times 10^{10}]$	58	37.1	2	2
Horizontal beam size at IP	$\sigma_x \; [\mathrm{nm}]$	270000	73700	729	474
Vertical beam size at IP	σ_y [nm]	3500	160	7.7	5.9
Bunch length	$\sigma_z \; [\mu \mathrm{m}]$	16000	2260	300	300
Horizontal beta function at IP	$\beta_x \; [\mathrm{mm}]$	1500	800	13	11
Vertical beta function at IP	$\beta_y \; [\mathrm{mm}]$	50	1.2	0.41	0.48
Normalized horizontal emittance at IP	$\gamma \epsilon_x \; [\mathrm{mm} \cdot \mathrm{mrad}]$	9.81	1594.5	10	10
Normalized vertical emittance at IP	$\gamma \epsilon_y \; [\mathrm{mm} \cdot \mathrm{mrad}]$	0.051	4.79	0.035	0.035
Luminosity	$L \left[10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1} \right]$	0.013	1.8	0.75	1.8
Beamstrahlung parameter	$\Upsilon_{av} [imes 10^{-4}]$	0.25	4.7	200	620


Qinglei Xiu, Hongbo Zhu, Xinchou Lou

The beamstrahlung is usually characterised by the beamstrahlung parameter Υ :


$$\Upsilon = \frac{2}{3} \frac{h\omega_c}{E}$$

where $\omega_c = \frac{3}{2}\gamma^3 c/\rho$ denotes the critical energy of synchrotron radiation, ρ the bending radius of the particle trajectory and E the beam particle energy before radiation. The higher the Υ , the more beamstrahlung photons with higher energies will be emitted.

SCRAC

Feasibility & Optimized Parameters

Feasibility analysis: TPC and Passive Cooling Calorimeter is valid for CEPC

	CEPC_v1 (~ ILD)	Optimized (Preliminary)	Comments
Track Radius	1.8 m	>= 1.8 m	Requested by Br(H->di muon) measurement
B Field	3.5 T	3 T	Requested by MDI
ToF	-	50 ps	Requested by pi-Kaon separation at Z pole
ECAL Thickness	84 mm	84(90) mm	84 mm is optimized on Br(H->di photon) at 250 GeV; 90mm for bhabha event at 350 GeV
ECAL Cell Size	5 mm	10 – 20 mm	Passive cooling request ~ 20 mm. 10 mm should be highly appreciated for EW measurements – need further evaluation
ECAL NLayer	30	20 – 30	Depends on the Silicon Sensor thickness
HCAL Thickness	1.3 m	1 m	-
HCAL NLayer	48	40	Optimized on Higgs event at 250 GeV; Margin might be reserved for 350 GeV.