Recent Progress in Applying Lattice QCD to Kaon Physics

冯 旭

第四届手征有效场论研讨会＠西安 2017年10月14日
"Standard" observables in Kaon physics

- $f_{K^{ \pm}} \mid f_{\pi^{ \pm}}, f_{+}(0), \tau \rightarrow s$ inclusive decay and $\left|V_{u s}\right|$
- B_{K} for SM and beyond
"Non-standard" observables in Kaon physics
- $K \rightarrow \pi \pi$ decays and direct $C P$ violation
- ΔM_{K} and ϵ_{K}
- Rare Kaon decays

Lattice Kaon physics

Evaluate the hadronic matrix elements in Kaon physics

- Lattice QCD is powerful for "standard" hadronic matrix elements with

- single local operator insertion
- only single stable hadron or vacuum in the initial/final state
- spatial momenta carried by particles need to be small compared to 1 /a (not a problem for Kaon physics, but essential for B decays)
$f_{K^{ \pm}} / f_{\pi^{ \pm}}, f_{+}(0), \tau \rightarrow s$ inclusive decay and $\left|V_{u s}\right|$

"standard" quantities in Kaon physics: $f_{K^{ \pm}} / f_{\pi^{ \pm}}$and $f_{+}(0)$

Flavor Lattice Averaging Group (FLAG) average, updated in Nov. 2016

$$
\begin{aligned}
f_{+}^{K \pi}(0)=0.9706(27) & \Rightarrow 0.28 \% \text { error } \\
f_{K^{ \pm}} / f_{\pi^{ \pm}}=1.1933(29) & \Rightarrow 0.25 \% \text { error }
\end{aligned}
$$

Flavor Lattice Averaging Group (FLAG) average, updated in Nov. 2016

$$
\begin{aligned}
& f_{+}^{K \pi}(0)=0.9706(27) \quad \Rightarrow \quad 0.28 \% \text { error } \\
& f_{K^{ \pm}} / f_{\pi^{ \pm}}=1.1933(29) \quad \Rightarrow \quad 0.25 \% \text { error }
\end{aligned}
$$

Experimental information [arXiv:1411.5252, 1509.02220]

$$
\begin{aligned}
K_{\ell 3} & \Rightarrow\left|V_{u s}\right| f_{+}(0)=0.2165(4)
\end{aligned} \quad \Rightarrow\left|V_{u s}\right|=0.2231(7),
$$

Test the CKM unitarity

[S. Aoki et. al., FLAG report updated in Nov. 2016]
Most stringent test of CKM unitarity is given by the first row condition

$$
\left|V_{u}\right|^{2} \equiv\left|V_{u d}\right|^{2}+\left|V_{u s}\right|^{2}+\left|V_{u b}\right|^{2}=1
$$

- Use $\left|V_{u s}\right|$ for $K_{\ell 3}+\left|V_{u s} / V_{u d}\right|$ for $K_{\ell 2} / \pi_{\ell 2}$ as input

$$
\left|V_{u}\right|^{2}=0.9798(82) \quad \Rightarrow \quad 2.5 \sigma \text { deviation from } 1
$$

Test the CKM unitarity

[S. Aoki et. al., FLAG report updated in Nov. 2016]
Most stringent test of CKM unitarity is given by the first row condition

$$
\left|V_{u}\right|^{2} \equiv\left|V_{u d}\right|^{2}+\left|V_{u s}\right|^{2}+\left|V_{u b}\right|^{2}=1
$$

- Use $\left|V_{u s}\right|$ for $K_{\ell 3}+\left|V_{u s} / V_{u d}\right|$ for $K_{\ell 2} / \pi_{\ell 2}$ as input

$$
\left|V_{u}\right|^{2}=0.9798(82) \quad \Rightarrow \quad 2.5 \sigma \text { deviation from } 1
$$

Most precise value of $\left|V_{u d}\right|=0.97417(21)$ is from superallowed nuclear β decay

- Use $\left|V_{u s}\right|$ for $K_{\ell 3}+\left|V_{u d}\right|$ for β decay

$$
\left|V_{u}\right|^{2}=0.9988(5) \quad \Rightarrow \quad \text { sharpen the test, still } 2.4 \sigma \text { deviation }
$$

Test the CKM unitarity

[S. Aoki et. al., FLAG report updated in Nov. 2016]
Most stringent test of CKM unitarity is given by the first row condition

$$
\left|V_{u}\right|^{2} \equiv\left|V_{u d}\right|^{2}+\left|V_{u s}\right|^{2}+\left|V_{u b}\right|^{2}=1
$$

- Use $\left|V_{u s}\right|$ for $K_{\ell 3}+\left|V_{u s} / V_{u d}\right|$ for $K_{\ell 2} / \pi_{\ell 2}$ as input

$$
\left|V_{u}\right|^{2}=0.9798(82) \quad \Rightarrow \quad 2.5 \sigma \text { deviation from } 1
$$

Most precise value of $\left|V_{u d}\right|=0.97417(21)$ is from superallowed nuclear β decay

- Use $\left|V_{u s}\right|$ for $K_{\ell 3}+\left|V_{u d}\right|$ for β decay

$$
\left|V_{u}\right|^{2}=0.9988(5) \quad \Rightarrow \quad \text { sharpen the test, still } 2.4 \sigma \text { deviation }
$$

- Use $\left|V_{u s} / V_{u d}\right|$ for $K_{\ell 2} / \pi_{\ell 2}+\left|V_{u d}\right|$ for β decay

$$
\left|V_{u}\right|^{2}=0.9998(5) \quad \Rightarrow \quad \text { confirm CKM unitarity }
$$

Test the CKM unitarity

[S. Aoki et. al., FLAG report updated in Nov. 2016]
Most stringent test of CKM unitarity is given by the first row condition

$$
\left|V_{u}\right|^{2} \equiv\left|V_{u d}\right|^{2}+\left|V_{u s}\right|^{2}+\left|V_{u b}\right|^{2}=1
$$

- Use $\left|V_{u s}\right|$ for $K_{\ell 3}+\left|V_{u s} / V_{u d}\right|$ for $K_{\ell 2} / \pi_{\ell 2}$ as input

$$
\left|V_{u}\right|^{2}=0.9798(82) \quad \Rightarrow \quad 2.5 \sigma \text { deviation from } 1
$$

Most precise value of $\left|V_{u d}\right|=0.97417(21)$ is from superallowed nuclear β decay

- Use $\left|V_{u s}\right|$ for $K_{\ell 3}+\left|V_{u d}\right|$ for β decay

$$
\left|V_{u}\right|^{2}=0.9988(5) \quad \Rightarrow \quad \text { sharpen the test, still } 2.4 \sigma \text { deviation }
$$

- Use $\left|V_{u s} / V_{u d}\right|$ for $K_{\ell 2} / \pi_{\ell 2}+\left|V_{u d}\right|$ for β decay

$$
\left|V_{u}\right|^{2}=0.9998(5) \quad \Rightarrow \quad \text { confirm CKM unitarity }
$$

Interesting to reduce the uncertainty from $f_{+}(0)$ and explore the $>2 \sigma$ deviation

$f_{+}(0)$: recent update from Fermilab Lattice-MILC Collaboration

Use HISQ fermions on $N_{f}=2+1+1$ MILC configurations [PoS LATTICE2016 286]

$f_{+}(0)$: recent update from Fermilab Lattice-MILC Collaboration

Use HISQ fermions on $N_{f}=2+1+1$ MILC configurations [PoS LATTICE2016 286]

- 4 ensembles at physical m_{π}
- 2 ultra-fine lattice at $a=0.06,0.042 \mathrm{fm}$
\Downarrow
Stat. err reduces to ~ 0.14\%

$f_{+}(0)$: recent update from Fermilab Lattice-MILC Collaboration

Use HISQ fermions on $N_{f}=2+1+1$ MILC configurations [PoS LATTICE2016 286]

- 4 ensembles at physical m_{π}
- 2 ultra-fine lattice at $a=0.06,0.042 \mathrm{fm}$ \Downarrow
Stat. err reduces to ~ 0.14\%
- Use one-loop ChPT to control FV effects
[C. Bernard et. al, JHEP 1703 (2017) 120]

$f_{+}(0)$: recent update from Fermilab Lattice-MILC Collaboration

Use HISQ fermions on $N_{f}=2+1+1$ MILC configurations [PoS LATTICE2016 286]

- 4 ensembles at physical m_{π}
- 2 ultra-fine lattice at $a=0.06,0.042 \mathrm{fm}$ \Downarrow
Stat. err reduces to ~ 0.14\%
- Use one-loop ChPT to control FV effects [C. Bernard et. al, JHEP 1703 (2017) 120]
- Chiral, continuum extrapolation + discretization uncertainty + FV corrections + NNLO isospin corrections + taste-violating effects $+\cdots$

Expect to have a final error of $\sim 0.2 \%$

$\left|V_{u s}\right|$: summarized by HFAG averaging group

3.2σ deviation between $\tau \rightarrow s$ inclusive decay and CKM unitarity

$\left|V_{u s}\right|$: summarized by HFAG averaging group

3.2σ deviation between $\tau \rightarrow s$ inclusive decay and CKM unitarity

$$
R=\frac{\Gamma\left(\tau \rightarrow \text { strange-hadrons } \nu_{\tau}\right)}{\Gamma\left(\tau \rightarrow e \bar{\nu}_{e} \nu_{\tau}\right)}
$$

Optical theorem: Hadronic spectral func. of inclusive decay \Leftrightarrow imag. of HVP

$$
\frac{d R}{d s}=\frac{12 \pi\left|V_{u s}\right|^{2} S_{E W}}{m_{\tau}^{2}}\left(1-\frac{s}{m_{\tau}^{2}}\right)^{2}\left[\left(1+2 \frac{s}{m_{\tau}^{2}}\right) \operatorname{Im} \Pi^{(1)}(s)+\operatorname{Im} \Pi^{(0)}(s)\right]
$$

Theoretical approaches to treat with inclusive τ decay

$\operatorname{Im} \Pi^{(J)}(s)$ is generically non-perturbative at small s

- Conventional approach: use dispersion relation
[E. Braaten et. al., NPB373 (1992) 581; E. Gámiz et. al., PRL94 (2005) 011803]

$\int_{0}^{s_{0}} d s W(s) \operatorname{Im} \Pi(s)=\frac{i}{2} \oint_{|s|=s_{0}} d s W(s) \Pi(s)$
LHS given by $\frac{d R}{d s}$; RHS given by pQCD + OPE

Theoretical approaches to treat with inclusive τ decay

$\operatorname{Im} \Pi^{(J)}(s)$ is generically non-perturbative at small s

- Conventional approach: use dispersion relation
[E. Braaten et. al., NPB373 (1992) 581; E. Gámiz et. al., PRL94 (2005) 011803]

$$
\int_{0}^{s_{0}} d s W(s) \operatorname{Im} \Pi(s)=\frac{i}{2} \oint_{|s|=s_{0}} d s W(s) \Pi(s)
$$

LHS given by $\frac{d R}{d s}$; RHS given by pQCD +OPE

- Study dependence on s_{0} and $W(s)$ or use lattice data $\xrightarrow{\text { fit }}$ high-dim. OPE [R. Hudspith et. al arXiv:1702.01767]

$$
\left|V_{u s}\right|= \begin{cases}0.2229(22) & \text { using BaBar } \tau \rightarrow K \pi^{0} \nu_{\tau}, 3.2 \sigma \rightarrow 1.2 \sigma \\ 0.2204(23) & \text { using HFAG } \tau \rightarrow K \pi^{0} \nu_{\tau}, 3.2 \sigma \rightarrow 2.2 \sigma\end{cases}
$$

Theoretical approaches to treat with inclusive τ decay

$\operatorname{Im} \Pi^{(J)}(s)$ is generically non-perturbative at small s

- Conventional approach: use dispersion relation
[E. Braaten et. al., NPB373 (1992) 581; E. Gámiz et. al., PRL94 (2005) 011803]

$$
\int_{0}^{s_{0}} d s W(s) \operatorname{Im} \Pi(s)=\frac{i}{2} \oint_{|s|=s_{0}} d s W(s) \Pi(s)
$$

LHS given by $\frac{d R}{d s}$; RHS given by $\mathrm{PQCD}+\mathrm{OPE}$

- Study dependence on s_{0} and $W(s)$ or use lattice data $\xrightarrow{\text { fit }}$ high-dim. OPE [R. Hudspith et. al arXiv:1702.01767]

$$
\left|V_{u s}\right|= \begin{cases}0.2229(22) & \text { using BaBar } \tau \rightarrow K \pi^{0} \nu_{\tau}, 3.2 \sigma \rightarrow 1.2 \sigma \\ 0.2204(23) & \text { using HFAG } \tau \rightarrow K \pi^{0} \nu_{\tau}, 3.2 \sigma \rightarrow 2.2 \sigma\end{cases}
$$

- Lattice QCD + dispersion relation [H. Ohki, Friday 17:50@Seminarios 6+7]

use $W(s)=\prod_{k}^{N_{p}} \frac{1}{s+Q_{k}^{2}}$ and let $|s|=s_{0} \rightarrow \infty$
Residue at $s=-Q_{k}^{2}$ is given by Lattice HVPs 9/45

$\left|V_{U S}\right|$ determined from inclusive τ decay + lattice HVPs

$N_{f}=2+1$ Möbius DWF

- physical m_{π}
- $a^{-1}=1.73,2.36 \mathrm{GeV}$
- $V=5 \mathrm{fm}^{3}$
- Mesurements:

$$
88 \times 48,80 \times 32
$$

τ FB FESR, HLMZ17
(new implementation, lower: : HFAG16 input)
τ, lattice $\left[\mathrm{N}=3, \mathrm{C}=0.3 \mathrm{GeV}^{2}\right] \quad K$-pole data:
τ, lattice $\left[\mathrm{N}=4, \mathrm{C}=0.7 \mathrm{GeV}^{2}\right]$
$\tau \rightarrow K \nu_{\tau}$ (filled square)
$K_{\mu 2}$ (open square)

Plot, courtesy of T. Izubuchi \& H. Ohki
Choice of Q_{k}^{2} : separated by a spacing $\Delta=\frac{0.2}{N-1} \mathrm{GeV}^{2}$ and $C=\frac{Q_{\min }^{2}+Q_{\max }^{2}}{2}$

- Not too large to suppress contribution from pQCD+OPE at $s>m_{\tau}^{2}$ and noisy experimental data at larger $s<m_{\tau}^{2}$
- Not too small to avoid large statistical error from lattice HVPs

B_{K} for SM and beyond

Short distance dominance \Rightarrow OPE \Rightarrow Wilson coeff. $C(\mu) \times$ operator $Q^{\Delta S=2}(\mu)$

$$
\mathcal{H}_{\mathrm{eff}}^{\Delta S=2}=\frac{G_{F}^{2} M_{W}^{2}}{16 \pi^{2}} C(\mu) Q^{\Delta S=2}(\mu)
$$

- Serve as a dominant contribution to the indirect $C P$ violation ϵ_{K}

$$
\epsilon_{K}=\exp \left(i \phi_{\epsilon}\right) \sin \left(\phi_{\epsilon}\right)\left[\frac{\operatorname{Im}\left[\left\langle\overline{K^{0}}\right| \mathcal{H}_{\mathrm{eff}}^{\Delta S=2}\left|K^{0}\right\rangle\right]}{\Delta M_{K}}+\frac{\operatorname{Im}\left[M_{0 \overline{0}}^{\mathrm{LD}}\right]}{\Delta M_{K}}+\frac{\operatorname{Im}\left[A_{0}\right]}{\operatorname{Re}\left[A_{0}\right]}\right]
$$

- Within Standard Model, only single operator with $V-A$ structure

$$
Q^{\Delta S=2}=\left[\bar{s}_{a} \gamma_{\mu}\left(1-\gamma_{5}\right) d_{a}\right]\left[\bar{s}_{b} \gamma_{\mu}\left(1-\gamma_{5}\right) d_{b}\right]
$$

- Beyond SM, 4 other operators possible

$$
\begin{aligned}
& Q_{2}^{\Delta S=2}=\left[\bar{s}_{a}\left(1-\gamma_{5}\right) d_{a}\right]\left[\bar{s}_{b}\left(1-\gamma_{5}\right) d_{b}\right] \\
& Q_{3}^{\Delta S=2}=\left[\bar{s}_{a}\left(1-\gamma_{5}\right) d_{b}\right]\left[\bar{s}_{b}\left(1-\gamma_{5}\right) d_{a}\right] \\
& Q_{4}^{\Delta S=2}=\left[\bar{s}_{a}\left(1-\gamma_{5}\right) d_{a}\right]\left[\bar{s}_{b}\left(1+\gamma_{5}\right) d_{b}\right] \\
& Q_{5}^{\Delta S=2}=\left[\bar{s}_{a}\left(1-\gamma_{5}\right) d_{b}\right]\left[\bar{s}_{b}\left(1+\gamma_{5}\right) d_{a}\right]
\end{aligned}
$$

- B_{K} in NDR- $\overline{M S}$ scheme: $B_{K}(\mu)=\frac{\left\langle\overline{K^{0}}\right| Q^{\Delta S=2}(\mu)\left|K^{0}\right\rangle}{\frac{8}{3} f_{K}^{2} m_{K}^{2}}$
- Renormalization group independent B parameter \hat{B}_{K} :

$$
\hat{B}_{K}=\left(\frac{\bar{g}(\mu)^{2}}{4 \pi}\right)^{-\gamma_{0} /\left(2 \beta_{0}\right)} \exp \left\{\int_{0}^{\bar{g}(\mu)} d g\left(\frac{\gamma(g)}{\beta(g)}+\frac{\gamma_{0}}{\beta_{0} g}\right)\right\} B_{K}(\mu)
$$

- $N_{f}=2+1+1$: $\hat{B}_{K}=0.717(24)$
- $N_{f}=2+1$: $\hat{B}_{K}=0.763(10)$
- $N_{f}=2$:
$\hat{B}_{K}=0.727(25)$

FLAG average for BSM B_{i}, updated in Dec. 2016

$$
B_{i}(\mu)=\frac{\left\langle\overline{K^{0}}\right| Q_{i}(\mu)\left|K^{0}\right\rangle}{N_{i}\left\langle\bar{K}^{0}\right| \bar{s} \gamma_{5} d|0\rangle\langle 0| \bar{s} \gamma_{5} d\left|K^{0}\right\rangle}, \quad\left\{N_{2}, \cdots, N_{5}\right\}=\{-5 / 3,1 / 3,2,2 / 3\}
$$

$B_{i}(\mu)$ at $\mu_{\overline{\mathrm{MS}}}=3 \mathrm{GeV}$

For $N_{f}=2+1, B_{2}=0.502(14), B_{3}=0.766(32), B_{4}=0.926(19), B_{5}=0.720(38)$

Resolution of the discrepancy for B_{4}, B_{5}

$N_{f}=2+1$ DWF, $a=0.08,0.11 \mathrm{fm}, m_{\pi}=300 \mathrm{MeV}$ [RBC-UKQCD, JHEP11(2016)001]

Plot, courtesy of N. Garron

- Use both $\mathrm{RI} / \mathrm{MOM}$ and $\mathrm{SMOM} \Rightarrow$ the former is significantly smaller
- Use two $\mathrm{RI} /$ SMOM schemes, (ϕ, ϕ) and $\left(\gamma_{\mu}, \gamma_{\mu}\right) \Rightarrow$ consistent results
- RI/(S)MOM result compatible with previous $\mathrm{RI} /(\mathrm{S}) \mathrm{MOM}$ calculation

Study suggests RI/MOM suffers from large IR artifacts \Rightarrow discrepancy

- $K \rightarrow \pi \pi$ decays and direct $C P$ violation

Final state involves $\pi \pi$ (multi-hadron system)

- Long-distance contributions to flavor changing processes
- ΔM_{K} and ϵ_{K}

- Rare kaon decays: $K \rightarrow \pi \nu \bar{\nu}$ and $K \rightarrow \pi \ell^{+} \ell^{-}$

Hadronic matrix element for bilocal operators

$$
\int d^{4} x\langle f| T\left[Q_{1}(x) Q_{2}(0)\right]|i\rangle
$$

$K \rightarrow \pi \pi$ decays and direct $C P$ violation
$C P$ violation is first observed in neutral Kaon decays

- $C P$ eigenstates
- Under $C P$ transform: $C P\left|K^{0}\right\rangle=-\left|\overline{K^{0}}\right\rangle$
- Define $C P$ eigenstates: $K_{ \pm}^{0}=\left(K^{0} \mp \overline{K^{0}}\right) / \sqrt{2}$
- Weak eigenstates
- $K_{S} \rightarrow 2 \pi(C P=+)$
- $K_{L} \rightarrow 3 \pi(C P=-)$
- Neglecting $C P$ violation, we have $K_{S}=K_{+}^{0}$ and $K_{L}=K_{-}^{0}$

1964, BNL discovered $K_{L} \rightarrow 2 \pi \Rightarrow C P$ violation \Rightarrow Nobel prize (1980)

- $K_{L / S}$ are not $C P$ eigenstates

$$
\left|K_{L / S}\right\rangle=\frac{1}{\sqrt{1+\bar{\epsilon}^{2}}}\left(\left|K_{\mp}^{0}\right\rangle+\bar{\epsilon}\left|K_{ \pm}^{0}\right\rangle\right)
$$

- $K_{L} \rightarrow 2 \pi(C P=+)$
- $K_{+}^{0} \rightarrow 2 \pi$ (indirect $C P$ violation, ϵ or ϵ_{K})
- $K_{-}^{0} \rightarrow 2 \pi$ (direct $C P$ violation, ϵ^{\prime})
- $K_{L / S}$ are not $C P$ eigenstates

$$
\left|K_{L / S}\right\rangle=\frac{1}{\sqrt{1+\bar{\epsilon}^{2}}}\left(\left|K_{\mp}^{0}\right\rangle+\bar{\epsilon}\left|K_{ \pm}^{0}\right\rangle\right)
$$

- $K_{L} \rightarrow 2 \pi(C P=+)$
- $K_{+}^{0} \rightarrow 2 \pi$ (indirect $C P$ violation, ϵ or ϵ_{K})
- $K_{-}^{0} \rightarrow 2 \pi$ (direct $C P$ violation, ϵ^{\prime})
- Experimental measurement

$$
\begin{aligned}
& \frac{A\left(K_{L} \rightarrow \pi^{+} \pi^{-}\right)}{A\left(K_{S} \rightarrow \pi^{+} \pi^{-}\right)} \equiv \eta_{+-} \equiv \epsilon+\epsilon^{\prime} \\
& \frac{A\left(K_{L} \rightarrow \pi^{0} \pi^{0}\right)}{A\left(K_{S} \rightarrow \pi^{0} \pi^{0}\right)} \equiv \eta_{00} \equiv \epsilon-2 \epsilon^{\prime}
\end{aligned}
$$

- Using $\left|\eta_{+-}\right|$and $\left|\eta_{00}\right|$ as input, PDG quotes
$|\epsilon| \approx \frac{1}{3}\left(2\left|\eta_{+-}\right|+\left|\eta_{00}\right|\right)=2.228(11) \times 10^{-3}, \quad \operatorname{Re}\left[\epsilon^{\prime} / \epsilon\right] \approx \frac{1}{3}\left(1-\frac{\left|\eta_{00}\right|}{\left|\eta_{+-}\right|}\right)=1.66(23) \times 10^{-3}$
ϵ^{\prime} is 1000 times smaller than the indirect $C P$ violation ϵ
Thus direct $C P$ violation ϵ^{\prime} is very sensitive to New Physics
- Theoretically, Kaon decays into the isospin $I=2$ and $0 \pi \pi$ states

$$
\begin{array}{ll}
\Delta I=3 / 2 \text { transition: } & \langle\pi \pi(I=2)| H_{W}\left|K^{0}\right\rangle=A_{2} e^{i \delta_{2}} \\
\Delta I=1 / 2 \text { transition: } & \langle\pi \pi(I=0)| H_{W}\left|K^{0}\right\rangle=A_{0} e^{i \delta_{0}}
\end{array}
$$

- If $C P$ symmetry were protected $\Rightarrow A_{2}$ and A_{0} are real amplitudes
- ϵ and ϵ^{\prime} depend on the $K \rightarrow \pi \pi(I)$ amplitudes A_{I}

$$
\begin{aligned}
\epsilon & =\bar{\epsilon}+i\left(\frac{\operatorname{Im}\left[A_{0}\right]}{\operatorname{Re}\left[A_{0}\right]}\right) \\
\epsilon^{\prime} & =\frac{i e^{i\left(\delta_{2}-\delta_{0}\right)}}{\sqrt{2}} \frac{\operatorname{Re}\left[A_{2}\right]}{\operatorname{Re}\left[A_{0}\right]}\left(\frac{\operatorname{Im}\left[A_{2}\right]}{\operatorname{Re}\left[A_{2}\right]}-\frac{\operatorname{Im}\left[A_{0}\right]}{\operatorname{Re}\left[A_{0}\right]}\right)
\end{aligned}
$$

The target for lattice QCD is to calculate both amplitude A_{2} and A_{0}

Weak Hamiltonian is given by local four-quark operator

$$
\mathcal{H}^{\Delta S=1}=\frac{G_{F}}{\sqrt{2}} V_{u d} V_{u s}^{*}\left\{\sum_{i=1}^{10}\left[z_{i}(\mu)+\tau y_{i}(\mu)\right] Q_{i}\right\}, \quad \tau=-\frac{V_{t d} V_{t s}^{*}}{V_{u d} V_{u s}^{*}}
$$

- $\tau=-\frac{V_{t d} V_{t s}^{*}}{V_{u d} V_{u s}^{*}}=1.543+0.635 i$
- $z_{i}(\mu)$ and $y_{i}(\mu)$ are perturbative Wilson coefficients
- Q_{i} are local four-quark operator

Current-current operator Q_{1}, Q_{2}

QCD penguin $Q_{3}-Q_{6}$

Electro-weak penguin

$$
Q_{7}-Q_{10}
$$

dominate $\operatorname{Re}\left[A_{0}\right], \operatorname{Re}\left[A_{2}\right] \quad Q_{6}$ dominate $\operatorname{Im}\left[A_{0}\right] \quad Q_{7}, Q_{8}$ dominate $\operatorname{Im}\left[A_{2}\right]$

Recent results for $K \rightarrow \pi \pi(I=2)$

Results for \boldsymbol{A}_{2} [RBC-UKQCD, PRD91 (2015) 074502]

- Use two ensembles (both at $m_{\pi}=135 \mathrm{MeV}$) for continuum extrapolation

$$
\begin{array}{llll}
48^{3} \times 96, & a=0.11 \mathrm{fm}, & L=5.4 \mathrm{fm}, & N_{\text {conf }}=76 \\
64^{3} \times 128, & a=0.084 \mathrm{fm}, & L=5.4 \mathrm{fm}, & N_{\text {conf }}=40
\end{array}
$$

- After continuum extrapolation:

$$
\begin{aligned}
& \operatorname{Re}\left[A_{2}\right]=1.50(4)_{\text {stat }}(14)_{\text {syst }} \times 10^{-8} \mathrm{GeV} \\
& \operatorname{Im}\left[A_{2}\right]=-6.99(20)_{\text {stat }}(84)_{\text {syst }} \times 10^{-13} \mathrm{GeV}
\end{aligned}
$$

- Experimental measurement:

$$
\begin{aligned}
& \operatorname{Re}\left[A_{2}\right]=1.479(3) \times 10^{-8} \mathrm{GeV} \\
& \operatorname{Im}\left[A_{2}\right] \text { is unknown }
\end{aligned}
$$

- Scattering phase at $E_{\pi \pi}=M_{K}$

$$
\delta_{2}=-11.6(2.5)(1.2)^{\circ}
$$

consistent with phenomenological analysis [Schenk, NPB363 (1991) 97]

Resolve the puzzle of $\Delta I=1 / 2$ rule

$\Delta I=1 / 2$ rule: $A_{0}=22.5 \times A_{2} \quad \Rightarrow \quad a>50$ year puzzle

- Wilson coefficient only contributes a factor of ~ 2
- $\operatorname{Re}\left[A_{2}\right]$ and $\operatorname{Re}\left[A_{0}\right]$ are dominated by diagrams C_{1} and C_{2}

C_{1} : color diagonal

C_{2} : color mixed

Color counting in LO PT $\Rightarrow C_{2}=C_{1} / 3$; Non-PT effects $\Rightarrow C_{2} \approx-0.7 C_{1}$

- $\operatorname{Re}\left[A_{2}\right] \propto C_{1}+C_{2}$, while $\operatorname{Re}\left[A_{0}\right] \propto 2 C_{1}-C_{2} \Rightarrow$ another factor of ~ 10
- Such cancellation is first observed in an earlier calculation [RBC-UKQCD, PRL110 (2013) 152001]
- It is further confirmed in the latest calculation of A_{2} [RBC-UKQCD, PRD91 (2015) 074502]

Puzzle of $\Delta I=1 / 2$ rule is resolved from first principles

Recent results for $K \rightarrow \pi \pi(I=0)$

Results for \boldsymbol{A}_{0} [RBC-UKQCD, PRL115 (2015) 212001]

- Use a $32^{3} \times 64$ ensemble, $N_{\text {conf }}=216, a=0.14 \mathrm{fm}, L=4.53 \mathrm{fm}$

$$
M_{\pi}=143.1(2.0) \mathrm{MeV}, \quad M_{K}=490(2.2) \mathrm{MeV}, \quad E_{\pi \pi}=498(11) \mathrm{MeV}
$$

- G-boundary condition is used: non-trivial to tune the volume $\Rightarrow M_{K}=E_{\pi \pi}$
- The largest contributions to $\operatorname{Re}\left[A_{0}\right]$ and $\operatorname{Im}\left[A_{0}\right]$ come from Q_{2} (current-current) and Q_{6} (QCD penguin) operator

- Scattering phase at $E_{\pi \pi}=M_{K}: \delta_{0}=23.8(4.9)(1.2)^{\circ}$
- somewhat smaller than phenomenological expectation $\delta_{0}=38.0(1.3)^{\circ}$
[Courtesy of G. Colangelo] 24/45

Results for $\operatorname{Re}\left[A_{0}\right], \operatorname{Im}\left[A_{0}\right]$ and $\operatorname{Re}\left[\epsilon^{\prime} / \epsilon\right]$

[RBC-UKQCD, PRL115 (2015) 212001]

- Determine the $K \rightarrow \pi \pi(I=0)$ amplitude A_{0}
- Lattice results

$$
\begin{aligned}
& \operatorname{Re}\left[A_{0}\right]=4.66(1.00)_{\text {stat }}(1.26)_{\text {syst }} \times 10^{-7} \mathrm{GeV} \\
& \operatorname{Im}\left[A_{0}\right]=-1.90(1.23)_{\text {stat }}(1.08)_{\text {syst }} \times 10^{-11} \mathrm{GeV}
\end{aligned}
$$

- Experimental measurement

$$
\begin{aligned}
& \operatorname{Re}\left[A_{0}\right]=3.3201(18) \times 10^{-7} \mathrm{GeV} \\
& \operatorname{Im}\left[A_{0}\right] \text { is unknown }
\end{aligned}
$$

- Determine the direct $C P$ violation $\operatorname{Re}\left[\epsilon^{\prime} / \epsilon\right]$

$$
\begin{array}{ll}
\operatorname{Re}\left[\epsilon^{\prime} / \epsilon\right]=0.14(52)_{\text {stat }}(46)_{\text {syst }} \times 10^{-3} & \text { Lattice } \\
\operatorname{Re}\left[\epsilon^{\prime} / \epsilon\right]=1.66(23) \times 10^{-3} & \text { Experiment }
\end{array}
$$

2.1σ deviation $\quad \Rightarrow \quad$ require more accurate lattice results

Improve both statistics and systematics

Efforts for statistics improvement

- Statistics increased: $216 \rightarrow 584$
- Aim to reduce stat. error by a factor of 2 within the next year

Plot, courtesy of C. Kelly

Improve both statistics and systematics

Efforts for statistics improvement

- Statistics increased: $216 \rightarrow 584$
- Aim to reduce stat. error by a factor of 2 within the next year

Plot, courtesy of C. Kelly

Efforts for systematic improvement

- Add the σ field to study $\sigma \rightarrow \pi \pi$ in the $I=0$ channel
- Include EM in $K \rightarrow \pi \pi$
- $\Delta I=1 / 2$ rule may make the $O\left(\alpha_{e}\right)$ EM effect on $A_{2} 20$ times larger
- Calculate Wilson coefficients non-perturbatively
- currently use unphysically light W-boson around 2 GeV

Long-distance contributions to flavor changing processes

ΔM_{K} and ϵ_{K}

Weak interaction causes the mixing between $K^{0}-\overline{K^{0}}$

- Time evolution of the $K^{0}-\overline{K^{0}}$ mixing system

$$
i \frac{d}{d t}\binom{K^{0}}{\bar{K}^{0}}=\left[\left(\begin{array}{ll}
M_{00} & M_{0 \overline{0}} \\
M_{\overline{0} 0} & M_{\overline{0} \overline{0}}
\end{array}\right)-\frac{i}{2}\left(\begin{array}{ll}
\Gamma_{00} & \Gamma_{0 \overline{0}} \\
\Gamma_{\overline{0} 0} & \Gamma_{\overline{0} \overline{0}}
\end{array}\right)\right]\binom{K^{0}}{\bar{K}^{0}}
$$

- $2 \times 2 \mathrm{M}$ and Γ matrices are calculated to $2^{\text {nd }}$-order in H_{W}

$$
\begin{aligned}
& M_{i j}=M_{K} \delta_{i j}+\langle i| H_{W}|j\rangle+\mathcal{P} \mathscr{F}_{\alpha} \frac{\langle i| H_{W}|\alpha\rangle\langle\alpha| H_{W}|j\rangle}{M_{K}-E_{\alpha}} \\
& \Gamma_{i j}=2 \pi \mathcal{F}_{\alpha}\langle i| H_{W}|\alpha\rangle\langle\alpha| H_{W}|j\rangle \delta\left(E_{\alpha}-M_{K}\right)
\end{aligned}
$$

- ΔM_{K} and ϵ_{K} are related to $\operatorname{Re}\left[M_{0 \overline{0}}\right]$ and $\operatorname{Im}\left[M_{0 \overline{0}}\right]$, respectively

$$
\begin{aligned}
& \Delta M_{K}=M_{K_{L}}-M_{K_{S}}=2 \operatorname{Re}\left[M_{0 \overline{0}}\right] \\
& \epsilon_{K}=e^{i \phi_{\epsilon}} \sin \left(\phi_{\epsilon}\right)\left[\frac{\operatorname{Im}\left[M_{0 \overline{0}}\right]}{\Delta M_{K}}+\frac{\operatorname{Im}\left[A_{0}\right]}{\operatorname{Re}\left[A_{0}\right]}\right], \quad \phi_{\epsilon}=\arctan \frac{-2 \Delta M_{K}}{\Delta \Gamma_{K}} \approx 45^{\circ}
\end{aligned}
$$

Long-distance contribution to ΔM_{K} and ϵ_{K}

- $\Delta M_{K} \Rightarrow \operatorname{Re}\left[M_{0 \overline{0}}\right] \Rightarrow C P$ conserving part of $K^{0}-\overline{K^{0}}$ mixing

Dominant contribution from charm-charm loop:

$$
\lambda_{c}^{2} \frac{m_{c}^{2}}{M_{W}^{2}} \gg \lambda_{t}^{2} \frac{m_{t}^{2}}{M_{W}^{2}}, \quad \text { where } \lambda_{q}=V_{q d} V_{q s}^{*}, \text { for } q=u, c, t
$$

\Rightarrow historically led to the predication of the mass scale of charm quark

Long-distance contribution to ΔM_{K} and ϵ_{K}

- $\Delta M_{K} \Rightarrow \operatorname{Re}\left[M_{0 \overline{0}}\right] \Rightarrow C P$ conserving part of $K^{0}-\overline{K^{0}}$ mixing

Dominant contribution from charm-charm loop:

$$
\lambda_{c}^{2} \frac{m_{c}^{2}}{M_{W}^{2}} \gg \lambda_{t}^{2} \frac{m_{t}^{2}}{M_{W}^{2}}, \quad \text { where } \lambda_{q}=V_{q d} V_{q s}^{*}, \text { for } q=u, c, t
$$

\Rightarrow historically led to the predication of the mass scale of charm quark

- $\epsilon_{K} \Rightarrow \operatorname{Im}\left[M_{0 \overline{0}}\right] \Rightarrow C P$ violating part of $K^{0}-\overline{K^{0}}$ mixing

Top-top, top-charm and charm-charm loops compete in size \Rightarrow important top-top loop, thus ϵ_{K} is sensitive to λ_{t} (determined from $V_{c b}$)

Status for ΔM_{K}

Use $32^{3} \times 64$ ensemble: $a^{-1}=1.38 \mathrm{GeV}, m_{\pi}=170 \mathrm{MeV}, m_{c}=750 \mathrm{MeV}$ [Preliminary results from Z. Bai, for RBC-UKQCD]

- Results based on 120 configurations

Status for ΔM_{K}

Use $32^{3} \times 64$ ensemble: $a^{-1}=1.38 \mathrm{GeV}, m_{\pi}=170 \mathrm{MeV}, m_{c}=750 \mathrm{MeV}$ [Preliminary results from Z. Bai, for RBC-UKQCD]

- Results based on 120 configurations

Type 1-4
Type 1-2
η
π

- Double GIM cancellation \Rightarrow No SD divergence, but significantly rely on m_{c}

Status for ΔM_{K}

Use $32^{3} \times 64$ ensemble: $a^{-1}=1.38 \mathrm{GeV}, m_{\pi}=170 \mathrm{MeV}, m_{c}=750 \mathrm{MeV}$ [Preliminary results from Z. Bai, for RBC-UKQCD]

- Results based on 120 configurations

- Double GIM cancellation \Rightarrow No SD divergence, but significantly rely on m_{c} New project: $64^{3} \times 128, a^{-1}=2.36 \mathrm{GeV}, m_{c}=1.2 \mathrm{GeV}, m_{\pi}=136 \mathrm{MeV}$
- Based on 59 configurations: $\Delta M_{K}=5.5(1.7) \times 10^{-12} \mathrm{MeV}$

Status for ϵ_{K}

SM predication vs Exp measurement [summarized by W. Lee @ Kaon 2016]

$$
\begin{aligned}
& \left|\epsilon_{K}^{S M}\right|=1.69(17) \times 10^{-3} \quad \text { using Exclusive } V_{c b} \text { (Lattice QCD) } \\
& \left|\epsilon_{K}^{S M}\right|=2.10(21) \times 10^{-3} \quad \text { using Inclusive } V_{c b} \text { (QCD sum rule) } \\
& \left|\epsilon_{K}^{\mathrm{Exp}}\right|=2.228(11) \times 10^{-3}
\end{aligned}
$$

- 3.2σ deviation between SM (exclusive $V_{c b}$) and experiment
- SM uncertainty is $\sim 10 \%$, dominated by $V_{c b}$
- Also important to determine LD contribution to ϵ_{K} (a few \%)

Status for ϵ_{K}

SM predication vs Exp measurement [summarized by W. Lee @ Kaon 2016]

$$
\begin{aligned}
& \left|\epsilon_{K}^{\mathrm{SM}}\right|=1.69(17) \times 10^{-3} \quad \text { using Exclusive } V_{c b} \text { (Lattice QCD) } \\
& \left|\epsilon_{K}^{\mathrm{SM}}\right|=2.10(21) \times 10^{-3} \text { using Inclusive } V_{c b} \text { (QCD sum rule) } \\
& \left|\epsilon_{K}^{\mathrm{Exp}}\right|=2.228(11) \times 10^{-3}
\end{aligned}
$$

- 3.2σ deviation between SM (exclusive $V_{c b}$) and experiment
- SM uncertainty is $\sim 10 \%$, dominated by $V_{c b}$
- Also important to determine LD contribution to ϵ_{K} (a few \%)

GIM subtraction of charm: $\lambda_{u} \times(u-c)$ and $\lambda_{t} \times(t-c)$

- Three terms:

$\lambda_{u} \lambda_{t}$ contribution to ϵ_{K}

- In the $\lambda_{u} \lambda_{t}$ contribution, the top quark field has been integrated out
- leaving QCD penguin operator and extra Type 5 quark contraction

$\lambda_{U} \lambda_{t}$ contribution to ϵ_{K}

- In the $\lambda_{u} \lambda_{t}$ contribution, the top quark field has been integrated out
- leaving QCD penguin operator and extra Type 5 quark contraction

- Without top quark in the lattice QCD calculation, logarithmic divergence

- Define the bilocal operator in the $\mathrm{RI} / \mathrm{SMOM}$ scheme
- Subtract $X\left(\mu_{R I}, a\right) Q^{\Delta S=2}$ to remove the lattice cutoff effects

[from Z. Bai, for RBC-UKQCD]

- Use $24^{3} \times 64$ lattice with DWF + Iwasaki gauge action

$$
a^{-1}=1.78 \mathrm{GeV}, \quad m_{\pi}=340 \mathrm{MeV}, \quad m_{K}=590 \mathrm{MeV}, \quad m_{c}=970 \mathrm{MeV}
$$

- All Type 1-5 diagrams are evaluated
- Preliminary results based on 200 configurations

$\mu_{R I}$	$\operatorname{Im} M_{00}^{u t, R I}$	$\operatorname{Im} M_{\overline{0} 0}^{u t, R I \rightarrow \overline{M S}}$	$\operatorname{Im} M_{\overline{0} 0}^{u t, l d}$ corr	$\epsilon_{K}^{u t, l d}$ corr
1.54 GeV	$-0.75(39)$	0.28	$-0.46(39)$	$0.091(76) \times 10^{-3}$
1.92 GeV	$-0.91(39)$	0.38	$-0.53(39)$	$0.104(76) \times 10^{-3}$
2.11 GeV	$-0.99(39)$	0.43	$-0.55(39)$	$0.108(76) \times 10^{-3}$
2.31 GeV	$-1.05(39)$	0.49	$-0.57(39)$	$0.111(77) \times 10^{-3}$
2.56 GeV	$-1.12(39)$	0.55	$-0.57(39)$	$0.111(77) \times 10^{-3}$

Experimental value for $\left|\epsilon_{K}\right|=2.228(11) \times 10^{-3}$

- LD correction to ϵ_{K} is about 5% at unphysical kinematics

Rare Kaon decays

$K^{+} \rightarrow \pi^{+} \nu \bar{\nu}$: largest contribution from top quark loop, thus theoretically clean

$$
\mathcal{H}_{\text {eff }} \sim \frac{G_{F}}{\sqrt{2}} \cdot \underbrace{\frac{\alpha_{\mathrm{EM}}}{2 \pi \sin ^{2} \theta_{W}} \lambda_{t} X_{t}\left(x_{t}\right)}_{\mathcal{N} \sim 2 \times 10^{-5}} \cdot(\bar{s} d)_{V-A}(\bar{\nu} \nu)_{V-A}
$$

Probe the new physics at scales of $\mathcal{N}^{-\frac{1}{2}} M_{W}=O(10 \mathrm{TeV})$

Past experimental measurement is 2 times larger than SM prediction

$$
\begin{array}{ll}
\operatorname{Br}\left(K^{+} \rightarrow \pi^{+} \nu \bar{\nu}\right)_{\text {exp }}=1.73_{-1.05}^{+1.15} \times 10^{-10} & \text { [BNL E949, '08] } \\
\operatorname{Br}\left(K^{+} \rightarrow \pi^{+} \nu \bar{\nu}\right)_{\mathrm{SM}}=9.11 \pm 0.72 \times 10^{-11} & \text { [Buras et. al., '15] }
\end{array}
$$

but still consistent with $>60 \%$ exp. error

New experiments

New generation of experiment: NA62 at CERN

- aims at observation of $O(100)$ events [2014-2018]
- 10%-precision measurement of $\operatorname{Br}\left(K^{+} \rightarrow \pi^{+} \nu \bar{\nu}\right)$

Latest results reported at FPCP 2017

- Detector installation completed in 09.2016
- 5% of 2016 data \Rightarrow no event yet
- Full 2016 data $\Rightarrow O(1)$ events

Hadronic matrix element for the $2^{\text {nd }}$-order weak interaction

$$
\begin{aligned}
& \int_{-T}^{T} d t\left\langle\pi^{+} \nu \bar{\nu}\right| T\left[Q_{A}(t) Q_{B}(0)\right]\left|K^{+}\right\rangle \\
& \quad=\sum_{n}\left\{\frac{\left\langle\pi^{+} \nu \bar{\nu}\right| Q_{A}|n\rangle\langle n| Q_{B}\left|K^{+}\right\rangle}{M_{K}-E_{n}}+\frac{\left\langle\pi^{+} \nu \bar{\nu}\right| Q_{B}|n\rangle\langle n| Q_{A}\left|K^{+}\right\rangle}{M_{K}-E_{n}}\right\}\left(1-e^{\left(M_{K}-E_{n}\right) T}\right)
\end{aligned}
$$

- For $E_{n}>M_{K}$, the exponential terms exponentially vanish at large T
- For $E_{n}<M_{K}$, the exponentially growing terms must be removed
- \sum_{n} : principal part of the integral replaced by finite-volume summation
- possible large finite volume correction when $E_{n} \rightarrow M_{K}$
[Christ, XF, Martinelli, Sachrajda, PRD 91 (2015) 114510]

Low lying intermediate states

$K^{+} \rightarrow \ell^{+} \nu \quad \& \quad \ell^{+} \rightarrow \pi^{+} \bar{\nu}$

$K^{+} \xrightarrow{H_{W}} \pi^{+} \quad \& \quad \pi^{+} \xrightarrow{V_{\mu}} \pi^{+}$

$K^{+} \rightarrow \pi^{0} \ell^{+} \nu \quad \& \quad \pi^{0} \ell^{+} \rightarrow \pi^{+} \bar{\nu}$

$K^{+} \xrightarrow{H_{W}} \pi^{+} \pi^{0} \quad \& \quad \pi^{+} \pi^{0} \xrightarrow{A_{\mu}} \pi^{+}$

Lattice results

First results @ $m_{\pi}=420 \mathrm{MeV}, m_{c}=860 \mathrm{MeV}$
[Bai, Christ, XF, Lawson, Portelli, Schrajda, PRL 118 (2017) 252001]
$P_{c}=0.2529(\pm 13)_{\text {stat }}(\pm 32)_{\text {scale }}(-45)_{\mathrm{FV}}$

Lattice QCD is now capable of first-principles calculation of rare kaon decay

- The remaining task is to control various systematic effects

$K \rightarrow \pi \ell^{+} \ell^{-}: C P$ conserving chanel

$C P$ conserving decay: $K^{+} \rightarrow \pi^{+} \ell^{+} \ell^{-}$and $K_{S} \rightarrow \pi^{0} \ell^{+} \ell^{-}$

- Involve both γ - and Z-exchange diagram, but γ-exchange is much larger

- Unlike Z-exchange, the γ-exchange diagram is LD dominated
- By power counting, loop integral is quadratically UV divergent
- EM gauge invariance reduces divergence to logarithmic
- $c-u$ GIM cancellation further reduces log divergence to be UV finite

Lattice calculation strategy (I)

Focus on γ-exchange

- Hadronic part of decay amplitude is described by a form factor

$$
\begin{aligned}
& \begin{aligned}
T_{+, S}^{\mu}\left(p_{K}, p_{\pi}\right) & =\int d^{4} x e^{i q \chi}\left\langle\pi\left(p_{\pi}\right)\right| T\left\{J_{e m}^{\mu}(x) \mathcal{H}^{\Delta S=1}(0)\right\}\left|K^{+} / K_{S}\left(p_{K}\right)\right\rangle \\
& =\frac{G_{F} M_{K}^{2}}{(4 \pi)^{2}} V_{+, S}(z)\left[z\left(p_{K}+p_{\pi}\right)^{\mu}-\left(1-r_{\pi}^{2}\right) q^{\mu}\right]
\end{aligned} \\
& \text { with } q=p_{K}-p_{\pi}, z=q^{2} / M_{K}^{2}, r_{\pi}=M_{\pi} / M_{K}
\end{aligned}
$$

The target for lattice QCD is to calculate the form factor $V_{+, s}(z)$

- Lattice calculation strategy (I): [RBC-UKQCD, PRD92 (2015) 094512]
- Use conserved vector current to protect the EM gauge invariance
- Use charm as an active quark flavor to maintain GIM cancellation

First exploratory calculation on $K^{+} \rightarrow \pi^{+} \ell^{+} \ell^{-}$

Use $24^{3} \times 64$ ensemble, $N_{\text {conf }}=128$ [RBC-UKQCD, PRD94 (2016) 114516] $a^{-1}=1.78 \mathrm{GeV}, m_{\pi}=430 \mathrm{MeV}$ $m_{K}=625 \mathrm{MeV}, m_{c}=530 \mathrm{MeV}$

Momentum dependence of $V_{+}(z)$

$$
\begin{aligned}
& V_{+}(z)=a_{+}+b_{+} z \\
& \quad \Rightarrow \quad a_{+}=1.6(7), b_{+}=0.7(8)
\end{aligned}
$$

First exploratory calculation on $K^{+} \rightarrow \pi^{+} \ell^{+} \ell^{-}$

Use $24^{3} \times 64$ ensemble, $N_{\text {conf }}=128$ [RBC-UKQCD, PRD94 (2016) 114516] $a^{-1}=1.78 \mathrm{GeV}, m_{\pi}=430 \mathrm{MeV}$ $m_{K}=625 \mathrm{MeV}, m_{c}=530 \mathrm{MeV}$ Momentum dependence of $V_{+}(z)$

$$
\begin{aligned}
& V_{+}(z)=a_{+}+b_{+} z \\
& \quad \Rightarrow \quad a_{+}=1.6(7), b_{+}=0.7(8)
\end{aligned}
$$

$K^{+} \rightarrow \pi^{+} e^{+} e^{-}$data + phenomenological analysis: $a_{+}=-0.58(2), b_{+}=-0.78(7)$ [Cirigliano, et. al., Rev. Mod. Phys. 84 (2012) 399]

$$
V_{j}(z)=a_{j}+b_{j} z+\underbrace{\frac{\alpha_{j} r_{\pi}^{2}+\beta_{j}\left(z-z_{0}\right)}{G_{F} M_{K}^{2} r_{\pi}^{4}}}_{K \rightarrow \pi \pi \pi} \underbrace{\left[1+\frac{z}{r_{V}^{2}}\right]}_{F_{V}(z)} \underbrace{\left[\phi\left(z / r_{\pi}^{2}\right)+\frac{1}{6}\right]}_{\text {loop }}, \quad j=+, S
$$

- Experimental data only provide $\frac{d \Gamma}{d z} \Rightarrow$ square of form factor $\left|V_{+}(z)\right|^{2}$
- Need phenomenological knowledge to determine the sign for a_{+}, b_{+}
- For "standard" quantities such as $f_{K} / f_{\pi}, f_{+}(0)$ and B_{K}

	N_{f}	FLAG average	Frac. Err.
f_{K} / f_{π}	$2+1+1$	$1.1933(29)$	0.25%
$f_{+}(0)$	$2+1+1$	$0.9706(27)$	0.28%
\hat{B}_{K}	$2+1$	$0.7625(97)$	1.27%

lattice QCD calculations play important role in precision flavor physics

- It's time to go beyond "standard"
- $K \rightarrow \pi \pi$ and ϵ^{\prime}
- ΔM_{K} and ϵ_{K}
- rare kaon decays: $K \rightarrow \pi \nu \bar{\nu}$ and $K \rightarrow \pi \ell^{+} \ell^{-}$
- Lattice QCD is now capable of first-principles calculation of the above "beyond-standard" quantities
- Realistic calculation of some of these quantities may require the next generation of super-computers

Backup slides

$K_{L} \rightarrow \pi^{0} \ell^{+} \ell^{-}$decay: CP violating channel

$K_{L} \rightarrow \pi^{0} \ell^{+} \ell^{-}$decay contains important CPV information

- Indirect $C P V: K_{L} \xrightarrow{\epsilon} K_{+}^{0} \rightarrow \pi^{0} \gamma^{*} \rightarrow \pi^{0} \ell^{+} \ell^{-}$
- Direct + indirect CPV contribution to branching ratio

$$
\text { [Cirigliano et. al., Rev. Mod. Phys. } 84 \text { (2012) 399] }
$$

$$
\operatorname{Br}\left(K_{L} \rightarrow \pi^{0} e^{+} e^{-}\right)_{C P V}=10^{-12} \times\left[15.7\left|a_{S}\right|^{2} \pm 6.2\left|a_{S}\right|\left(\frac{\operatorname{Im} \lambda_{t}}{10^{-4}}\right)+2.4\left(\frac{\operatorname{Im} \lambda_{t}}{10^{-4}}\right)^{2}\right]
$$

- Im λ_{t}-term from direct $C P V, \lambda_{t} \approx 1.35 \times 10^{-4}$
- |as|-term from indirect CPV, $a_{S}=V_{S}(0)$
- \pm arises due to the unknown sign of a_{S}

Even a determination of the sign of a_{S} from lattice is desirable

$K \rightarrow \pi \pi:$ Error in ensemble generation

Duplicated RNG seeds used in quark forces \Rightarrow unphysical correlation

- Such correlation is observed in plaquettes separated by 12 in y -direction
- Its size is only $\sim 5 \times 10^{-5}$
- Unlikely affect A_{2}, A_{0} strongly, whose errors are ~ 1000 times larger

Average plaquette

- Correct ensemble 0.512239(3)(7)
- Incorrect ensemble 0.512239(6)

$K \rightarrow \pi \pi:$ Uncertainty budget

Systematic error breakdown for $\operatorname{Re} A_{2}$ and $\operatorname{Im} A_{2}$
[RBC-UKQCD, PRD91 (2015) 074502]

Systematic errors	$\operatorname{Re} A_{2}$	$\operatorname{Im} A_{2}$
NPR (nonperturbative)	0.1%	0.1%
NPR (perturbative)	2.9%	7.0%
Finite-volume corrections	2.4%	2.6%
Unphysical kinematics	4.5%	1.1%
Wilson coefficients	6.8%	10%
Derivative of the phase shift	1.1%	1.1%
Total	9%	12%

Systematic error for individual operator contributions to $\operatorname{Re}\left(A_{0}\right), \operatorname{Im}\left(A_{0}\right)$ [RBC-UKQCD, PRL115 (2015) 212001]

Description	Error	Description	Error
Finite lattice spacing	12%	Finite volume	7%
Wilson coefficients	12%	Excited states	$\leq 5 \%$
Parametric errors	5%	Operator renormalization	15%
Unphysical kinematics	$\leq 3 \%$	Lellouch-Lüscher factor	11%
Total (added in quadrature)			27%

ΔM_{K} and $\epsilon_{K}:$ Removal of the exponentially growing terms

- Determine the hadronic matrix element for all low-lying intermediate states

$$
\frac{\left\langle\overline{K^{0}}\right| H_{W}|n\rangle\langle n| H_{W}\left|K^{0}\right\rangle}{M_{K}-E_{n}}\left(1-e^{\left(M_{K}-E_{n}\right) T}\right)
$$

- Change of weak operator $H_{W} \rightarrow H_{W}+c_{s} \bar{s} d+c_{p} \bar{s} \gamma_{5} d$ does not affect the physical amplitude
- Apply the chiral Ward identity

$$
\begin{aligned}
\partial_{\mu} \bar{s} \gamma_{\mu} d & =\left(m_{s}-m_{d}\right) \bar{s} d \\
\partial_{\mu} \bar{s} \gamma_{\mu} \gamma_{5} d & =\left(m_{s}+m_{d}\right) \bar{s} \gamma_{5} d
\end{aligned}
$$

- $K^{0}-\overline{K^{0}}$ transition amplitude is given by

$$
\int d^{4} x\left\langle\overline{K^{0}}\right| T\left[H_{W}(x) H_{W}(0)\right]\left|K^{0}\right\rangle
$$

$\partial_{\mu} \bar{s} \gamma_{\mu} d$ and $\partial_{\mu} \bar{s} \gamma_{\mu} \gamma_{5} d$ do not contribute to the $\int d^{4} x$ integral

- Choose appropriate c_{s} and c_{p}, e.g.

$$
\begin{aligned}
\langle 0| H_{W}+c_{p} \bar{s} \gamma_{5} d\left|K^{0}\right\rangle & =0 \\
\langle\eta| H_{W}+c_{s} \bar{s} d\left|K^{0}\right\rangle & =0
\end{aligned}
$$

$\Delta M_{K}:$ Lattice artifacts with physical charm quark mass

Naive estimate of lattice artifacts $\sim\left(m_{c}^{\overline{\mathrm{MS}}}(2 \mathrm{GeV}) a\right)^{2}=25 \%$ with $a^{-1}=2.36$ GeV
D meson dispersion relation

$$
c^{2}=\frac{E^{2}-m^{2}}{p^{2}}, \quad \mu^{2}=p^{2}
$$

- The physical charm quark mass * is related to bare mass

$$
m_{c} a=0.32
$$

- c^{2} value deviate from 1 by ~ 10\%

$K^{+} \rightarrow \pi^{+} \nu \bar{\nu}:$ OPE to separate SD and LD parts

Hadronic part known: $\left\langle\pi^{+}\right| V_{\mu}\left|K^{+}\right\rangle$
$\left\langle\pi^{+} \nu \bar{\nu}\right| Q_{A}(x) Q_{B}(0)\left|K^{+}\right\rangle$: need lattice QCD

$K^{+} \rightarrow \pi^{+} \nu \bar{\nu}:$ Bilocal contribution vs local contribution

Bilocal $C_{A}^{\overline{\mathrm{MS}}}(\mu) C_{B}^{\overline{\mathrm{MS}}}(\mu) r_{A B}^{\mathrm{MS}}(\mu)$ vs Local $C_{0}^{\overline{\mathrm{MS}}}(\mu)$
[Buras, Gorbahn, Haisch, Nierste, '06]

At $\mu=2.5 \mathrm{GeV}, 50 \%$ charm quark contribution from bilocal term

Use $\boldsymbol{m}_{\pi}=420 \mathrm{MeV}, \boldsymbol{m}_{\boldsymbol{c}}=860 \mathrm{MeV}$ [RBC-UKQCD, arXiv:1701.02858]

$K \rightarrow \pi \ell^{+} \ell^{-}$in 3-flavor theory

From 4-flavor to 3-flavor theory

$$
C^{N_{f}=4}\left(\mu_{c}\right) \underbrace{\left\langle H_{W}^{N_{f}=4}\left(\mu_{c}\right) J^{\mu}\right\rangle}_{\text {UV finite }}=C^{N_{f}=3}\left(\mu_{c}\right) \underbrace{\left\langle H_{W}^{N_{f}=3}\left(\mu_{c}\right) J^{\mu}\right\rangle}_{\text {log divergent }}+\sum_{i} \underbrace{C_{i}\left(\mu_{c}\right)\left\langle Q_{i}^{\mu}\left(\mu_{c}\right)\right\rangle}_{\text {counter term }}
$$

- The local counter term is mainly given by the penguin operator

$$
Q_{a}^{\mu}=\left(\delta^{\mu \nu} \partial^{2}-\partial^{\mu} \partial^{\nu}\right) \bar{s} \gamma_{\nu}\left(1-\gamma_{5}\right) d
$$

Use NPR to convert bare lattice bilocal operator to $\mathrm{RI} / \mathrm{SMOM}$ scheme

Use PT to convert RI/SMOM bilocal operator to $\overline{\mathrm{MS}}$ scheme

Lattice calculation strategy (II)

Important to have a physical point simulation, however

- physical m_{π} requires large lattice volume to control FV effects
- physical m_{c} requires ultra-fine lattice spacing
\Rightarrow very high demanding on computer resources

Lattice calculation strategy (II)

Important to have a physical point simulation, however

- physical m_{π} requires large lattice volume to control FV effects
- physical m_{c} requires ultra-fine lattice spacing
\Rightarrow very high demanding on computer resources
One solution is to improve quark action to reduce $O\left(a^{2}\right)$ effects for charm
- Explore dispersion relation and unphysical poles for Möbius DWF

Lattice calculation strategy (II)

Important to have a physical point simulation, however

- physical m_{π} requires large lattice volume to control FV effects
- physical m_{c} requires ultra-fine lattice spacing
\Rightarrow very high demanding on computer resources
One solution is to improve quark action to reduce $O\left(a^{2}\right)$ effects for charm
- Explore dispersion relation and unphysical poles for Möbius DWF

Another solution is to integrate out charm quark \Rightarrow strategy (II)

- Perturbatively treat the charm quark contribution
- Lattice calculation uses physical pion mass + rather coarse lattice
- No GIM cancellation, thus log divergence exists for lattice calculation

Flavor Lattice Averaging Group (FLAG) average, updated in Nov. 2016

$$
\begin{aligned}
& f_{D}=212.15(1.45) \mathrm{MeV} \quad \Rightarrow \quad 0.68 \% \text { error } \\
& f_{D_{s}}=248.83(1.27) \mathrm{MeV} \quad \Rightarrow \quad 0.51 \% \text { error } \\
& f_{D_{s}} / f_{D}=1.1716(32) \quad \Rightarrow \quad 0.27 \% \text { error }
\end{aligned}
$$

Experimental determination of f_{D} and $f_{D_{s}}$ [quoted by PDG 2015 update]

$$
\begin{gather*}
f_{D}=203.7(4.8) \mathrm{MeV} \quad \Rightarrow \quad 2.4 \% \text { error } \\
f_{D_{s}}=257.8(4.1) \mathrm{MeV} \quad \Rightarrow \quad 1.6 \% \text { error }
\end{gather*}
$$

Charm physics: $f_{+}^{D \pi}(0)$ and $f_{+}^{D K}(0)$

Flavor Lattice Averaging Group (FLAG) average, updated in Nov. 2016

$$
\begin{aligned}
& f_{+}^{D \pi}(0)=0.666(29) \quad \Rightarrow 4.4 \% \text { error } \\
& f_{+}^{D K}(0)=0.747(19) \Rightarrow 2.5 \% \text { error }
\end{aligned}
$$

Experimental averages from HFAG 2014

$$
\begin{aligned}
& f_{+}^{D \pi}(0)\left|V_{c d}\right|=0.1425(19) \mathrm{MeV} \quad \Rightarrow \quad 1.3 \% \text { error } \\
& f_{+}^{D K}(0)\left|V_{c s}\right|=0.728(5) \mathrm{MeV} \quad \Rightarrow \quad 0.69 \% \text { error }
\end{aligned}
$$

