$\eta' \rightarrow \eta \pi \pi$ within one-loop U(3) Resonance Chiral Theory and its unitarisation

Sergi Gonzàlez-Solís¹

work in progress with Emilie Passemar

Institute of Theoretical Physics Chinese Academy of Sciences

4th workshop on chiral effective field theory

Xi'an, China, 16 october 2017

¹sgonzalez@itp.ac.cn

Outline

Introduction: framework and motivation

2 Structure of the decay amplitude

Chiral Perturbation Theory

- Low-energy EFT of QCD for light mesons i.e. $\pi^{\pm,0}$, K^{\pm} , K^{0} , \bar{K}^{0} , η_{8} associated to $SU(3)_L \otimes SU(3)_R \xrightarrow{\text{SCSB}} SU(3)_V$ exhibited by QCD
- Perturbative expansion in terms of p^2 and m_a : $\mathcal{L} = \mathcal{L}_2 + \mathcal{L}_4 + \dots$

$$\mathcal{L}_{2} = \frac{F^{2}}{4} \langle u_{\mu} u^{\mu} \rangle + \frac{F^{2}}{4} \langle \chi_{+} \rangle, \quad \phi = \begin{pmatrix} \frac{1}{\sqrt{2}} \pi_{3} + \frac{1}{\sqrt{6}} \eta_{8} & \pi^{+} & K^{+} \\ \pi^{-} & -\frac{1}{\sqrt{2}} \pi_{3} + \frac{1}{\sqrt{6}} \eta_{8} & K^{0} \\ K^{-} & \bar{K}^{0} & -\frac{2}{\sqrt{6}} \eta_{8} \end{pmatrix},$$

$$u^2 = e^{i\frac{\sqrt{2}\phi}{F}}, \quad \chi = 2B\mathcal{M}, \quad \chi_{\pm} = u^{\dagger}\chi u^{\dagger} \pm u\chi^{\dagger}u, \quad u_{\mu} = iu^{\dagger}D_{\mu}Uu^{\dagger},$$

$$\mathcal{L}_4 = L_1 \langle u_\mu u^\mu \rangle^2 + L_2 \langle u_\mu u^\nu \rangle \langle u^\mu u_\nu \rangle + L_3 \langle u_\mu u^\mu u_\nu u^\nu \rangle + \dots$$

 \bigwedge η_1 not included due to the axial anomaly \bigwedge Valid $\frac{p^2}{M_p^2} < 1$: polynomial cannot reproduce resonance poles $\frac{\mathsf{G}_{\mathsf{V}}^2}{\mathsf{M}^2} \propto L_{1,2,3}$ S.Gonzàlez-Solís Chiral workshop (Xi'an)

16 october 2017 3/28

Gasser and Leutwyler, Nucl. Phys. B 250, 465 (1985)

Large- $N_C U(3)$ ChPT

Kaiser and Leutwyler, EPJC 17, 623 (2000)

S=+1

S=0

S=-1

- Axial Anomaly is absent; η_1 as the ninth Goldstone boson
- Degrees of freedom: $\pi^{\pm,0}$, K^{\pm} , K^{0} , \bar{K}^{0} and the η and η'

• Simultaneous triple expansion in terms of $\delta \sim p^2 \sim m_q \sim 1/N_C$

$$\mathcal{L}^{\delta^{0}} = \frac{F^{2}}{4} \langle u_{\mu} u^{\mu} \rangle + \frac{F^{2}}{4} \langle \chi_{+} \rangle + \frac{F^{2}}{3} m_{1}^{2} \ln^{2} \det u ,$$

$$\Phi = \begin{pmatrix} \frac{1}{\sqrt{2}} \pi_{3} + \frac{1}{\sqrt{6}} \eta_{8} + \frac{1}{\sqrt{3}} \eta_{1} & \pi^{+} & K^{+} \\ \pi^{-} & -\frac{1}{\sqrt{2}} \pi_{3} + \frac{1}{\sqrt{6}} \eta_{8} + \frac{1}{\sqrt{3}} \eta_{1} & K^{0} \\ K^{-} & \overline{K}^{0} & -\frac{2}{\sqrt{6}} \eta_{8} + \frac{1}{\sqrt{3}} \eta_{1} \end{pmatrix}$$

 Λ η' heavier than some resonances $\frac{M_{\eta'}^2}{M_R^2} > 1$

S.Gonzàlez-Solís

Resonance Chiral Theory

Ecker, Gasser, Pich and de Rafael, Nucl. Phys. B 321, 311 (1989)

Resonance as explicit degrees of freedom

$$\mathcal{L}_{\mathrm{R}\chi\mathrm{T}} = \mathcal{L}^{\delta^{0}} + \mathcal{L}_{S} + \mathcal{L}^{S}_{\mathrm{kin}}$$

 $\mathcal{L}_{S} = c_{d} \langle S_{8} u_{\mu} u^{\mu} \rangle + c_{m} \langle S_{8} \chi_{+} \rangle + \tilde{c_{d}} S_{1} \langle u_{\mu} u^{\mu} \rangle + \tilde{c_{m}} S_{1} \langle \chi_{+} \rangle,$

$$S_8 = \begin{pmatrix} \frac{1}{\sqrt{2}}a_0^0 + \frac{1}{\sqrt{6}}\sigma_8 & a_0^+ & \kappa^+ \\ a_0^- & -\frac{1}{\sqrt{2}}a_0^0 + \frac{1}{\sqrt{6}}\sigma_8 & \kappa^0 \\ \kappa^- & \bar{\kappa}^0 & -\frac{2}{\sqrt{6}}\sigma_8 \end{pmatrix}, \quad S_1 = \sigma_1$$

$$\mathcal{L}_{S} = \frac{2c_{d}}{f^{2}} \langle S_{8}(\partial_{\mu}\Phi)(\partial^{\mu}\Phi) \rangle + 4B_{0}c_{m}[\langle S_{8}\mathcal{M} \rangle - \frac{1}{4f^{2}} \langle S_{8}(\Phi^{2}\mathcal{M} + \mathcal{M}\Phi^{2} + 2\Phi\mathcal{M}\Phi) \rangle] \\ + \frac{2\tilde{c_{d}}}{f^{2}} S_{1} \langle (\partial_{\mu}\Phi)(\partial^{\mu}\Phi) \rangle + 4B_{0}\tilde{c_{m}}S_{1}[\langle \mathcal{M} \rangle - \frac{1}{4f^{2}} \langle (\phi^{2}\mathcal{M} + \mathcal{M}\Phi^{2} + 2\Phi\mathcal{M}\Phi) \rangle]$$

Resonances spoils power counting, no systematic EFT but a model based on the Large- N_C limit as a guideline

S.Gonzàlez-Solís

Recent experimental activity on η and η' physics

• Phenomenology of η and η' among their main objectives

- Experimental precision for η - η' observables is increasing
- Better theoretical predictions are demanded
- To have a better and more complete knowledge of QCD at low-energies

Adlarson et.al. Phys.Rev. C 94 6 065206 (2016); [2] Nefknes et.al. Phys.Rev. C 90 2 025206 (2014)
 [3] Adlarson et.al. Phys.Rev. C 94 6 065206 (2016); [4] Ablikim et.al. Phys.Rev. D 92 1 012001 (2015)
 [5] Ablikim et.al. ArXiv: 1612.05721; [6] Ablikim et.al. Phys.Rev. D 92 5 051101 (2015)
 [7] Ablikim et.al. Phys.Rev.Lett. 112 251801 (2014); [8] Ablikim et.al. Phys.Rev.Lett. 118 1 012001 (2017)
 [9] Ablikim et.al. Phys.Rev. D 87 9 092011 (2013); [10] Aaji et.al. Phys.Lett. B 764 233 (2017)

Motivation for $\eta' \rightarrow \eta \pi \pi$

- Main decay channel of the η' : BR $(\eta' \to \eta \pi^0 \pi^0) = 22.3(8)\%$, BR $(\eta' \to \eta \pi^+ \pi^-) = 42.9(7)\%$ PDG [2017]
- Cannot be described within SU(3) ChPT
- Advantageous laboratory to test any of its extensions Large- N_C U(3) ChPT and Resonance Chiral Theory
- *G*-parity conservation prevents vectors to contribute: analysis of the properties of scalar resonances i.e. σ , $f_0(980)$, $a_0(980)$
- Study of the η - η' mixing
- Access $\pi\eta$ scattering and phase-shift
- New data very recently released the A2 and BESIII collaborations

Kinematics and Dalitz plot variables

•
$$s = (p_{\eta'} - p_{\eta})^2$$

• $t = (p_{\eta'} - p_{\pi^+})^2$
• $u = (p_{\eta'} - p_{\pi^-})^2$
• $s + t + u = m_{\eta'}^2 + m_{\eta}^2 + 2m_{\pi}^2$
 \Rightarrow only two independent values only two independent values only two independent values on θ_s
• $X = \frac{\sqrt{3}}{Q} (u - t)$
• $Y = \frac{m_{\eta} + 2m_{\pi}}{m_{\pi}} \frac{(m_{\eta'} - m_{\eta})^2 - s}{2m_{\eta'Q}} - 1$
• $Q = m_{\eta'} - m_{\eta} - 2m_{\pi}$

Dalitz plot parameters: current state-of-the-art

Dalitz plot to compare experiment and theory

$$|M(X,Y)|^2 = |N|^2 (1 + aY + bY^2 + cX + dX^2 + ...)$$

• *a*, *b*, *c*, *d* are the Dalitz plot parameters

$\eta' \to \eta \pi^0 \pi^0$	a[Y]	$b[Y^2]$	c[X]	$d[X^2]$
GAMS-4 π	-0.067(16)(4)	-0.064(29)(5)	= 0	-0.067(20)(3)
GAMS-4 π	-0.066(16)(4)	-0.063(28)(4)	-0.107(96)(3)	0.018(78)(6)
A2	-0.074(8)(6)	-0.063(14)(5)	—	-0.050(9)(5)
BESIII	-0.087(9)(6)	-0.073(14)(5)	0	-0.074(9)(4)
Borasoy et.al.'05	-0.127(9)	-0.049(36)	0	0.011(21)
Fariborz et.al.'14	-0.024	0.0001	0	-0.029
$\eta' \rightarrow \eta \pi^+ \pi^-$	a[Y]	$b[Y^2]$	c[X]	$d[X^2]$
VES	-0.127(16)(8)	-0.106(28)(14)	0.015(11)(14)	-0.082(17)(8)
DEOUI				0.00=()(0)
BESIII	-0.047(11)(3)	-0.069(19)(9)	0.019(11)(3)	-0.073(12)(3)
BESIII	-0.047(11)(3) -0.056(4)(3)	-0.069(19)(9) -0.049(6)(6)	$\begin{array}{c} 0.019(11)(3) \\ 2.7(2.4)(1.8) \cdot 10^{-3} \end{array}$	-0.073(12)(3) -0.063(4)(4)
BESIII BESIII Borasoy et.al.'05	$\begin{array}{r} -0.047(11)(3) \\ -0.056(4)(3) \\ \hline -0.116(11) \end{array}$	$\begin{array}{r} -0.069(19)(9) \\ -0.049(6)(6) \\ \hline -0.042(34) \end{array}$	$\begin{array}{c} 0.019(11)(3) \\ 2.7(2.4)(1.8) \cdot 10^{-3} \\ 0 \end{array}$	$\begin{array}{r} -0.073(12)(3) \\ -0.063(4)(4) \\ \hline 0.010(19) \end{array}$
BESIII BESIII Borasoy <i>et.al.</i> '05 Escribano <i>et.al.</i> '10	$\begin{array}{r} -0.047(11)(3) \\ -0.056(4)(3) \\ \hline -0.116(11) \\ -0.098(48) \end{array}$	$\begin{array}{r} -0.069(19)(9) \\ -0.049(6)(6) \\ -0.042(34) \\ -0.050(1) \end{array}$	$\begin{array}{c} 0.019(11)(3) \\ 2.7(2.4)(1.8) \cdot 10^{-3} \\ 0 \\ 0 \end{array}$	$\begin{array}{c} -0.073(12)(3) \\ -0.063(4)(4) \\ \hline 0.010(19) \\ -0.092(8) \end{array}$

$\eta' \rightarrow \eta \pi \pi$: Leading order

• ChPT Lagrangian at $\mathcal{O}(p^2)$

$$\mathcal{L}^{\delta^{0}} = \frac{F^{2}}{4} \langle u_{\mu} u^{\mu} \rangle + \frac{F^{2}}{4} \langle \chi_{+} \rangle + \frac{F^{2}}{3} m_{1}^{2} \ln^{2} \det u$$

• Expanding in powers of Φ

• Reason for this difference: amplitude is chirally suppressed (vanishes when $M_{\pi}^2 \rightarrow 0$)

• Higher order effects? • Resonances exchanges $(a_0, f_0, \sigma) \bullet \pi\pi, \pi\eta$ final state interactions

S.Gonzàlez-Solís

Scalar Resonance and loop contributions

A2 Coll. 1709.04230

 We relate the experimental Dalitz plot data with the differential decay distribution from theory through

$$\frac{\mathrm{d}^2 N_{\text{events}}}{\mathrm{d}X \mathrm{d}Y} = \frac{\mathrm{d}\Gamma(\eta' \to \eta \pi^0 \pi^0)}{\mathrm{d}X \mathrm{d}Y} \frac{N_{\text{events}}}{\Gamma_{\eta'} \bar{B}(\eta' \to \eta \pi^0 \pi^0)} \Delta X \Delta Y,$$

• $N_{\text{events}} = 463066$ (analysis I) and 473044 (analysis II)
• $\Delta X = \Delta Y = 0.10$

S.Gonzàlez-Solís

• Fit 2:
$$M_S = M_{S_8} = M_{S_1} = M_{a_0}$$
 and $\tilde{c}_{d,m} = c_{d,m}/\sqrt{3}$ with $c_d \neq c_m$

$$\begin{split} \text{Fit parameters}: \quad M_S = 953\,\text{MeV}\,, \quad c_d = 27.5\,\text{MeV}\,, \quad c_m = 52.9\,\text{MeV}\,, \quad \chi^2_{\text{dof}} = 1.23 \\ \text{Dalitz parameters}: \quad a = -0.093\,, \quad b = 0.004\,, \quad d = -0.039\,. \end{split}$$

• Fit 3: $M_S = M_{S_8} = M_{S_1} = M_{a_0}$ and $\tilde{c}_{d,m} = c_{d,m}/\sqrt{3}$ taking c_m from $4c_dc_m = f^2$

$$\begin{split} \text{Fit parameters}: \quad M_S = 989(6)\,\text{MeV}\,, \quad c_d = 32.5(4)\,\text{MeV}\,, \quad \chi^2_{\text{dof}} = 1.23 \\ \text{Dalitz parameters}: \quad a = -0.098\,, \quad b = 0.005\,, \quad d = -0.033\,. \end{split}$$

• Fit 4: $M_{S_8} = M_{a_0} = M_S$, while letting M_{S_1} to float and imposing the constraint $c_d = c_m$

 $\begin{array}{ll} \mbox{Fit parameters}: & M_S = 978(27) \mbox{ MeV}, \\ M_{S_1} = 1017(128) \mbox{ MeV}, \\ c_{d,m} = 31.0(2.3) \mbox{MeV} \\ \mbox{Dalitz parameters}: & a = -0.091 \,, & b = 0.003 \,, & d = -0.042 \,. \end{array}$

- We also have tried a fit letting all couplings to float i.e. c_m, c_m, c_d and c_d, but in this case the fit becomes unstable since there are too many parameters to fit.
- In summary, the associated Dalitz plots remains quite stable independently of the allowed parameters to fit

Hierarchy of the contributions

Unitarity

Unitarity relation

Restrict to 2-particle rescattering

$$\mathrm{Im}\mathcal{M}^{I}_{\eta'\to\eta\pi\pi}(s,t,u) = \frac{1}{2(2\pi)^{2}} \sum_{b,c} \int \frac{dq_{b}^{3}}{2q_{b}^{0}} \frac{dq_{c}^{3}}{2q_{c}^{0}} \delta^{4}(q_{b}+q_{c}-p_{1}-p_{2}) \mathcal{T}^{I}_{bc\to\pi\pi}(s,\theta'_{s})^{*} \mathcal{M}^{I}_{\eta'\to\eta bc}(s,\theta''_{s},\phi''_{s})$$

$$+\frac{1}{2(2\pi)^2}\sum_{a,b}\int \frac{dq_a^3}{2q_a^0}\frac{dq_b^3}{2q_b^0}\delta^4(q_a+q_b-p_1-p_\eta)\mathcal{T}^I_{ab\to\pi\eta}(t,\theta_t')^*\mathcal{M}^I_{\eta'\to ab\pi}(s,\theta_t'',\phi_t'')$$

 $+\frac{1}{2(2\pi)^2}\sum_{a,c}\int \frac{dq_a^3}{2q_a^0}\frac{dq_c^3}{2q_c^0}\delta^4(q_a+q_c-p_2-p_\eta)\mathcal{T}^I_{ac\to\pi\eta}(u,\theta'_u)^*\mathcal{M}^I_{\eta'\to a\pi c}(u,\theta''_u,\phi''_u)$

S.Gonzàlez-Solís

Unitarity

• Partial waves decompostion $(\mathcal{A} = \mathcal{T}, \mathcal{M})$

$$\mathcal{A}^{I}(s,\cos\theta) = \sum_{J} 32\pi (2J+1) P_{J}(\cos\theta) a^{IJ}(s) ,$$

Integrating over the momentum and then using the relation

$$\int d\Omega' P_J(\cos\theta') P_{J'}(\cos\theta'') = \frac{4\pi}{2J+1} \delta_{JJ'} P_J(\cos\theta)$$

• Two-particle unitarity relation for the partial-wave decay amplitude

$$\operatorname{Im}\left(m_{\eta' \to \eta\pi\pi}^{IJ}(s,t,u)\right) = \frac{\theta(s - (m_b + m_c)^2)\lambda^{1/2}(s, m_b^2, m_c^2)}{16\pi s} t_{bc \to \pi\pi}^{IJ}(s)^* m_{\eta' \to \eta bc}^{IJ}(s) \\ + \frac{\theta(t - (m_a + m_b)^2)\lambda^{1/2}(t, m_a^2, m_b^2)}{16\pi t} t_{ab \to \pi\eta}^{IJ}(t)^* m_{\eta' \to ab\pi}^{IJ}(t) \\ + \frac{\theta(u - (m_a + m_c)^2)\lambda^{1/2}(u, m_a^2, m_c^2)}{16\pi u} t_{ac \to \pi\eta}^{IJ}(u)^* m_{\eta' \to a\pi c}^{IJ}(u)$$

S.Gonzàlez-Solís

N/D unitarisation method applied to $\eta' \rightarrow \eta \pi \pi$

• Amplitude at one-loop in Large- $N_C U(3)$ ChPT with resonances

• N/D representation of $\mathcal{M}^{\eta' \to \eta \pi \pi}(s)$

 $\mathcal{M}^{\eta' \to \eta \pi \pi}(s) = [1 + N(s)g(s)]^{-1}R(s)$

N/D applied to $\eta' \rightarrow \eta \pi \pi$

• Amplitude at one-loop in Large- $N_C U(3)$ ChPT with resonances

$$\mathcal{M}^{\eta' \to \eta \pi \pi}(s) = \mathcal{M}(s)^{(2)} + \mathcal{M}(s)^{\operatorname{Res}(s,t,u)} + \mathcal{M}(s)^{\operatorname{Loop}(s,t,u)}$$
(2)

• N/D representation of Eq. (2)

$$\mathcal{M}^{\eta' \to \eta \pi \pi}(s) = [1 + N(s)g(s)]^{-1}R(s)$$
 (3)

where

$$N_{\pi\pi\to\pi\pi}(s) = \mathcal{T}(s)^{(2)+\operatorname{Res}(s,t,u)+\operatorname{Loop}(t,u)},$$

$$R^{\eta'\to\eta\pi\pi}(s) = \mathcal{M}(s)^{(2)+\operatorname{Res}(s,t,u)+\operatorname{Loop}(t,u)},$$

$$g(s) = -16\pi \bar{J}_{\pi\pi}(s) + a,$$

• Chiral expansion of Eq. (3) leads

$$\mathcal{M}^{\eta' \to \eta \pi \pi}(s) = \mathcal{M}(s)^{(2) + \text{Res} + \text{Loop}} - \mathcal{M}(s)^{(2)}g(s)\mathcal{T}(s)^{(2)} + \text{higher orders}$$
$$\boxed{\text{Im}\mathcal{M}^{\eta' \to \eta \pi \pi}(s) = \sigma(s)\mathcal{M}(s)^{(2)}\mathcal{T}(s)^2}$$

Partial waves

• Unitarized amplitude in terms of the *S*-and-*D*-waves

$$\mathcal{M}_{\eta' \to \eta \pi \pi}^{I=0}(s, \cos \theta_s) = \sum_J 32\pi (2J+1) P_J(\cos \theta_s) m^{IJ}(s)$$
$$= 32\pi P_0(\cos \theta_s) \frac{m^{00}(s)}{1 + 16\pi g_{\pi\pi}(s) t_{\pi\pi}^{00}(s)} + 160\pi P_2(\cos \theta_s) \frac{m^{02}(s)}{1 + 16\pi g_{\pi\pi}(s) t_{\pi\pi}^{02}(s)}$$

$$m^{IJ}(s) = \frac{1}{32\pi} \frac{s}{\lambda(s, m_{\eta'}^2, m_{\eta}^2)^{1/2} \lambda(s, m_{\pi}^2, m_{\pi}^2)^{1/2}} \int_{t_{\min}}^{t_{\max}} dt P_J(\cos\theta_s) \mathcal{M}^I(s, t, u)$$

$$\cos \theta_s = -\frac{s \left(m_{\eta'}^2 + m_{\eta}^2 + 2m_{\pi}^2 - s - 2t\right)}{\lambda(s, m_{\eta'}^2, m_{\eta}^2)^{1/2} \lambda(s, m_{\pi}^2, m_{\pi}^2)^{1/2}},$$

$$P_0(\cos\theta_s) = 1, \quad P_2(\cos\theta_s) = \frac{1}{2} \Big[-1 + 3(\cos\theta_s)^2 \Big]$$

S.Gonzàlez-Solís

Fits to experimental data: $\pi\pi$ FSI

• Fit 2:
$$M_S = M_{S_8} = M_{S_1} = M_{a_0}$$
 and $\tilde{c}_{d,m} = c_{d,m}/\sqrt{3}$ with $c_m = 53.2$ MeV

$$\begin{split} \text{Fit parameters}: \ \ M_S = 967\,\text{MeV}\,, \quad c_d = 26.5\,\text{MeV}\,, \quad \chi^2_{\rm dof} = 1.13 \\ \text{Dalitz parameters}: \ \ a = -0.067\,, \quad b = -0.034\,, \quad d = -0.031\,. \end{split}$$

Fit 3:
$$M_S = M_{S_8} = M_{S_1} = M_{a_0}$$
 and $\tilde{c}_{d,m} = c_{d,m}/\sqrt{3}$ taking c_m from $4c_dc_m = f^2$

 $\begin{array}{ll} \mbox{Fit parameters}: & M_S = 1018\,\mbox{MeV}\,, & c_d = 32.4\,\mbox{MeV}\,, & \chi^2_{\rm dof} = 1.13 \\ \mbox{Dalitz parameters}: & a = -0.079\,, & b = -0.035\,, & d = -0.048\,. \end{array}$

We also have tried a fit letting all couplings to float i.e. c_m, c_m, c_d and c_d, but in this case the fit becomes unstable since there are too many parameters to fit.

Elastic $\pi\eta$ final state interactions

• N/D representation accounting for $\pi\eta$ FSI

$$\begin{split} m_{\eta' \to \eta \pi \pi}^{IJ}(t, u) &= \left[1 + N_{\pi \eta}^{IJ}(t)g_{\pi \eta}(t)\right]^{-1} R_{\eta' \to \eta \pi \pi}^{IJ}(t) + \left[1 + N_{\pi \eta}^{IJ}(u)g_{\pi \eta}(u)\right]^{-1} R_{\eta' \to \eta \pi \pi}^{IJ}(u) \,, \\ N_{\pi \eta}^{IJ}(t) &= t_{\pi \eta}^{IJ}(t)^{(2) + \text{Res+Loop}} \,, \\ R_{\eta' \to \eta \pi \pi}^{IJ}(t) &= m_{\eta' \to \eta \pi \pi}^{IJ}(t)^{(2) + \text{Res+Loop}} \,, \end{split}$$

• Avoid double counting of $m^{IJ}_{\eta' o \eta \pi \pi}(t)^{(2)+{\rm Res}+{\rm Loop}}$ terms

$$\mathcal{M}^{I=1}(t, u, \cos\theta_t, \cos\theta_u) = \mathcal{M}(s, t, u)^{(2)+\text{Res+Loop}} +32\pi P_0(\cos\theta_t) \frac{m^{10}(t)}{1+16\pi g_{\pi\eta}(t) t_{\pi\eta}^{10}(t)} + 32\pi P_0(\cos\theta_u) \frac{m^{10}(u)}{1+16\pi g_{\pi\eta}(u) t_{\pi\eta}^{02}(u)} -32\pi m^{10}(t)^{(2)+\text{Res+Loop+}\Lambda} - 32\pi m^{10}(u)^{(2)+\text{Res+Loop}},$$

Fits to experimental data: $\pi\eta$ FSI

S.Gonzàlez-Solís

Masses and couplings

Source	M_{S_8}	M_{S_1}	M_{a_0}	c_d	c_m
$a_0 ightarrow \eta \pi$ (Guo et.al. '09)	980	$= M_{S_8}$	$= M_{S_8}$	26	80
res. saturation (Ecker et.al. '88)	983	$= M_{S_8}$	$= M_{S_8}$	32	42
$K\pi$ scattering (Jamin et.al. '00)					
	1400	$= M_{S_8}$	$= M_{S_8}$	30	43
	1190	$= M_{S_8}$	$= M_{S_8}$	45.4	$= c_d$
	1260	$= M_{S_8}$	$= M_{S_8}$	24.8	76.7
	1360	$= M_{S_8}$	$= M_{S_8}$	13	85
$PP \rightarrow PP \ (P = \pi, K, \eta)$					
Guo et.al '11	1370_{-57}^{+132}	1063^{+53}_{-31}	$= M_{S_8}$	$15.6^{+4.2}_{-3.4}$	$31.5^{+19.5}_{-22.5}$
Guo et.al '12	1397^{+73}_{-61}	1100^{+30}_{-63}	$= M_{S_8}$	$19.8^{+2.0}_{-5.2}$	$41.9^{+3.9}_{-9.2}$
Ledwig et.al. '14	1279(9)	808.9(4)	$= M_{S_8}$	39.8(1)	41.1(1)
This work					
Resonances+loops	972(6)	$= M_{S_8}$	$= M_{S_8}$	29.9(4)	$= c_d$
Resonances+loops	953	$= M_{S_8}$	$= M_{S_8}$	27.8	53.2
$\pi\pi$ final state interactions	982(15)	$= M_{S_8}$	$= M_{S_8}$	28.2(1.2)	$= c_d$
	1018	$= M_{S_8}$	$= M_{S_8}$	32.4	$4c_m c_d = f^2$
$\pi\eta$ final state interactions	980(8)	$= M_{S_8}$	$= M_{S_8}$	30.3(8)	$= c_d$

Summary

Summary

- $\eta' \rightarrow \eta \pi \pi$ analyzed within U(3) ChPT at one-loop with resonances
- We have illustrated a method (N/D) to resumme two-particle FSI
- Dalitz plot parameters:
 - Y-variable is linear in s: Importance of $\pi\pi$ FSI
 - *X*-variable appear in the form $\cos \theta_s = Xf(Y)$: Importance of the *D*-wave
 - $\pi\eta$ FSI effects are small

Experiment	a[Y]	$b[Y^2]$	c[X]	$d[X^2]$	_
GAMS4π (c=0) '09	-0.067(16)(4)	-0.064(29)(5)	0	-0.067(20)(3)	_
VES '07	-0.127(16)(8)	-0.106(28)(14)	0.015(11)(14)	-0.082(17)(8)	
BESIII '11	-0.047(11)(3)	-0.069(19)(9)	0.019(11)(3)	-0.073(12)(3)	
A2'17	-0.074(8)(6)	-0.063(14)(5)	_	-0.050(9)(5)	
BESIII'17	-0.087(9)(6)	-0.073(14)(5)	0	-0.074(9)(4)	
BESIII'17	-0.056(4)(3)	-0.049(6)(6)	$2.7(2.4)(1.8) \cdot 10^{-3}$	-0.063(4)(4)	
Previous Estimates					_
Borasoy et.al.'05	-0.127(9)	-0.049(36)	0	0.011(21)	_
Borasoy et.al.'05	-0.116(11)	-0.042(34)	0	0.010(19)	
Escribano et.al.'10	-0.098(48)	-0.050(1)	0	-0.092(8)	
Escribano et.al.'10	-0.098(48)	-0.033(1)	0	-0.072(1)	
Fariborz et.al.'14	-0.024	0.0001	0	-0.029	
This talk					_
Resonances	-0.096(9)	0.002(1)	0	-0.037(6)	_
Resonances+loops	-0.095	0.005	0	-0.037	
$\pi\pi$ FSI	-0.080	-0.035	0	-0.040	
$\pi\eta$ FSI	-0.093	0.004	0	-0.042	_
S.Gonzàlez-Solís		Chiral workshop (Xi'a	in)	16 october 2017	26/28

Summary

- $\eta' \rightarrow \eta \pi \pi$ analyzed within U(3) ChPT at one-loop with resonances
- We have illustrated a method (N/D) to resumme two-particle FSI
- Dalitz plot parameters:
 - Y-variable is linear in s: Importance of $\pi\pi$ FSI
 - *X*-variable appear in the form $\cos \theta_s = Xf(Y)$: Importance of the *D*-wave
 - $\pi\eta$ FSI effects are small
- In progress: coupled channels effects
- Improvements:
 - Constrains from I = 0, $J = 0 \ \pi\pi \rightarrow \pi\pi$ phase shift
 - Constrains from $\pi\eta$ distribution

Tensor Resonance contributions

Ecker and Zauner, EPJC 52, 315 (2007)

$$\mathcal{L}_T = -\frac{1}{2} \langle T_{\mu\nu} D_T^{\mu\nu,\rho\sigma} T_{\rho\sigma} \rangle + g_T \langle T_{\mu\nu} \{ u^{\mu}, u^{\nu} \} \rangle + \beta \langle T_{\mu}^{\mu} u_{\nu} u^{\nu} \rangle$$

 $g_T = 28 \,\mathrm{MeV}\,, \quad \beta = -g_T\,, \quad M_T = 1300 \,\mathrm{MeV}$

