Electroweak production of two jets in association with a Z boson and a highenergy photon with the ATLAS detector

Zhijun Liang (IHEP, CAS) 梁志均 中国科学院高能物理研究所 On behalf of ATLAS collaboration

Latest ATLAS news

https://arxiv.org/abs/1705.01966 New insight into the Standard Model

ATLAS releases the first study of a pair of neutral bosons produced in association with a high-mass dijet system

By ATLAS Collaboration, 9th May 2017

Introduction

- Study of the VBS Zγ production at 8 TeV
 - Measure the EW Zy fiducial production cross section that is sensitive to VBS process
 - Limits on anomalous Quartic Gauge Couplings (aQGC)
- Motivation:
 - higher production rate than WW/ZZ/WZ VBS processes
 - Important test of SM EWK sector and EFT parameterization of anomalous couplings
- Channels :
 - Leptonic channel (Z->ee, Z->μμ)
 - Neutrino channel (Z->vv)

Reminder of Quartic Gauge Boson Couplings (QGCs)

- SM model predicts gauge boson self coupling
 - Four gauge boson vertex:
 - WWYY , WWZY , WWWW, WWZZ, ZZZZ ...

Vector boson scattering (VBS) is one of the process to stduy QGCs.

Diboson + two forward jets in event topology

Fiducial region for Lepontic channel

Dataset: 8TeV full dataset collected by ATLAS

Trigger : Use both Single lepton and di-lepton trigger

Objects	Particle- (Parton-) level selection
Leptons	$p_{\rm T}^{\ell}$ > 25 GeV and $ \eta^{\ell} < 2.5$
	Dressed leptons, OS charge
Photon (kinematics)	$E_{\rm T}^{\gamma} > 15 \text{ GeV}, \eta^{\gamma} < 2.37$
	$\Delta R(\ell,\gamma) > 0.4$
Photon (isolation)	$E_{\rm T}^{\rm iso} < 0.5 \cdot E_{\rm T}^{\gamma}$ (no isolation)
FSR cut	$m_{\ell\ell} + m_{\ell\ell\gamma} > 182 \text{ GeV}$
	$m_{\ell\ell} > 40 \text{ GeV}$
Particle jets (Outgoing partons)	At least two jets (outgoing partons)
(j = jets)	$E_{\rm T}^{j(p)} > 30 \text{ GeV}, \eta^{j(p)} < 4.5$
(p = outgoing quarks or gluons)	$\Delta R(\ell, j(p)) > 0.3$
	$\Delta R(\gamma, j(p)) > 0.4$
Control region (CR)	$150 < m_{jj(pp)} < 500 \text{ GeV}$
Search region (SR)	$m_{jj(pp)} > 500 \text{ GeV}$
aQGC region	$m_{jj(pp)} > 500 \text{ GeV}$
	$E_{\rm T}^{\gamma} > 250 { m GeV}$

Effect of FSR cut

Kinematics distribution

- Inclusive region: $|+|^{-}\gamma + 2$ jets
- Signal regions(SR) : $||^{+}|^{-}\gamma + 2 \text{ jets} + Mjj > 500 \text{GeV}$
- Control regions(CR): $|+|^{-}\gamma + 2$ jets + 150GeV<Mjj<500GeV

Analysis Overview

- Cross section measurement:
 - Separate the QCD and EW components assuming interference negligible
 - The fiducial region for EW cross section (signal-enhanced) : mjj>500 GeV
 - Control region is build (background enhanced): 150<mjj<500 GeV
 - control normalisation of QCD Zγ background
 - constraint systematic uncertainties
 - Limits on anomalous Quartic Gauge Couplings (aQGC) in high γ pT region

Background in charged-lepton channel

- Dominant Background (QCD Zγ + 2jets)
 - data-driven estimation
- "EWK" backgrounds
 - ttbar + gamma : Madgraph
 - Diboson (mainly WZ)

Background summary in charged-lepton channel

- ~15% Zjets contribution
- ~70% Ζγ QCD

	Inclusive region		Control region		Search region	
	$Z(\ell^+\ell^-)\gamma$	$+ \ge 2$ jets	$150 < m_{jj} < 500 \text{ GeV}$		$m_{jj} > 5$	00 GeV
	e ⁺ e [−] γjj	$\mu^+\mu^-\gamma jj$	e ⁺ e [−] γjj	$\mu^+\mu^-\gamma jj$	e ⁺ e [−] γjj	$\mu^+\mu^-\gamma jj$
Data	781	949	362	421	58	72
Z+jets bkg.	134 ± 36	154 ± 42	57 ± 16	67 ± 18	8.5 ± 2.5	9.4 ± 2.7
Other bkg. $(t\bar{t}\gamma, WZ)$	88 ± 17	91 ± 18	47 ± 9	46 ± 9	5.8 ± 1.1	5.0 ± 1.0
$N_{\rm data} - N_{\rm bkg}$	559 ± 46	704 ± 53	258 ± 24	308 ± 27	44 ± 7	58 ± 8
$N_{Z\gamma QCD}$ (Sherpa MC)	583 ± 41	671 ± 47	249 ± 24	290 ± 26	37 ± 5	41 ± 5
$N_{Z\gamma EWK}$ (Sherpa MC)	25.4 ± 1.5	27.3 ± 1.7	8.6 ± 0.6	9.3 ± 0.6	11.2 ± 0.8	11.6 ± 0.7
$N_{Z\gamma}$ (Sherpa MC)	608 ± 42	698 ± 49	258 ± 25	299 ± 27	48 ± 6	53 ± 6

Kinematics distribution: photon pT (pre-fit)

Signal and background shape in photon pT is similar

Kinematics distribution: Number of jets (pre-fit)

Signal and background shape is similar

Kinematics distribution: $Z\gamma$ centrality (pre-fit)

 $y_{i1} - y_{i2}$

• Signal is more likely to has low $Z\gamma$ centrality,

 $\zeta_{Z\gamma}$

Cross section measurement

- Binned fit Zgamma based on $Z\gamma$ centrality
 - Simultaneous fit on both CR and SR regions.
 - Signal template from signal MC

Cross section results

Theory prediction from VBFNLO

Channel	Phase-space	Process	Measured	Predicted
	region	type	cross-section [fb]	cross-section [fb]
$Z(\ell^+\ell^-)\gamma jj$	Search region	EWK	$1.1 \pm 0.5 \text{ (stat)} \pm 0.4 \text{ (syst)}$	0.94 ± 0.09
$Z(\ell^+\ell^-)\gamma jj$	Search region	EWK+QCD	3.4 ± 0.3 (stat) ± 0.4 (syst)	4.0 ± 0.4
$Z(\ell^+\ell^-)\gamma jj$	Control region	EWK+QCD	21.9 ± 0.9 (stat) ± 1.8 (syst)	22.9 ± 1.9

Systematics

- Jet energy scale is one of the major systematics
 - Especially for the forward jet calibration
- Theory systematics
 - Uncertainty due to the choice of QCD scale

Source of	EWK [%] Total (EWK+QCD) [%]		
uncertainty		SR	CR
Statistical	40	9	4
Jet energy scale	36	9	4
Theory	10	5	4
All other	8	5	6
Total systematic	38	11	8

Anomalous quartic gauge-boson couplings

Zγ+dijet VBS : photon+ two opposite charge leptons + dijet

- Sensitive to QGCs in WWZy vertex
- No contamination from aTGCs Wγ+dijet VBS

Anomalous quartic gauge-boson couplings

Z
 yjj VBS

$$\mathcal{L} = \mathcal{L}^{\text{SM}} + \sum_{i} \frac{c_i}{\Lambda^2} O_i + \sum_{j} \frac{f_j}{\Lambda^4} O_j.$$

- Sensitive to WWAZ ,ZZZA, ZAAA aQGCs coupling
- Effective field theory

Higgs field		Higgs -	Gaug	e boson	i field(L _№) Gai	uge bos	son field	d (L _⊤)
$\mathcal{L}_{S,0} = \left[(D_{\mu} \Phi)^{\dagger} D_{\nu} \Phi \right] \times \left[(D_{\mu} \Phi)^{\dagger} D^{\mu} \Phi \right] + \left[(D_{\mu} \Phi)^{\dagger} D^{\mu} \Phi \right] \times \left[(D_{\mu} \Phi)^{\dagger} D^{\mu} \Phi \right] + \left[(D_{\mu} \Phi)^{\mu} \Phi \right] + \left[(D_{\mu} \Phi)^{\mu$	$({}^{\mu}\Phi)^{\dagger} D^{\nu}\Phi$] $({}^{\nu}\Phi)^{\dagger} D^{\nu}\Phi$]	$C_{M,0} = \operatorname{Tr} \begin{bmatrix} W \\ C_{M,1} \end{bmatrix} = \operatorname{Tr} \begin{bmatrix} W \\ C_{M,2} \end{bmatrix} = \begin{bmatrix} B_{\mu\nu} \\ B_{\mu\nu} \end{bmatrix}$ $C_{M,3} = \begin{bmatrix} B_{\mu\nu} \\ C_{M,3} \end{bmatrix} = \begin{bmatrix} D_{\mu\nu} \\ C_{M,4} \end{bmatrix} = \begin{bmatrix} D_{\mu\nu} \\ D_{\mu} \\ C_{M,5} \end{bmatrix} = \begin{bmatrix} D_{\mu\nu} \\ D_{\mu} \\ C_{M,6} \end{bmatrix} = \begin{bmatrix} D_{\mu\nu} \\ D_{\mu} \end{bmatrix}$	$\begin{split} \hat{V}_{\mu\nu}\hat{W}^{\mu\nu} \hat{W}^{\mu\nu} \Big] \times \Big[\\ \hat{V}_{\mu\nu}\hat{W}^{\nu\beta} \Big] \times \Big[\\ B^{\mu\nu} \Big] \times \Big[(D_{\beta}^{\mu} B^{\nu\beta} \Big] \times \Big[(D_{\beta}^{\mu} \Phi)^{\dagger} \hat{W}_{\beta\nu} D^{\mu} \Phi \\ \Phi)^{\dagger} \hat{W}_{\beta\nu} D^{\nu} \Phi \\ \Phi)^{\dagger} \hat{W}_{\beta\nu} \hat{W}^{\beta\nu} \\ \Phi)^{\dagger} \hat{W}_{\beta\nu} \hat{W}^{\beta\mu} \end{split}$	$ \begin{array}{l} (D_{\beta}\Phi)^{\dagger} D^{\beta}\Phi \\ (D_{\beta}\Phi)^{\dagger} D^{\mu}\Phi \\ \Phi)^{\dagger} D^{\beta}\Phi \\ \Phi)^{\dagger} D^{\mu}\Phi \\ \Phi)^{\dagger} D^{\mu}\Phi \\ \Phi \\$	$egin{array}{rll} \mathcal{L}_{T,0} &=& T \ \mathcal{L}_{T,1} &=& T \ \mathcal{L}_{T,2} &=& T \ \mathcal{L}_{T,5} &=& T \ \mathcal{L}_{T,6} &=& T \ \mathcal{L}_{T,7} &=& T \ \mathcal{L}_{T,8} &=& T \ \mathcal{L}_{T,9} &=& T \end{array}$	$\begin{aligned} & \Pr\left[\hat{W}_{\mu\nu}\hat{W}^{\mu\nu}\right] \\ & \Pr\left[\hat{W}_{\alpha\nu}\hat{W}^{\mu\beta}\right] \\ & \Pr\left[\hat{W}_{\alpha\mu}\hat{W}^{\mu\beta}\right] \\ & \Pr\left[\hat{W}_{\mu\nu}\hat{W}^{\mu\nu}\right] \\ & \Pr\left[\hat{W}_{\alpha\nu}\hat{W}^{\mu\beta}\right] \\ & \Pr\left[\hat{W}_{\alpha\mu}\hat{W}^{\mu\beta}\right] \\ & \Pr\left[\hat{W}_{\alpha\mu}B^{\mu\nu}B_{\alpha\beta}B_{\beta\nu}$	$ \begin{vmatrix} \times \operatorname{Tr} \left[\hat{W}_{\alpha\beta} W \\ \times \operatorname{Tr} \left[\hat{W}_{\mu\beta} W \\ \right] \times \operatorname{Tr} \left[\hat{W}_{\beta\nu} W \\ \times B_{\alpha\beta} B^{\alpha\beta} \\ \times B_{\mu\beta} B^{\alpha\nu} \\ \times B_{\beta\nu} B^{\nu\alpha} \\ B^{\alpha\beta} \\ B^{\alpha\beta} \\ B^{\alpha\beta} \\ B^{\alpha\beta} \end{vmatrix} $	$\hat{W}^{\alpha\beta}$] $\hat{W}^{\alpha\nu}$] \hat{W}^{\nulpha}]	
	WWWW	WWZZ	ZZZZ	WWAZ	WWAA	ZZZA	ZZAA	ZAAA	AAAA
$\mathcal{L}_{S,0}, \mathcal{L}_{S,1}$	X	Х	X	0	0	0	0	0	0
$\mathcal{L}_{M,0}, \mathcal{L}_{M,1}, \mathcal{L}_{M,6}, \mathcal{L}_{M,7}$	X	X	X	Х	Х	Х	X	0	0
$\mathcal{L}_{M,2}$, $\mathcal{L}_{M,3}$, $\mathcal{L}_{M,4}$, $\mathcal{L}_{M,5}$	0	Х	Х	Х	Х	Х	X	0	0
$\mathcal{L}_{T,0}$, $\mathcal{L}_{T,1}$, $\mathcal{L}_{T,2}$	X	Х	Х	Х	Х	X	X	X	X
$\mathcal{L}_{T,5}$, $\mathcal{L}_{T,6}$, $\mathcal{L}_{T,7}$	0	Х	Х	Х	Х	Х	Х	Х	X
$\mathcal{L}_{T,9}$, $\mathcal{L}_{T,9}$	0	0	Х	0	0	Х	X	Х	X

O.J.P.Eboli, et.al. Phys.Rev.D74:073005,2006

Anomalous quartic gauge-boson couplings Lepontic channel

• aQGCs region = SR region + $ET(\gamma)$ >250 GeV

Fiducial region for neutrino channel

Objects	Particle- (Parton-) level selection
Neutrinos	$E_{\rm T}^{\nu\bar{\nu}} > 100 {\rm GeV}$
Photon (kinematics)	$E_{\rm T}^{\gamma} > 150 {\rm GeV}, \eta^{\gamma} < 2.37$
	$\Delta R(\ell,\gamma) > 0.4$
Photon (isolation)	$E_{\mathrm{T}}^{\mathrm{iso}} < 0.5 \cdot E_{\mathrm{T}}^{\gamma}$
Generator-level jets (Outgoing quarks)	At least two jets (quarks)
$(pp \rightarrow Z\gamma qq)$	$E_{\rm T}^{j(q)} > 30 \text{ GeV}, \eta^{j(q)} < 4.5$
	$\Delta R(\gamma, j(q)) > 0.4$
Event kinematic	$ \Delta \phi(E_{\mathrm{T}}^{\nu \bar{\nu}}, \gamma j j(qq)) > \frac{3\pi}{4}$
selection	$ \Delta \phi(E_{\mathrm{T}}^{ u ar{ u}},\gamma) >rac{\pi}{2}$
	$ \Delta \phi(E_{\mathrm{T}}^{ u ar{ u}}, j(q)) > 1$
	$E_{\rm T}^{\gamma} > 150 { m GeV}$
	$ \Delta y_{jj(qq)} > 2.5$
	$\zeta_{\gamma} < 0.3$
	$p_{\mathrm{T}}^{\mathrm{balance}} < 0.1$
	$m_{ii(aa)} > 600 \text{ GeV}$

Background composition in neutrino channel

Major backgrounds

 $(Z \rightarrow vv)\gamma$ QCD – from MC (for aQGC limits).

A combined cross section is measured together with VBS Znng in a aQGC sensitive region

W+y – shape from MC with normalization from data in CR region with inversed charged lepton veto. Same technique as in Zy(y) analysis.

Extrapolation to aQGC phase space done using MC. Stability for MC vs data Transfer Factor (TF) checked for VBS cuts.

W→ev – data-driven method: fake-rate from Z peak, $e+E_T$ (miss) control region. Same technique as in $Z\gamma(\gamma)$ analysis.

No extrapolation, since background can be estimated for VBS region directly.

Z+jets - data-driven method: ABCD based on photon ID and Isolation. *Same technique as in Zγ channel.*

Same extrapolation as for $Z(II)\gamma$.

γ+jet – data-driven method: ABCD based on E_T(miss) and Δφ(E_T(miss),jets). Extrapolation was done using data control region. R_MC stability was checked vs VBS topology cuts.

Background composition in neutrino channel

Wgamma is major background

	$m_{jj} > 600 {\rm GeV}$
	$E_{\rm T}^{\tilde{\gamma}} > 150 {\rm GeV}$
	νīγjj
Data	4
Z+jets background	0.3 ± 0.2
$W(\ell \nu)\gamma$ +jets background	1.1 ± 0.5
γ +jets background	0.13 ± 0.08
W(ev)+jets background	0.09 ± 0.04
$t\bar{t}\gamma$, WZ background	-
$N_{\rm data} - N_{\rm bkg}$	2.4 ± 2.0
$N_{Z\gamma QCD}$ (Sherpa MC)	0.29 ± 0.07
$N_{Z\gamma EWK}$ (Sherpa MC)	0.65 ± 0.05
$N_{Z\gamma}$ (Sherpa MC)	0.9 ± 0.1

Kinematics distribution:

Anomalous quartic gauge-boson couplings Neutrino channel

aQGCs limits

aQGCs limit from this ATLAS analysis is similar to corresponding CMS analysis

	Limits 95% CL	Measured [TeV ⁻⁴]	Expected [TeV ⁻⁴]
	f_{T9}/Λ^4	[-3.9, 3.9]	[-2.7, 2.8]
	f_{T8}/Λ^4	[-1.8, 1.8]	[-1.3, 1.3]
	f_{T0}/Λ^4	[-3.4, 2.9]	[-3.0, 2.3]
ATLAS $Z(\rightarrow \ell \bar{\ell} / \nu \bar{\nu}) \gamma$ -EWK	f_{M0}/Λ^4	[-76, 69]	[-66, 58]
	f_{M1}/Λ^4	[-147, 150]	[-123, 126]
	f_{M2}/Λ^4	[-27, 27]	[-23, 23]
	f_{M3}/Λ^4	[-52, 52]	[-43, 43]
	f_{T9}/Λ^4	[-4.0, 4.0]	[-6.0, 6.0]
	f_{T8}/Λ^4	[-1.8, 1.8]	[-2.7, 2.7]
CMS $Z(\rightarrow \ell \bar{\ell})\gamma$ -EWK	f_{T0}/Λ^4	[-3.8, 3.4]	[-5.1, 5.1]
	f_{M0}/Λ^4	[-71,75]	[-109, 111]
	f_{M1}/Λ^4	[-190, 182]	[-281, 280]
	f_{M2}/Λ^4	[-32, 31]	[-47, 47]
	f_{M3}/Λ^4	[-58, 59]	[-87, 87]
	f_{T0}/Λ^4	[-5.4, 5.6]	[-3.2, 3.4]
	f_{M0}/Λ^4	[-77,74]	[-47, 44]
CMS $W(\rightarrow \ell \nu)\gamma$ -EWK	f_{M1}/Λ^4	[-125, 129]	[-72, 79]
	f_{M2}/Λ^4	[-26, 26]	[-16, 15]
	f_{M3}/Λ^4	[-43, 44]	[-25, 27]

aQGCs limits with form factor

$$f \rightarrow \left(1 + \frac{s}{\Lambda_{\rm FF}^2}\right)^{-n} \times f.$$

- In order to avoid the aQGCs model violating unitarity.
- We also provide limits with form factors

Summary

- Observed significance for $Z\gamma j j EWK$ production: 2σ
- The total Zγ j j production (EWK+QCD) cross-section is also measured in signal region and control regions.
- aQGCs Limits are set using high γ pT regions.

Backup

Higgs-bottom Yukawa coupling

- H→bb⁻has the largest predicted branching ratio (~58%)
 - Test of Yukawa coupling between b-quarks and Higgs boson
- Evidence of fermionic decays in Run 1:
 - $H \rightarrow bb: 2.6\sigma$ (expected 3.7 σ)

channel	Reference	Integrated Lumiosity
VH(bb⁻)	ATLAS-CONF-2016-091	13.2 fb ⁻¹ (13TeV)
VBF H(bb) γ	ATLAS-CONF-2016-063	12.5 fb ⁻¹ (13TeV)

VBF H(bb) γ

ATLAS-CONF-2016-063

- Search for H->bb in VBF events containing a central photon
- Advantages of requiring a photon
 - extra handle for trigger
 - suppresses QCD background containing initial state gluons
 - Special VBF production
 - Sensitive to WWH VBF production
 - not sensitive to ZZH VBF
- Existing results for inclusive VBF (H->bb)
 - ATLAS in Run 1
 - observed (expected) upper limit : 4.4 (5.4) x SM
 - CMS in Run 1
 - observed (expected) significance : 2.2 (0.8) x SM
 - observed (expected) upper limit : 5.5 (2.5) x SM
 - CMS in Run 2 (2015 data)
 - observed (expected) upper limit: 3.0 (5.0) x SM

VBF H(bb) γ : event selection

ATLAS-CONF-2016-063

- Trigger:
 - L1 trigger: single photon (pT > 25 GeV)
 - High level trigger: 4 jets pT > 35 GeV, mjj> 700 GeV
- Offline Selection:
 - Tight ID photon, pT > 30 GeV
 - 4 jets with pT> 40 GeV
 - 2central(|n|<2.5) b-tagge djets
 - pT(bb)>80GeV
 - mjj> 800 GeV

Events ATLAS Simulation Preliminary 0.12 🛛 NonRes Bkgd √s = 13 TeV 0.1 0.08 0.06 0.04 0.02 -0.6 -0.20.2 0.4 -0.4 0 0.6 **BDT** response

BDT discriminant

 $\Delta R(jet, \gamma), m_{jj}, \Delta \eta_{jj}, H_T^{soft}$, jet width, γ centrality, $p_T^{balance}$

- Define 3 regions with different S/B
- Fit m_{bb} in 3 regions

VBF H(bb) γ signal extraction

ATLAS-CONF-2016-063

 Non-resonant background (γ+jets) estimated with 2nd order polynomial fit.

Result	$H(\to b\bar{b})+\gamma jj$	$Z(\to b\bar{b})+\gamma jj$
Expected significance	0.4	1.3
Expected <i>p</i> -value	0.4	0.1
Observed <i>p</i> -value	0.9	0.4
Expected limit	$6.0 \begin{array}{c} +2.3 \\ -1.7 \end{array}$	1.8 + 0.7 - 0.5
Observed limit	4.0	2.0
Observed signal strength μ	-3.9 $^{+2.8}_{-2.7}$	0.3 ±0.8

VBF H (bb) γ production cross section limit

Expected 95% CL limit:

 $6.0^{+2.3}_{-1.7}$

> Observed 95% CL limit:

4×(σ×BR)SM

Table 4: Summary of the main relative uncertainties in the MC-based EWK and QCD yields for the electron (muon when different) and neutrino channels in the aQGC region. The uncertainties in the Z+jets, $W(\ell v)\gamma$ +jets, γ +jets, and W(ev)+jets yields, estimated with data, are detailed in the text.

Source of	EWK yie	eld [%]	QCD yie	ld [%]
uncertainty	$\ell^+\ell^-$ channel	$\nu\bar{\nu}$ channel	$\ell^+\ell^-$ channel	$\nu\bar{\nu}$ channel
Trigger	0.2 (0.4)	2	0.2 (0.4)	2
Pile-up		0	.6	
Lepton selection	3.8 (2.3)	-	3.8 (2.3)	-
$E_{\rm T}^{\rm miss}$ reconstruction	-	0.4	-	0.4
Photon selection	6.5	3.3	6.5	3.3
Jet reconstruction	2.5	3.2	12	3.2
Total experimental	8.0 (7.4)	5.1	13	5.1
Theory	8.7	4.1	3.8	4.1

Table 2: Summary of the dominant experimental systematic uncertainties in the event yield in the CR and S
for the electron (muon when different) channel and for the signal and main background components.

.

Source of	EWK yield [%]		QCD yield [%]		Bkg. yield [%]	
uncertainty	CR	SR	CR	SR	CR	SR
Trigger	0.2 (0.4)					
Pile-up	0.6					
Lepton selection	3.8 (2.3)					
Photon selection	1.6					
Jet reconstruction	1.1	2.5	5.0	12	4.9	12
Bkg. 2D sideband	-	-	-	-	26	26
Total experimental	4.3 (3.1)	4.9 (3.8)	6.5 (5.8)	13 (12)	27 (27)	29 (29)
Theory	5.2	8.7	5.6	3.8	5.6	3.8