利用夸克模型研究单重味重子S波和P波的强衰变及辐射衰变性质

报告人:王凯雷

指导导师: 钟显辉教授

湖南师范大学

arXiv:1709.04268v2

汇报提纲

- 1 引言
- 2 单重味重子夸克模型分类
- 3 理论模型
- 4 结论与分析
- 5 总结

1 引言

• 单重味重子谱实验现状

最近,LHCb观察到最新的五个 Ω_c 重子。实验只给出了它们的衰变道及衰变宽度,而其他性质尚未确定,这使我们需要通过理论来研究它们的一些性质(比如 J^p 字称等)并进一步建立 Ω_c 重子谱。

Ω。实验现状

state	J^P	Mass	Width	Decay Modes	experiments	status
Ω_c^0	$\frac{1}{2}$ +	2695.2 ± 1.7		Weak	WA62[1]	***
$\Omega_c(2770)^0$	$\frac{1}{2}$ +	2765.9 ± 2.0		$\Omega_c \gamma$	Belle[2]	***
$\Omega_c(3000)^0$??	$3000.4^{+0.4}_{-0.5}$	4.5 ± 0.7	$\Xi_car{K}$	LHCb[3]	
$\Omega_c(3050)^0$??	$3050.2^{+0.3}_{-0.5}$	0.8 ± 0.2	$\Xi_car{K}$	LHCb[3]	
$\Omega_c (3066)^0$??	$3065.6^{+0.4}_{-0.6}$	3.5 ± 0.4	$\Xi_car{K}$	LHCb[3]	
$\Omega_c (3090)^0$??	$3090.2_{-0.8}^{+0.7}$	8.7 ± 1.3	$\Xi_c'ar{K}$	LHCb[3]	
$\Omega_c(3119)^0$??	$3119.1^{+1.0}_{-1.1}$	1.1 ± 0.9	$\Xi_c'ar{K}$	LHCb[3]	

1: Z.Phys.C28, 175

2: Phys.Lett.B672,1

3: PRL118.182001

$\Lambda_{c,}\Sigma_{c,}\Xi_{c,}\Xi'$ 。激发态的实验现状

在PDG上,我们知道目前对于含一个重味夸克重子性质还比较缺乏,通过建立 Ω_c 重子谱,可有助于进一步研究含一个重味夸克重子的衰变性质。

state	J^P	Mass	Width	Decay Modes	experiments	status
$\Lambda_c(2595)^+$	$\frac{1}{2}$ - $\frac{3}{2}$ - $?$?	2592.25 ± 0.28	2.59 ± 0.56	$\Lambda_c\pi\pi$, $\Sigma_c\pi$	CLEO [76]	***
$\Lambda_c(2625)^+$	$\frac{\bar{3}}{2}$	2628.11 ± 0.19	< 0.97	$\Lambda_c\pi\pi,\Sigma_c^{(*)}\pi$	ARGUS [77]	***
$\Lambda_c(2765)^+$??	2766.6 ± 2.1	50	$\Sigma_c\pi, \Lambda_c\pi\pi$	CLEO [78]	*
$\Lambda_c(2860)^+$	$\frac{3}{2} + \frac{5}{2} + \frac{5}{2}$	$2856.1^{+2.0\dagger}_{-5.9}$	$67.6^{+11.8\dagger}_{-21.6}$	$\Sigma_c^{(*)}\pi, D^0p, D^+n$	LHCb [14]	
$\Lambda_c(2880)^+$	$\frac{5}{2}$ +	$2881.64\pm0.25^\dagger$	$5.6\pm0.7^{\dagger}$	$\Sigma_c^{(*)}\pi, \Lambda_c\pi\pi, D^0p, D^+n$	CLEO [78]	***
$\Lambda_c(2940)^+$??	$2939.8 \pm 1.4^{\dagger}$	$20\pm6^{\dagger}$	$\Sigma_c^{(*)}\pi, \Lambda_c\pi\pi, D^0p, D^+n$	BaBar [22]	***
$\Sigma_c(2800)^{++}$??	2801^{+4}_{-6}	75^{+22}_{-17}	$\Lambda_c\pi, \Sigma_c^{(*)}\pi, \Lambda_c\pi\pi$	Belle [28]	***
$\Sigma_c(2800)^+$??	2792^{+14}_{-5}	62^{+64}_{-44}	$\Lambda_c\pi, \Sigma_c^{(*)}\pi, \Lambda_c\pi\pi$	Belle [28]	***
$\Sigma_c(2800)^0$	$?^{?}$	2806^{+5}_{-7}	72^{+22}_{-15}	$\Lambda_c\pi,\Sigma_c^{(*)}\pi,\Lambda_c\pi\pi$	Belle [28]	***
$\Xi_c(2790)^+$	$\frac{1}{2}^{-}$	$2791.5 \pm 0.6^*$	$8.9 \pm 1.0^*$	$\Xi_c'\pi,\Xi_c\pi,\Lambda_car{K}$	CLEO [89]	***
$\Xi_c(2790)^0$	1 - 2 - 2 - 3 - 2 3 - 2 3 - 2 2	$2794.8 \pm 0.6^*$	$10.0\pm1.1^*$	$\Xi_c'\pi,\Xi_c\pi,\Lambda_car{K}$	CLEO [89]	***
$\Xi_c(2815)^+$	$\frac{3}{2}$ -	$2816.7 \pm 0.3^*$	$2.43 \pm 0.26^*$	$\Xi_c^*\pi,\Xi_c\pi\pi,\Xi_c'\pi$	CLEO [90]	***
$\Xi_c(2815)^0$	$\frac{3}{2}$	$2820.2 \pm 0.3^*$	$2.54 \pm 0.25^*$	$\Xi_c^*\pi,\Xi_c\pi\pi,\Xi_c'\pi$	CLEO [90]	***
$\Xi_c(2930)^0$??	2931 ± 6	36 ± 13	$\Lambda_c \bar{K}, \Sigma_c \bar{K}, \Xi_c \pi, \Xi_c' \pi$	BaBar [17]	*
$\Xi_c(2970)^+$	$?^{?}$	$2966.7 \pm 0.8^*$	$24.6 \pm 2.0^*$	$\Sigma_c \bar{K}, \Lambda_c \bar{K}\pi, \Xi_c \pi \pi$	Belle [2]	***
$\Xi_c(2970)^0$??	$2970.6 \pm 0.8^*$	$29\pm3^*$	$\Sigma_c \bar{K}, \Lambda_c \bar{K}\pi, \Xi_c \pi \pi$	Belle [2]	***
$\Xi_c(3055)^+$??	3055.1 ± 1.7	11 ± 4	$\Sigma_c \bar{K}, \Lambda_c \bar{K}\pi, D\Lambda$	BaBar [20, 91]	***
$\Xi_c(3055)^0$??	3059.0 ± 0.8	6.4 ± 2.4	$\Sigma_c \bar{K}, \Lambda_c \bar{K}\pi, D\Lambda$		
$\Xi_c(3080)^+$??	3076.94 ± 0.28	4.3 ± 1.5	$\Sigma_c \bar{K}, \Lambda_c \bar{K}\pi, D\Lambda$	Belle [2, 20]	***
$\Xi_c(3080)^0$??	3079.9 ± 1.4	5.6 ± 2.2	$\Sigma_c \bar{K}, \Lambda_c \bar{K}\pi, D\Lambda$	Belle [2]	***
$\Xi_c(3123)^+$??	3122.9 ± 1.3	4.4 ± 3.8	$\Sigma_c^* \bar{K}, \Lambda_c \bar{K}\pi, D\Lambda$	BaBar [91]	*

$\Lambda_{b,}\Sigma_{b,}\Xi_{b,}\Xi_{b,}\Xi_{b}$ 实验现状

在PDG上,对于含b夸克的重味重子在实验上大部分仅仅只是探测到了基态,对于P波的激发态除了 Λ_b (5912) 和 Λ_b (5920) 被探测到,其他的重子的P 波还没有任何实验信息,这就需要我们用理论来研究它们的衰变性质,希望为实验提供一些理论依据。

State	J^P	Mass (MeV)	Width (MeV)	Decay channel	Experiment	Status
Λ_b^0	$\frac{1}{2}^{+}$	5619.51 ± 0.23	$(1466 \pm 10) \times 10^{-15} s$	$pK^-\pi^+\pi^-$	CERN R415 [15]	***
$\Lambda_b(5912)^0$	$\frac{1}{2}^{-}$	$5912.11 \pm 0.13 \pm 0.23$	< 0.66	$\Lambda_b^0\pi^+\pi^-$	LHCb [14]	***
$\Lambda_b(5920)^0$	3 -	5919.81 ± 0.23	< 0.63	$\Lambda_b^0 \pi^+ \pi^-$	LHCb [14],CDF [16]	***
Σ_b^+	$\frac{1}{2}^{+}$	$5811.3^{+0.9}_{-0.8} \pm 1.7$	$9.7^{+3.8+1.2}_{-2.8-1.1}$	$\Lambda_b^0\pi$	CDF [17]	***
Σ_b^-	$\frac{1}{2}^{+}$	$5815.5^{+0.6}_{-0.5} \pm 1.7$	$4.9^{+3.1}_{-2.1} \pm 1.1$	$\Lambda_b^0\pi$	CDF [17]	***
Σ_b^{*+}	$\frac{3}{2}^{+}$	$5832.1 \pm 0.7^{+1.7}_{-1.8}$	$11.5^{+2.7+1.0}_{-2.2-1.5}$	$\Lambda_b^0\pi$	CDF [17]	***
Σ_b^{*-}	3+	$5835.1 \pm 0.6^{+1.7}_{-1.8}$	$7.5^{+2.2+0.9}_{-1.8-1.4}$	$\Lambda_b^0\pi$	CDF [17]	***
Ξ_b^0	$\frac{1}{2}^{+}$	5791.9 ± 0.5	$(1464 \pm 31) \times 10^{-15} s$	$\Xi_c^+\pi^-$	DELPHI [18]	***
Ξ_b^-	$\frac{1}{2}^{+}$	5794.5 ± 1.4	$(1560 \pm 40) \times 10^{-15} s$	$\Xi_c^0\pi^-,J/\psi\Xi^-$	DELPHI [18]	***
$\Xi_b'(5935)^-$	$\frac{1}{2}^{+}$	$5935.02 \pm 0.02 \pm 0.05$	< 0.08	$\Xi_b^0\pi^-$	LHCb [19]	***
$\Xi_b^*(5945)^0$	$\frac{1}{2}$ +	$5948.9 \pm 0.8 \pm 1.4$	2.1 ± 1.7	$\Xi_b^-\pi^+$	CMS [20]	***
$\Xi_b^*(5955)^-$	$\frac{3}{2}$ +	$5955.33 \pm 0.12 \pm 0.05$	$1.65 \pm 0.31 \pm 0.10$	$\Xi_b^0\pi^-$	LHCb [19]	***
Ω_b^-	$\frac{1}{2}$ +	6046.4 ± 1.9	$1570^{+230}_{-200} \times 10^{-15} s$	$J/\psi\Omega^-$	DØ [21]	***

2.单重味重子夸克模型分类

• $\Lambda_{c(b)} \Sigma_{c(b)} \Sigma_{c(b)} \Omega_{c(b)} =$ 重子在夸克模型的分类如下:

$$\phi_{\bar{3}}^{c} = \begin{cases} \frac{1}{\sqrt{2}} (ud - du)c & \text{for } \Lambda_{c}^{+}, \\ \frac{1}{\sqrt{2}} (us - su)c & \text{for } \Xi_{c}^{+}, \\ \frac{1}{\sqrt{2}} (ds - sd)c & \text{for } \Xi_{c}^{0}; \end{cases}$$

$$\phi_{6}^{c} = \begin{cases} uuc & \text{for } \Sigma_{c}^{++}, \\ \frac{1}{\sqrt{2}} (ud + du)c & \text{for } \Sigma_{c}^{+}, \\ ddc & \text{for } \Sigma_{c}^{0}, \\ \frac{1}{\sqrt{2}} (us + su)c & \text{for } \Xi_{c}^{'+}, \\ \frac{1}{\sqrt{2}} (ds + sd)c & \text{for } \Xi_{c}^{'0}, \\ ssc & \text{for } \Omega_{c}^{0}; \end{cases}$$

$$\phi_{\bar{3}}^{b} = \begin{cases} \frac{1}{\sqrt{2}}(ud - du)b & \text{for } \Lambda_{b}^{0}, \\ \frac{1}{\sqrt{2}}(us - su)b & \text{for } \Xi_{b}^{0}, \\ \frac{1}{\sqrt{2}}(ds - sd)b & \text{for } \Xi_{b}^{-}. \end{cases}$$

$$\phi_{6}^{b} = \begin{cases} uub & \text{for } \Sigma_{b}^{+}, \\ \frac{1}{\sqrt{2}}(ud + du)b & \text{for } \Sigma_{b}^{0}, \\ ddb & \text{for } \Sigma_{b}^{-}, \\ \frac{1}{\sqrt{2}}(us + su)b & \text{for } \Xi_{b}^{'0}, \\ \frac{1}{\sqrt{2}}(ds + sd)b & \text{for } \Xi_{b}^{'-}, \\ ssb & \text{for } \Omega_{b}^{-}; \end{cases}$$

3.理论模型

• 赝标量介子-夸克耦合有效拉氏量:

$$H_m = \sum_j rac{1}{f_m} \hat{I}_j ar{\psi}_j \gamma_\mu^j \gamma_5^j \psi_j \partial^\mu \phi_m$$

• 赝标量介子-夸克耦合非相对论形式的哈密顿量:

$$H_m^{nr} = \sum_j \left[A \boldsymbol{\sigma}_j \cdot \mathbf{q} + \frac{\omega_m}{2\mu_q} \boldsymbol{\sigma}_j \cdot \mathbf{p}_j \right] I_j e^{-i\mathbf{q} \cdot \mathbf{r}_j}$$

• 光子-夸克耦合形式:

$$H_e = -\sum_j e_j \bar{\psi}_j \gamma_\mu^j A^\mu(\mathbf{k}, \mathbf{r}_j) \psi_j$$

• 光子-夸克耦合非相对论形式:

$$H_e^{nr} = \sum_{j} \left[e_j \mathbf{r}_j \cdot \boldsymbol{\epsilon} - \frac{e_j}{2m_j} \boldsymbol{\sigma}_j \cdot (\boldsymbol{\epsilon} \times \hat{\mathbf{k}}) \right] e^{-i\mathbf{k} \cdot \mathbf{r}_j}$$

4.结论与分析

4.1.1 Ω。结论与分析

S波 Ω_c (2695)和 Ω_c (2770)间辐射衰变

$B_Q \to B_Q'$	$\Gamma \left(Ours \right)$	VMC[102]	BM[101]	LCQSR[94]
$\Omega_c^{*0} \to \Omega_c^0 \gamma$	0.89	1.439	1.07	0.932

Ω。P波的强衰变和辐射衰变

 $Ω_c(3000)$ 可能对应 $J^p=1/2^-$ 的态,然而从我们的结果可以看出:两个 $J^p=1/2^-$ 的态的衰变宽度Γ远远大于4.5MeV。故我们进一步考虑了这两个态的混合。

120
$$- \cdot |1P_{\lambda} |1/2^{-}\rangle_{2} (3020)$$
100 $|1P_{\lambda} |1/2^{-}\rangle_{2} (2980)$
 $|1P_{\lambda} |1/2^{-}\rangle_{1} (3000)$
80 $|1P_{\lambda} |1/2^{-}\rangle_{1} (3000)$
 $|1P_{\lambda} |1/2^{-}\rangle_{1} (3000)$

$$\begin{pmatrix} |P_{\lambda}\frac{1}{2}^{-}\rangle_{1} \\ |P_{\lambda}\frac{1}{2}^{-}\rangle_{2} \end{pmatrix} = \begin{pmatrix} \cos\phi & \sin\phi \\ -\sin\phi & \cos\phi \end{pmatrix} \begin{pmatrix} |^{2}P_{\lambda}\frac{1}{2}^{-}\rangle \\ |^{4}P_{\lambda}\frac{1}{2}^{-}\rangle \end{pmatrix}$$

State	Mass	$\Gamma(\Xi_c \bar{K})$	$\Gamma(\Xi_c'ar{K})$	$\Gamma[\Omega_c(2695)\gamma]$	$\Gamma[\Omega_c(2770)\gamma]$	$\Gamma_{ m total}^{ m th}$	$\Gamma^{ m exp}_{ m total}$	Possible assignment
$ 1P_{\lambda^{\frac{1}{2}}}\rangle_1$	3000	4.0		0.36/0.20	0.02/0.08	4.38/4.28	4.5 ± 0.9	$\Omega_c(3000)$
$ 1^4P_{\lambda \frac{3}{2}}^{3-}\rangle$	3050	0.61		1.12×10^{-3}	0.33	0.94	0.8 ± 0.3	$\Omega_c(3050)$
$ 1^2P_{\lambda \frac{3}{2}}^{\frac{3}{2}-}\rangle$	3066	4.61		0.35	5.68×10^{-4}	4.96	3.5 ± 0.4	$\Omega_c(3066)$
$ 1^4P_{\lambda \frac{5}{2}}^{\frac{5}{2}}\rangle$	3090	9.32	0.03	1.00×10^{-4}	0.18	9.53	8.7 ± 1.8	$\Omega_c(3090)$

State	Mass	$\Gamma(\Xi_c \bar{K})$	$\Gamma(\Xi_c'\bar{K})$	$\Gamma[\Omega_c(2695)\gamma]$	$\Gamma[\Omega_c(2770)\gamma]$	$\Gamma_{ m total}^{ m th}$	$\Gamma^{ m exp}_{ m total}$
$ 2^2S_{\lambda\lambda}^{\frac{1}{2}+}\rangle$	3119	0.60	0.45	2.9×10^{-3}	6.4×10^{-4}	1.15	$1.1 \pm 0.8 \pm 0.4$
State	Mass	$\Gamma(\Xi_c K)$	$\Gamma(\Xi_c'K)$	$\Gamma[\Omega_c(2695)\gamma]$	$\Gamma[\Omega_c(2770)\gamma]$	$\Gamma_{ m total}^{ m th}$	$\Gamma^{ m exp}_{ m total}$
$ 2^4S_{\lambda\lambda}\frac{3}{2}^+\rangle$	3119	0.60	0.11	1.0×10^{-3}	8.1×10^{-4}	0.73	$1.1 \pm 0.8 \pm 0.4$

4.1.2 Ω_b结论与分析

S波 Ω_b (6046)和 Ω_b^* (6090)(PRD84, 014025)的辐射衰变

$B_Q o B_Q^{'}$	Γ (Ours)	VMC[102]	BM[101]	LCQSR[94]
$\Omega_b^{*-} o\Omega_b^-\gamma$	0.1	2.873	0.006	0.092

Ω_h P波的强衰变和辐射衰变

State	Mass (MeV) [24]	$\Gamma[\Xi_b K] (\text{MeV})$	$\Gamma[\Omega_b \gamma] \text{ (keV)}$	$\Gamma[\Omega_b^* \gamma] (\text{keV})$	Γ _{total} (MeV)
$ \Omega_b ^4 S \frac{3}{2}^+ \rangle$	6088		0.09		
$ \Omega_b ^2 P_{\lambda} \frac{1}{2}^-\rangle$	6339	49.38	154	1.49	49.53
$ \Omega_b ^2 P_{\lambda} \frac{3}{2}^-\rangle$	6340	1.82	83.4	1.51	1.90
$ \Omega_b ^4 P_{\lambda} \frac{1}{2}^-\rangle$	6330	94.98	0.64	99.23	95.08
$ \Omega_b ^4 P_{\lambda} \frac{3}{2}^-\rangle$	6331	0.22	1.81	70.68	0.29
$ \Omega_b ^4 P_{\lambda} \frac{5}{2}^-\rangle$	6334	1.60	1.21	63.26	1.66

LCQSR 方法(arxiv:1708.07348[hep-ph])

 $\mid \Omega_b \mid ^4P_{\lambda} 3/2 \rightarrow \mathbf{m} \mid \Omega_b \mid ^2P_{\lambda} 1/2 \rightarrow \mathbf{m}$ 的衰变宽

度分别为: ≈0.04MeV和≈3.97 MeV

24: PRD84,014025

4.2.1 A。结论与分析

在以前的工作中已经讨论过 Λ_c (2593)和 Λ_c (2625)的强衰变,根据理论结果,这两个态可能分别为 $J^p=1/2^-$ 和 $3/2^-$ 的态(PRD77,074008)。在本工作中,我们进一步讨论了它们的辐射衰变:

	Notation	Channel	Γ_{exp} (MeV)	$\Gamma_{th} \; (MeV)$
$\Lambda_c(2593)$	$ \Lambda_c^2 P_{\lambda^{\frac{1}{2}}}^{\frac{1}{2}}\rangle$	$\Sigma_c^{++}\pi^-$	$0.65^{+0.41}_{-0.31}$	0.37
		$\Sigma_c^+\pi^0$		0.73
		$\Sigma_c^0\pi^+$	$0.67^{+0.41}_{-0.31}$	0.40
$\Lambda_c(2625)$	$ \Lambda_c^2 P_{\lambda^{\frac{3}{2}}}\rangle$	$\Sigma_c^{++}\pi^-$	< 0.10	1.47×10^{-2}
	7.2	$\Sigma_c^+\pi^0$		2.08×10^{-2}
		$\Sigma_c^0\pi^+$	< 0.09	1.50×10^{-2}
		-		

$B_{\mathcal{Q}} \to B_{\mathcal{Q}}^{'}$	Ours	RQM [76]	LCQSR [61]	HQS [85]	Bound state [86]	Bound state [87]
$\Lambda_c(2593)\frac{1}{2}^- \to \Lambda_c^+ \gamma$	0.26	115 ± 1	36		16	278
$\Lambda_c(2593)\frac{1}{2}^- \to \Sigma_c^+ \gamma$	0.45	77 ± 1	11	• • •	• • •	2
$\Lambda_c(2593)\frac{1}{2}^- \to \Sigma_c^{*+} \gamma$	0.05	6 ± 1	1	6.05	• • •	
$\Lambda_c(2625)^{\frac{3}{2}^-} \rightarrow \Lambda_c^+ \gamma$	0.30	151 ± 2	48		21	
$\Lambda_c(2625)\frac{3}{2}^- \to \Sigma_c^+ \gamma$	1.17	35 ± 0.5	5	34.7		

 $\Lambda_c(2593) \rightarrow \Lambda_c^+ \gamma$ 为例:

$$\mathcal{A}_{\frac{1}{2},-\frac{1}{2}} = \frac{\langle e_{1} \rangle}{\alpha_{\lambda}} \frac{1}{2} \frac{\sqrt{2}m'}{2m+m'} \exp(-\frac{k_{\rho}^{2}}{4\alpha_{\rho}^{2}} - \frac{k_{\lambda}^{2}}{4\alpha_{\lambda}^{2}}) + \frac{\langle e_{2} \rangle}{\alpha_{\lambda}} \frac{1}{2} \frac{\sqrt{2}m'}{2m+m'} \exp(-\frac{k_{\rho}^{2}}{4\alpha_{\rho}^{2}} - \frac{k_{\lambda}^{2}}{4\alpha_{\lambda}^{2}}) - \frac{\langle e_{3} \rangle}{\alpha_{\lambda}} (\frac{\sqrt{2}m}{2m+m'} + \frac{k_{\lambda}'}{2\sqrt{3}m'}) \exp(-\frac{k_{\lambda}'^{2}}{4\alpha_{\lambda}^{2}}),$$

$$k_{\rho} = \sqrt{\frac{1}{2}}k, \ k_{\lambda} = \sqrt{\frac{1}{6}} \frac{3m'}{2m+m'}k$$

$$k'_{\lambda} = \sqrt{\frac{2}{3}} \frac{3m}{2m+m'}k$$

$$\langle e_1 \rangle = \langle e_2 \rangle = 1/6$$

$$\langle e_3 \rangle = 2/3$$

$$\exp(-k_{\rho}^2/4\alpha_{\rho}^2 - k_{\lambda}^2/4\alpha_{\lambda}^2) \simeq \exp(-k_{\lambda}^{'2}/4\alpha_{\lambda}^2) \simeq 1$$

4. 2. 1 A s结论与分析

对于 Λ_b 重子,在PDG 上, Λ_b (5912)和 Λ_b (5920)分别对应JP=1/2⁻和 3/2⁻的态。在本工作中把它们分别对应于 λ 型的两个 P 波激发态 $1^2P_{\lambda}1/2^-$ 和 $1^2P_{\lambda}3/2^-$ 。由于 Λ_b (5912)和 Λ_b (5920)在 Σ_b π 阈值以下,故仅需对它们的辐射衰变进行预言:

$B_Q o B_Q^{'}$	Γ (Ours)	LCQSR[61]	HQS[85]	Bound state[86]
$\Lambda_b(5912)\frac{1}{2}^- \to \Lambda_b^0 \gamma$	50.2	1	90	
$\Lambda_b(5912)\frac{1}{2}^- \to \Sigma_b^0 \gamma$	0.14	11		81.7
$\Lambda_b(5912)_{\frac{1}{2}}^{-} \to \Sigma_b^{*0} \gamma$	0.09	1	• • •	8.91
$\Lambda_b(5920)\frac{3}{2}^- \to \Lambda_b^0 \gamma$	52.8	1	119	
$\Lambda_b(5920)^{\frac{3}{2}^-} \to \Sigma_b^0 \gamma$	0.21	5		33.8
$\Lambda_b(5920)\frac{3}{2}^- \to \Sigma_b^{*0} \gamma$	0.15	6		49.9

76: PRD60, 094002 M. A. Ivanov 61: PRD61, 114019 S. L. Zhu 85: PRD63, 034005 S. Tawfiq

86: PRD54, 3374 C. K. Chow

87: PRD83, 074018 D. Gamermann

4.3.1 Σ_c结论与分析

Σ_cS波的强衰变和辐射衰变

在 $Σ_c$ 重子中 , $Σ_c$ (2455) 和 $Σ_c$ (2520) 作为1S波的基态,其强衰变在以前的工作中已经讨论过(PRD77.074008),为了更好的理解 $Σ_c$ (2455) 和 $Σ_c$ (2520),接下来我们进一步讨论了它们的辐射衰变。结合 P D G 中的总衰变宽度,我们估算了B[$Σ_c$ (2455,2520) $^+ \rightarrow Λ_c ^+ \gamma$]的分支比,其可以达到 2 %。这样, $Σ_c$ (2455,2520) $^+ \rightarrow Λ_c ^+ \gamma$ 的衰变模式可能被以后的实验观测到。

	Notation	Channel	Γ _{exp} (MeV)	$\Gamma_{th} \; (MeV)$
$\Sigma_c(2455)$	$ \Sigma_c^2 S_2^{1+}\rangle$	$\Lambda_c\pi^+$	2.23 ± 0.30	1.89
	_	$\Lambda_c \pi^0$	<4.6	2.18
		$\Lambda_c \pi^-$	2.2 ± 0.4	1.86
$\Sigma_{c}(2520)$	$ \Sigma_c^4 S_2^{3+}\rangle$	$\Lambda_c \boldsymbol{\pi}^+$	14.9 ± 1.9	input
	_	$\Lambda_c oldsymbol{\pi}^0$	<17	15.53
		$\Lambda_c \pi^-$	16.1 ± 2.1	14.92

$B_{\mathcal{Q}} \to B_{\mathcal{Q}}^{'}$	Ours	RQM [76]	VMC [102]	BM [101]	LCQSR [94-96]	HQS [85]	NQM [103]	Other works
$\Sigma_c^+ o \Lambda_c^+ \gamma$	80.6	60.7 ± 1.5		46.1	50 ± 17		98.7	93 [99]
$\Sigma_c^{*+} o \Lambda_c^+ \gamma$	373	151 ± 4	409.3	126	130 ± 65	233	250	• • •
$\Sigma_c^{*+} \to \Sigma_c^+ \gamma$	0.004	0.14 ± 0.004	0.187	0.004	0.40 ± 0.22	0.22	1×10^{-3}	$0.40^{+0.43}_{-0.21}[92]$
$\Sigma_c^{*0} o \Sigma_c^0 \gamma$	3.43	• • •	1.049	1.08	0.08 ± 0.042	• • •	1.2	$1.58^{+1.68}_{-0.82}$ [92]
$\Sigma_c^{*++} \to \Sigma_c^{++} \gamma$	3.94	• • •	3.567	0.826	2.65 ± 1.60	• • •	1.7	6.36 ^{+6.79} _{-3.31} [92]

Σ_cP波的强衰变和辐射衰变

- 对于P波 Σ_c 重子, λ 型激发的P波有五个: $|^2P_{\lambda}1/2^-\rangle$, $|^2P_{\lambda}3/2^-\rangle$, $|^4P_{\lambda}1/2^-\rangle$
- $|^{4}P_{\lambda} 3/2^{-}$ 和 $|^{4}P_{\lambda} 5/2^{-}$ 。然而,到目前为止还没有一个P波的激发态被明确的确
- 定。根据各种夸克模型分析,我们知道 Σ_c 重子的 λ 型激发的 P波质量 \approx 2. 8 GeV o
- 本工作采用相对论夸克模型的质量(PRD84, 014025), 对其强衰变和辐
- 射衰变进行分析。

右图可以看出 $|^{2}P_{\lambda}3/2^{-}\rangle$ 和 $|^{4}P_{\lambda}5/2^{-}\rangle$ 主要衰变道为 Λ_{c} ⁺ π ; $|^{4}P_{\lambda}3/2^{-}\rangle$ 的主 要衰变道为 Σ_{c} ^{*} π 。

实验: $Σ_c$ (2800)主要衰变道是 $Λ_c^+ π$,所以 $Σ_c$ (2800)可能为 $|^2P_λ 3/2^-\rangle$ 和 $|^4P_λ 5/2^-\rangle$ 。需要说明的一点是, 3P_0 模型 (PRD75, 094017) 支持J^p=3/2⁻(5/2⁻);相对 论夸克模型(Int. J. Mod. Phys. E17, 585) 支持 J^p=5/2⁻。

state	HHChPT[68]	3P_0 model[64]	RQM[29]	Faddeev studies[30]	OUR
$\Sigma_c(2800)$	3/2-	3/2-(5/2-)	5/2-	3/2-(1/2-)	3/2-(5/2-)

基于 Ω_c 的两个P波 JP=1/2-的混合,我们也考虑了 Σ_c 重子的两个 λ 型激发的P波的混合(Φ =24° 或 47°)。理论结果显示: $|\Sigma_cP_{\lambda}1/2^-\rangle_1$ 的衰变宽度约 \approx 30MeV; $|\Sigma_cP_{\lambda}1/2^-\rangle_2$ 的衰变宽度约 \approx 10MeV。

$$\begin{pmatrix} |P_{\lambda}\frac{1}{2}\rangle_{1} \\ |P_{\lambda}\frac{1}{2}\rangle_{2} \end{pmatrix} = \begin{pmatrix} \cos\phi & \sin\phi \\ -\sin\phi & \cos\phi \end{pmatrix} \begin{pmatrix} |^{2}P_{\lambda}\frac{1}{2}\rangle \\ |^{4}P_{\lambda}\frac{1}{2}\rangle \end{pmatrix}$$

	$ \Sigma_c ^2 P_{\lambda} \frac{1}{2} \rangle (2713)$		$ \Sigma_c ^2 P_{\lambda}$	$\frac{3}{2}^{-}\rangle(2798)$	$ \Sigma_c ^4 P_{\lambda}$	$ \Sigma_c {}^4P_{\lambda}\frac{3}{2}\rangle(2799) \qquad \Sigma_c {}^4P_{\lambda}\frac{3}{2}\rangle(2773)$		$ \Sigma_c ^4 P_{\lambda}$	$ \Sigma_c ^4 P_{\lambda} \frac{5}{2}^-\rangle (2789)$	
	Γ_i	$\mathcal{B}_i(\%)$	Γ_i	$\mathcal{B}_i(\%)$	Γ_i	$\mathcal{B}_i(\%)$	Γ_i	$\mathcal{B}_i(\%)$	Γ_i	$\mathcal{B}_i(\%)$
$\rightarrow \Sigma_c^{++} \gamma$	283	1.25	210	0.58	8.54	0.05	17.5	0.07	13.6	0.04
$\rightarrow \Sigma_c^+ \gamma$	1.60	< 0.01	4.64	0.01	0.92	< 0.01	1.86	0.01	1.46	< 0.01
$\rightarrow \Sigma_c^0 \gamma$	205	0.91	245	0.67	1.02	< 0.01	2.12	0.01	1.64	< 0.01
$\rightarrow \Lambda_c^+ \gamma$	48.3	0.21	87.3	0.24	52.1	0.30	105	0.43	59.4	0.18
$\rightarrow \Sigma_c^{*++} \gamma$	3.04	0.01	14.7	0.04	387	2.20	181	0.73	168	0.51
$ ightarrow \Sigma_c^{*+} \gamma$	0.31	< 0.01	1.55	< 0.01	1.75	0.01	0.68	< 0.01	0.89	< 0.01
$ ightarrow \Sigma_c^{*0} \gamma$	0.39	< 0.01	1.82	< 0.01	289	1.64	159	0.65	160	0.48

4. 3. 2 Σ h 结论与分析

S波的强衰变和辐射衰变

- 类似于 Σ_{c} , 我们以前的工作已对 Σ_{b} S波的
- 强衰变(PRD86,034024)进行了讨论。在
- 此基础之上,本工作对 Σ_b S波的辐射衰变进
- 行研究, 计算结果如下表:

P波的强衰变和辐射衰变

右图可以看出:

 $|^{2}P_{\lambda}3/2-\rangle$ 和 $|^{4}P_{\lambda}5/2-\rangle$ 主要衰变道 为 $\Lambda_{b}^{+}\pi$; $|^{4}P_{\lambda}3/2-\rangle$ 的主要衰变道为 $\Sigma_{b}^{*}\pi$ 。

$B_Q \to B_Q'$	Ours	RQM [75]	VMC [100]	BM [99]	LCQSR [92–94] HQS [84]	NQM [10	1] Other works
$\Sigma_b^0 \to \Lambda_b^0 \gamma$	130			58.9	152 ± 60			
$\Sigma_b^{*0} \to \Lambda_b^0 \gamma$	335		221.5	81.1	114 ± 62	251		344 [89]
$\Sigma_b^{*0} \to \Sigma_b^0 \gamma$	0.02		0.006	0.005	0.028 ± 0.020	0.15		0.08 [89]
$\Sigma_b^{*+} \to \Sigma_b^+ \gamma$	0.25		0.137	0.054	0.46 ± 0.28			1.26 [89]
$\Sigma_b^{*-} \to \Sigma_b^- \gamma$	0.06	• • •	0.040	0.01	0.11 ± 0.076	• • •	• • •	0.32 [89]

类似于 $Σ_c$ 重子, 我们对其 $Σ_b$ 重子的两个λ型激发的P波也做了混合(Φ=24°或 47°)。我们可以很容易看出 $|Σ_b P_λ 1/2 >_1$ 的衰变宽度约≈30MeV; $|Σ_b P_λ 1/2 >_2$ 的衰变宽度约≈10MeV。

右图可知:

 $|\Sigma_b P_{\lambda} 1/2^->_1$ 的主要衰变道为 $\Sigma_b \pi$, $|\Sigma_b P_{\lambda} 1/2^->_2$ 的主要衰变道为 $\Lambda_b \pi$.

	$ \Sigma_b ^2 P_{\lambda} \frac{1}{2} \rangle (6101)$		$ \Sigma_b ^2 P_{\lambda}$	$\frac{3}{2}^{-}\rangle(6096)$	$ \Sigma_b ^4 P_{\lambda} \frac{1}{2} \rangle (6095) \qquad \Sigma_b ^4 P_{\lambda} \frac{3}{2} \rangle (6085)$		$\frac{3}{2}^{-}\rangle(6087)$	$ \Sigma_b ^4 P_\lambda \frac{5}{2}^-\rangle (6084)$		
	Γ_i	$\mathcal{B}_i(\%)$	Γ_i	$\mathcal{B}_i(\%)$	Γ_i	$\mathcal{B}_i(\%)$	Γ_i	$\mathcal{B}_i(\%)$	Γ_i	$\mathcal{B}_i(\%)$
$\rightarrow \Sigma_b^+ \gamma$	1016	4.49	483	1.23	5.31	0.04	13.1	0.05	8.07	0.02
$ ightarrow \Sigma_b^0 \gamma$	74.9	0.33	37.9	0.10	0.32	< 0.01	0.80	< 0.01	0.49	< 0.01
$\rightarrow \Sigma_b^- \gamma$	212	0.94	94.0	0.24	1.37	0.01	3.39	0.01	2.08	< 0.01
$\rightarrow \Lambda_c^0 \gamma$	133	0.59	129	0.33	63.6	0.45	170	0.65	83.3	0.22
$ ightarrow \Sigma_b^{*+} \gamma$	16.9	0.07	15.6	0.04	867	6.10	527	2.00	426	1.11
$ ightarrow \Sigma_b^{*0} \gamma$	1.03	< 0.01	0.95	< 0.01	63.6	0.45	39.8	0.15	32.6	0.09
$ ightarrow \Sigma_b^{*-} \gamma$	4.36	0.02	4.02	0.01	182	1.28	107	0.41	85.3	0.22

4. 4. 1 Ξ 。结论与分析

 Ξ_c (2790)(主要衰变道为 Ξ_c^{\dagger} 和 Ξ_c (2815)(主要衰变 道为 Ξ_c^{\dagger})在以前的工作中已经讨论过,然而近来,Belle实验组精确 测量了 Ξ_c (2790)和 Ξ_c (2815)的衰变宽度(PRD94.052011):

 $\Gamma(\Xi_c(2790)) \approx 10 MeV$ $\Gamma(\Xi_c(2815)) \approx 2.5 MeV$

这样可以使我们进一步精确的研究 它们。

结论:

 Ξ_c (2815)的总衰变宽度与实验值接近,而 Ξ_c (2790)与实验值相差大约三倍。辐射衰变和前面 Λ_c 的辐射衰变结果类似。

$ ^{2S+1}L_{\lambda}J^{P}\rangle$	State	Channel	Γ_i (MeV)	\mathcal{B}_i
$ ^2P_{\lambda}\frac{1}{2}^-\rangle$	$\Xi_c(2790)$	$\Xi_c'\pi$	3.61	100%
		$\Xi_c^{\prime*}\pi$	3.9×10^{-4}	$\simeq 0.0\%$
		total	3.61	
$ ^2P_{\lambda}\frac{3}{2}^-\rangle$	$\Xi_c(2815)$	$\Xi_c'\pi$	0.31	14.69%
		$\Xi_c^*\pi$	1.80	85.31%
		total	2.11	

$B_Q o B_Q^{'}$	Γ (Ours)	Γ[76]	Γ[87]
$\Xi_c^+(2790)\frac{1}{2}^- \to \Xi_c^+ \gamma$	4.65		246
$\Xi_c^0(2790)\frac{1}{2}^- \to \Xi_c^0 \gamma$	263		117
$\Xi_c^+(2790)\frac{1}{2}^- \to \Xi_c^{\prime +} \gamma$	1.43		1
$\Xi_c^0(2790)\frac{1}{2}^- \to \Xi_c^{\prime 0} \gamma$	0.0	• • •	1
$\Xi_c^+(2790)\frac{1}{2}^- \to \Xi_c^{*+}\gamma$	0.44	• • •	• • •
$\Xi_c^0(2790)\frac{1}{2}^- \to \Xi_c^{*0}\gamma$	0.0	• • •	• • •
$\Xi_c^+(2815)\frac{3}{2}^- \to \Xi_c^+ \gamma$	2.8	190 ± 5	• • •
$\Xi_c^0(2815)\frac{3}{2}^- \to \Xi_c^0 \gamma$	292	497 ± 14	• • •
$\Xi_c^+(2815)\frac{3}{2}^- \to \Xi_c^{\prime+}\gamma$	2.32		• • •
$\Xi_c^0(2815)\frac{3}{2}^- \to \Xi_c^{\prime 0} \gamma$	0.0	• • •	• • •
$\Xi_c^+(2815)\frac{3}{2}^- \to \Xi_c^{*+}\gamma$	0.99	• • •	• • •
$\Xi_c^0(2815)\frac{3}{2}^- \to \Xi_c^{*0}\gamma$	0.0	•••	•••

4. 4. 2 E b 结论与分析

由于实验上还没有任何有关 Ξ_b P波的信息,我们采用非相对论夸克模型预言的理论质量(PRD84, 014025)来计算 Ξ_b 的强衰变和辐射衰变。结果可以看出: Ξ_b (6120)主要衰变为 Ξ_b Ξ_b

$B_Q o B_Q'$	Γ (Ours)
$\Xi_b^0(6120)\frac{1}{2}^- \to \Xi_b^0 \gamma$	63.6
$\Xi_b^-(6120)\frac{1}{2}^- \to \Xi_b^- \gamma$	135
$\Xi_b^0(6120)\frac{1}{2}^- \to \Xi_b^{\prime 0} \gamma$	1.32
$\Xi_b^-(6120)\frac{1}{2}^- \to \Xi_b^{\prime-}\gamma$	0.0
$\Xi_b^0(6120)\frac{1}{2}^- \to \Xi_b^{*0}\gamma$	2.04
$\Xi_b^-(6120)\frac{1}{2}^- \to \Xi_b^{*-}\gamma$	0.0
$\Xi_b^0(6130)\frac{3}{2}^- \to \Xi_b^0 \gamma$	68.3
$\Xi_b^-(6130)\frac{3}{2}^- \to \Xi_b^- \gamma$	147
$\Xi_b^0(6130)\frac{3}{2}^- \to \Xi_b^{\prime 0}\gamma$	1.68
$\Xi_b^-(6130)\frac{3}{2}^- \to \Xi_b^{\prime-}\gamma$	0.0
$\Xi_b^0(6130)\frac{3}{2}^- \to \Xi_b^{*0}\gamma$	2.64
$\Xi_b^-(6130)\frac{3}{2}^- \to \Xi_b^{*-}\gamma$	0.0

$ ^{2S+1}L_{\lambda} J^{P}\rangle$	State	Channel	Γ_i (MeV)	\mathcal{B}_i
$ ^2P_{\lambda}\frac{1}{2}^-\rangle$	$\Xi_b(6120)$	$\Xi_b'\pi$	2.84	98.61%
		$\Xi_b^{\prime*}\pi$	0.04	1.39%
		total	2.88	
$ ^2P_{\lambda}\frac{3}{2}^-\rangle$	$\Xi_b(6130)$	$\Xi_b'\pi$	0.07	2.37%
		$\Xi_b^{\prime*}\pi$	2.88	97.63%
		total	2.95	

|4.5.1 Ξ'。结论与分析

E'。S波的强衰变和辐射衰变

在PDG中, Ξ'_c 的两个基态分别对应 Ξ'_c 和 Ξ'_c (2645)。我们之前的工作 (PRD86.034024)已对 Ξ'_c (2645)的强衰变性质进行了研究,并得到其衰变宽度 $\Gamma \approx 2.4 \text{MeV}$; 其与Belle(2.2MeV)实验组最近的测量结果符合。 在这个工作中,我们进一步对其辐射衰变做了讨论 。

$B_Q \to B_Q'$	Ours	RQM [75]	VMC [100]	BM [99]	LCQSR [92–94]	HQS [84]	NQM [101	Other works
$\Xi_c^{\prime+} \to \Xi_c^+ \gamma$	42.3	12.7 ± 1.5		10.2	8.5 ± 2.5	14.6	32	16 [97]
$\Xi_c^{\prime 0} \to \Xi_c^0 \gamma$	0.0	0.17 ± 0.02	• • •	0.0015	0.27 ± 0.06	0.35	0.27	0.3 [97]
$\Xi_c^{\prime*+} \to \Xi_c^+ \gamma$	139	54 ± 3	152.4	44.3	52 ± 32	• • •	124	
$\Xi_c^{\prime*0} \to \Xi_c^0 \gamma$	0.0	0.68 ± 0.04	1.318	0.908	0.66 ± 0.41	• • •	0.8	• • •
$\Xi_c^{\prime*+} \to \Xi_c^{\prime+} \gamma$	0.004	• • •	0.485	0.011	0.274	• • •	0.03	
$\Xi_c^{*0} \to \Xi_c^{\prime 0} \gamma$	3.03	• • •	1.317	1.03	2.142	• • •	0.7	• • •

E'。P波的强衰变和辐射衰变

对于P波 Ξ 'c 重子,我们对它们的强衰变和辐射衰变进行了系统地计算。 类似与 Ω c 的P波, | Ξ 'c 2 P $_{\lambda}$ 1/2 > 和 | Ξ ' $_{c}$ 4 P $_{\lambda}$ 1/2 > 也做了同样的混合 (Φ=24° 或 47°). 结果: $|\Xi'_{c}P_{\lambda}1/2^{-}>_{2}$ 在质量为2930MeV附近, 其总宽度 $\Gamma \approx 41$ MeV。

实验: 在 Λ^+_c K⁻ 末态测到的 Ξ^+_c (2930)的衰变宽度 $\Gamma \approx 36 \pm 18 \text{MeV}$ 可以很好的对应上。

主要衰变道比值:

$$\frac{\Gamma[\Xi_c(2930)^0 \to \Lambda_c^+ K^-]}{\Gamma[\Xi_c(2930)^0 \to \Xi_c \; \pi \;]} \simeq 1.2$$

	$ \Xi_c' ^2 P_{\lambda}$	$\frac{1}{2}^{-}\rangle(2936)$	$ \Xi_c' ^2 P_{\lambda}$	$\frac{3}{2}^{-}\rangle(2935)$	$ \Xi_c' ^4 P_{\lambda}$	$(\frac{1}{2})(2854)$	$ \Xi_c' ^4 P_{\lambda}$	$\frac{3}{2}^{-}\rangle(2912)$	$ \Xi_c' ^4 P_{\lambda}$	$\frac{5}{2}^{-}\rangle(2929)$
	Γ_i	$\mathcal{B}_i(\%)$	Γ_i	$\mathcal{B}_i(\%)$	Γ_i	$\mathcal{B}_i(\%)$	Γ_i	$\mathcal{B}_i(\%)$	Γ_i	$\mathcal{B}_i(\%)$
$\rightarrow \Xi_c^+ \gamma$	46.4	0.21	46.1	0.22	14.5	0.04	54.6	0.44	32.0	0.16
$\rightarrow \Xi_c^0 \gamma$	0.0	0.0	0.0	0.0	0.00	0.00	0.00	0.0	0.00	0.00
$\rightarrow \Xi_c^{\prime +} \gamma$	0.03	< 0.01	12.1	0.06	0.33	< 0.01	2.06	0.02	1.63	< 0.01
$\rightarrow \Xi_c^{\prime 0} \gamma$	472	2.18	302	1.45	0.20	< 0.01	1.21	< 0.01	0.93	< 0.01
$\rightarrow \Xi_c^{*\prime+} \gamma$	1.61	< 0.01	1.59	< 0.01	0.16	< 0.01	1.64	0.01	2.35	0.01
$\rightarrow \Xi_c^{*\prime 0} \gamma$	1.00	< 0.01	1.05	< 0.01	125	0.34	187	1.52	192	0.95

4.5.2 E'。结论与分析

Ξ',S波的强衰变和辐射衰变

• Ξ '*_b(5945)和 Ξ '*_b(5955)的衰变宽度:

$$\Gamma[\Xi_b^{\prime*0} \to \Xi_b \pi] \simeq 0.73 \text{ MeV}$$

 $\Gamma[\Xi_b^{\prime*-} \to \Xi_b \pi] \simeq 1.23 \text{ MeV}$

• LHCb实验数据:

$$\Gamma(\Xi_b^{\prime*0}) \simeq 0.90 \pm 0.24$$
 MeV (JHEP1605,161(2016)) $\Gamma(\Xi_b^{\prime*-}) \simeq 1.65 \pm 0.41$ MeV (PRL114,062004(2015))

• Ξ'_b (5935)-的强衰变宽度 $\Gamma[\Xi_b^{\prime-} \to \Xi_b \pi] \simeq 78 \text{ keV}$

• LHCb实验数据:

$$\Gamma(\Xi_b^{\prime-}) = 80 \text{ keV}$$

(上限极限)

辐射衰变

$B_Q \to B_Q'$	Ours	RQM [75]	VMC [100]	BM [99]	LCQSR [92-94]
$\Xi_b^{\prime 0} \to \Xi_b^0 \gamma$	84.6			14.7	47 ± 21
$\Xi_b^{\prime-} \to \Xi_b^- \gamma$	0.0	• • •	• • •	0.118	3.3 ± 1.3
$\Xi_b^{\prime*0} \to \Xi_b^0 \gamma$	104	• • •	270.8	24.7	135 ± 85
$\Xi_b^{\prime*-} \to \Xi_b^- \gamma$	0.0	• • •	2.246	0.278	1.50 ± 0.95
$\Xi_b^{\prime*0} \to \Xi_b^{\prime0} \gamma$	5.19	• • •	0.281	0.004	0.131
$\Xi_b^{\prime*-} \to \Xi_b^{\prime-} \gamma$	15.0	• • •	0.702	0.005	0.303

Ξ',P波的强衰变和辐射衰变

结论:

右图可知: $|^{2}P_{\lambda}3/2\rightarrow \pi |^{4}P_{\lambda}5/2\rightarrow$ 主要衰变道为 Ξ ' $_{b}$ π ; $|^{4}P_{\lambda}3/2\rightarrow$ 的主 要衰变道为 Ξ ' $_{b}$ (5945) π 。

| ²P _{\lambda} 1/2⁻>和| ⁴P _{\lambda} 3/2->混合后结果:

|Ξ'_b P_λ1/2->₁的主要衰变道为Ξ'*_b π, |Ξ'_b P_λ1/2->₂的主要衰变道为Λ_bK和Ξ_b π

$ ^{2S+1}L_{\lambda} J^{P}\rangle$	State	Channel	Γ _i (MeV)	\mathcal{B}_i
$ ^2P_{\lambda}\frac{1}{2}^-\rangle$	$\Xi_b'(6233)$	$\Lambda_b K$	12.11	44.77%
-	v	$\Xi_b\pi$	4.77	17.63%
		$\Xi_b'\pi$	9.23	34.12%
		$\Xi_{b}^{\prime}(5945)\pi$	0.94	3.48%
		total	27.05	
$ ^2P_\lambda\frac{3}{2}^-\rangle$	$\Xi_b'(6234)$	$\Lambda_b K$	4.14	17.14%
_		$\Xi_b\pi$	14.91	61.74%
		$\Xi_b'\pi$	2.37	9.81%
		$\Xi_b'(5945)\pi$	2.73	11.30%
		total	24.15	
$ ^4P_{\lambda}\frac{1}{2}^-\rangle$	$\Xi_b'(6227)$	$\Lambda_b K$	17.28	53.60%
_		$\Xi_b\pi$	10.01	31.05%
		$\Xi_b'\pi$	4.54	14.08%
		$\Xi_b'(5945)\pi$	0.41	1.27%
		total	32.24	
$ ^4P_{\lambda}\frac{3}{2}^-\rangle$	$\Xi_b'(6224)$	$\Lambda_b K$	0.98	6.19%
_		$\Xi_b\pi$	2.67	16.87%
		$\Xi_b'\pi$	0.10	0.63%
		$\Xi_b'(5945)\pi$	12.08	76.31%
		total	15.83	
$ ^4P_\lambda \frac{5}{2}^-\rangle$	$\Xi_b'(6226)$	$\Lambda_b K$	4.20	17.22%
		$\Xi_b\pi$	16.37	67.12%
		$\Xi_b'\pi$	0.60	2.46%
		$\Xi_b'(5945)\pi$	3.22	13.20%
		total	24.39	
	1 _ 2		1_ 5	

	$ \Xi_b^{\prime} ^2 P_{\lambda} \frac{1}{2} \rangle (6233)$		$ \Xi_b^{\prime} ^2 P_{\lambda} \frac{3}{2}^- \rangle (6234)$		$ \Xi_b^{\prime} ^4 P_{\lambda} \frac{1}{2}^- \rangle (6227)$		$ \Xi_b^{\prime} ^4 P_{\lambda} \frac{3}{2}^- \rangle (6224)$		$ \Xi_b^{\prime} ^4 P_{\lambda} \frac{5}{2}^- \rangle (6226)$	
	Γ_i	$\mathcal{B}_i(\%)$	Γ_i	$\mathcal{B}_i(\%)$	Γ_i	$\mathcal{B}_i(\%)$	Γ_i	$\mathcal{B}_i(\%)$	Γ_i	$\mathcal{B}_i(\%)$
$\rightarrow \Xi_b^0 \gamma$	72.2	0.27	72.8	0.30	34.0	0.11	94.0	0.59	47.7	0.20
$\rightarrow \Xi_b^- \gamma$	0.0	0.0	0.0	0.0	0.00	0.0	0.0	0.0	0.0	0.0
$\rightarrow \Xi_b^{\prime 0} \gamma$	76.3	0.28	43.9	0.18	0.25	< 0.01	0.67	< 0.01	0.44	< 0.01
$\rightarrow \Xi_b^{\prime-} \gamma$	190	0.70	92.3	0.38	1.48	< 0.01	2.94	0.02	1.88	< 0.01
$ ightarrow \Xi_b^{*\prime0} \gamma$	0.89	< 0.01	0.90	< 0.01	69.5	0.22	47.5	0.30	41.5	0.17
$ ightarrow \Xi_b^{*\prime-} \gamma$	3.54	0.01	3.60	0.01	164	0.51	104	0.66	88.2	0.36

5. 总结

- * 对于近来LHCb实验上测量的五个态 Ω_c (3000), Ω_c (3050), Ω_c (3066), Ω_c (3090), Ω_c (3119),我们的结论为: Ω_c (3000)是一个混合的 $|P_{\lambda}1/2^-\rangle_1$ 比较窄的态; Ω_c (3050)和 Ω_c (3066)分别对应 $J^p=3/2^-$ 态, $|^4P_{\lambda}3/2^-\rangle$ 和 $|^2P_{\lambda}3/2^-\rangle$; Ω_c (3090)对应 $J^p=5/2^-$ 的态, $|^4P_{\lambda}5/2^-\rangle$; Ω_c (3119)可能对应于2S中的任意一个态, $|2^2S_{\lambda\lambda}1/2^+\rangle$ 和 $|2^4S_{\lambda\lambda}3/2^+\rangle$ 。
- * 对于基态的重子 Σ^0_b 和 Σ^{*0}_b ,辐射衰变道 Λ^0_b Y 的分支比比较大,故在实验上获取 Σ^0_b 和 Σ^{*0}_b 的性质,可通过该衰变道。
- * 对于 $\Sigma_{c(b)}$ 和 $\Xi_{c(b)}$ 的1P波,即 $|{}^{2}P_{\lambda}1/2^{-}\rangle$, $|{}^{2}P_{\lambda}3/2^{-}\rangle$, $|{}^{4}P_{\lambda}1/2^{-}\rangle$, $|{}^{4}P_{\lambda}3/2^{-}\rangle$,衰变性质各不相同,但他们都有比较窄的衰变宽度。需要指出的一点是 $|{}^{2}P_{\lambda}1/2^{-}\rangle$ 和 $|{}^{4}P_{\lambda}1/2^{-}\rangle$ 可能存在混合。

谢谢

附录

Ξ'。P波的强衰变

$ ^{2S+1}L_{\lambda} J^{P}\rangle$	State	Channel	Γ_i (MeV)	\mathcal{B}_i	
$\frac{1}{ ^2P_{\lambda}\frac{1}{2}^-\rangle}$	$\Xi_c'(2936)$	$\Lambda_c K$	7.11	32.81%	
	2	$\Xi_c\pi$	3.90	18.00%	
		$\Xi_c'(2580)\pi$	10.08	46.52%	
		$\Xi_c'(2645)\pi$	0.58	2.68%	
		total	21.67		
$ ^2P_{\lambda}\frac{3}{2}^-\rangle$	$\Xi_c'(2935)$	$\Lambda_c K$	3.73	17.86%	
		$\Xi_c\pi$	10.85	51.94%	
		$\Xi_c'(2580)\pi$	3.89	18.62%	
		$\Xi_c'(2645)\pi$	2.42	11.58%	
		total	20.89		
$ {}^4P_{\lambda}\frac{1}{2}^{-}\rangle$	$\Xi_c'(2854)$	$\Lambda_c K$	18.56	50.09%	
_		$\Xi_c\pi$	15.02	40.54%	
		$\Xi_c'(2580)\pi$	3.44	9.28%	
		$\Xi_c'(2645)\pi$	0.03	0.07	
		total	37.05		
$ ^4P_{\lambda}\frac{3}{2}^-\rangle$	$\Xi_c'(2912)$	$\Lambda_c K$	0.50	4.06%	
		$\Xi_c\pi$	1.70	13.79%	
		$\Xi_c'(2580)\pi$	0.13	1.05%	
		$\Xi_c'(2645)\pi$	10.00	81.10%	
		total	12.33		
$ ^4P_{\lambda}\frac{5}{2}^-\rangle$	$\Xi_c'(2929)$	$\Lambda_c K$	4.06	20.10%	
		$\Xi_c\pi$	12.24	60.59%	
		$\Xi_c'(2580)\pi$	1.06	5.25%	
		$\Xi_c'(2645)\pi$	2.84	14.06%	
		total	20.2		

Ξ'_bP波(J^p=1/2⁻)强衰变的混合

Ω。结论与其他模型比较

State	[20]	[21]	[22]	[24]	[30]	[26]	[28]	[29]	[33]	[27]	This work
$\Omega_c(3000)$		1/2-	1/2- (3/2-)	1/2-	1/2-	1/2-	1/2-	$1/2^+$ or $3/2^+$	1/2-		1/2-
$\Omega_c(3050)$		1/2-	$1/2^-(3/2^-)$	1/2-	5/2-	3/2-	1/2-	$5/2^+$ or $7/2^+$	3/2-		3/2-
$\Omega_c(3066)$	$1/2^{+}$	$1/2^+$ or $1/2^-$	3/2- (5/2-)	3/2-	3/2-	5/2-	3/2-	3/2-	$1/2^{+}$		3/2-
$\Omega_c(3090)$			$3/2^ (1/2^+)$	3/2-	1/2-	$1/2^{+}$	3/2-	5/2-	$1/2^{+}$		5/2-
$\Omega_c(3119)$	$3/2^{+}$	3/2+	5/2- (3/2+)	5/2-	3/2-	3/2+	5/2-	$5/2^+$ or $7/2^+$	$3/2^{+}$	1/2-	$1/2^+$ or $3/2^+$

20: EPL 118 (2017) no. 6, 61001

21: Phys. Rev. D 95, 094008

22: Phys. Rev. D 95, 114012

24: arXiv:1704.00259

26: Phys. Rev. D 95, 094018

28: Eur. Phys. J. C 77, 325

29: arXiv:1704.02688

30: arXiv:1704.02583

33: arXiv:1704.04928