Recent Progress in Applying Lattice QCD to Kaon Physics

冯旭

第四届手征有效场论研讨会@西安 2017年10月14日

"Standard" observables in Kaon physics

- $f_{K^{\pm}}/f_{\pi^{\pm}}$, $f_{+}(0)$, $\tau \rightarrow s$ inclusive decay and $|V_{us}|$
- B_K for SM and beyond

"Non-standard" observables in Kaon physics

- $K \rightarrow \pi \pi$ decays and direct *CP* violation
- ΔM_K and ϵ_K
- Rare Kaon decays

Evaluate the hadronic matrix elements in Kaon physics

• Lattice QCD is powerful for "standard" hadronic matrix elements with

- single local operator insertion
- only single stable hadron or vacuum in the initial/final state
- spatial momenta carried by particles need to be small compared to 1/a (not a problem for Kaon physics, but essential for B decays)

 $f_{\mathcal{K}^{\pm}}/f_{\pi^{\pm}}$, $f_{+}(0)$, $\tau \rightarrow s$ inclusive decay and $|V_{us}|$

"standard" quantities in Kaon physics: $f_{K^{\pm}}/f_{\pi^{\pm}}$ and $f_{\pm}(0)$

Flavor Lattice Averaging Group (FLAG) average, updated in Nov. 2016

 $f_{+}^{K\pi}(0) = 0.9706(27) \implies 0.28\%$ error $f_{K^{\pm}}/f_{\pi^{\pm}} = 1.1933(29) \implies 0.25\%$ error

"standard" quantities in Kaon physics: $f_{K^{\pm}}/f_{\pi^{\pm}}$ and $f_{\pm}(0)$

Flavor Lattice Averaging Group (FLAG) average, updated in Nov. 2016

 $f_{+}^{K\pi}(0) = 0.9706(27) \implies 0.28\%$ error $f_{K^{\pm}}/f_{\pi^{\pm}} = 1.1933(29) \implies 0.25\%$ error

Experimental information [arXiv:1411.5252, 1509.02220]

$$\begin{array}{lll} \mathcal{K}_{\ell 3} & \Rightarrow & |V_{us}|f_{+}(0) = 0.2165(4) & \Rightarrow & |V_{us}| = 0.2231(7) \\ \mathcal{K}_{\mu 2}/\pi_{\mu 2} & \Rightarrow & \left|\frac{V_{us}}{V_{ud}}\right|\frac{f_{K^{\pm}}}{f_{\pi^{\pm}}} = 0.2760(4) & \Rightarrow & \left|\frac{V_{us}}{V_{ud}}\right| = 0.2313(7) \\ \end{array}$$

/ 45

Most stringent test of CKM unitarity is given by the first row condition $|V_u|^2 \equiv |V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1$

• Use $|V_{us}|$ for $K_{\ell 3} + |V_{us}/V_{ud}|$ for $K_{\ell 2}/\pi_{\ell 2}$ as input $|V_u|^2 = 0.9798(82) \implies 2.5\sigma$ deviation from 1

Most stringent test of CKM unitarity is given by the first row condition $|V_u|^2 \equiv |V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1$

• Use $|V_{us}|$ for $K_{\ell 3} + |V_{us}/V_{ud}|$ for $K_{\ell 2}/\pi_{\ell 2}$ as input $|V_u|^2 = 0.9798(82) \implies 2.5\sigma$ deviation from 1

Most precise value of $|V_{ud}| = 0.97417(21)$ is from superallowed nuclear β decay

• Use
$$|V_{us}|$$
 for $K_{\ell 3} + |V_{ud}|$ for β decay
 $|V_u|^2 = 0.9988(5) \implies$ sharpen the test, still 2.4 σ deviation

Most stringent test of CKM unitarity is given by the first row condition $|V_u|^2 \equiv |V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1$

• Use $|V_{us}|$ for $K_{\ell 3} + |V_{us}/V_{ud}|$ for $K_{\ell 2}/\pi_{\ell 2}$ as input $|V_u|^2 = 0.9798(82) \implies 2.5\sigma$ deviation from 1

Most precise value of $|V_{ud}| = 0.97417(21)$ is from superallowed nuclear β decay

• Use
$$|V_{us}|$$
 for $K_{\ell 3} + |V_{ud}|$ for β decay
 $|V_u|^2 = 0.9988(5) \implies$ sharpen the test, still 2.4 σ deviation

• Use
$$|V_{us}/V_{ud}|$$
 for $K_{\ell 2}/\pi_{\ell 2} + |V_{ud}|$ for β decay
 $|V_u|^2 = 0.9998(5) \implies \text{confirm CKM unitarity}$

Most stringent test of CKM unitarity is given by the first row condition $|V_u|^2 \equiv |V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1$

• Use $|V_{us}|$ for $K_{\ell 3} + |V_{us}/V_{ud}|$ for $K_{\ell 2}/\pi_{\ell 2}$ as input $|V_u|^2 = 0.9798(82) \implies 2.5\sigma$ deviation from 1

Most precise value of $|V_{ud}| = 0.97417(21)$ is from superallowed nuclear β decay

• Use
$$|V_{us}|$$
 for $K_{\ell 3} + |V_{ud}|$ for β decay
 $|V_u|^2 = 0.9988(5) \implies$ sharpen the test, still 2.4 σ deviation

• Use
$$|V_{us}/V_{ud}|$$
 for $K_{\ell 2}/\pi_{\ell 2} + |V_{ud}|$ for β decay
 $|V_u|^2 = 0.9998(5) \implies \text{confirm CKM unitarity}$

Interesting to reduce the uncertainty from $f_+(0)$ and explore the > 2σ deviation

Use HISQ fermions on $N_f = 2 + 1 + 1$ MILC configurations [PoS LATTICE2016 286]

Use HISQ fermions on $N_f = 2 + 1 + 1$ MILC configurations [PoS LATTICE2016 286]

Use HISQ fermions on $N_f = 2 + 1 + 1$ MILC configurations [PoS LATTICE2016 286]

Use HISQ fermions on $N_f = 2 + 1 + 1$ MILC configurations [PoS LATTICE2016 286]

 Chiral, continuum extrapolation + discretization uncertainty + FV corrections + NNLO isospin corrections + taste-violating effects + …

Expect to have a final error of $\sim 0.2\%$

V_{us}: summarized by HFAG averaging group

3.2 σ deviation between $\tau \rightarrow s$ inclusive decay and CKM unitarity

V_{us}: summarized by HFAG averaging group

3.2 σ deviation between $\tau \rightarrow s$ inclusive decay and CKM unitarity

$$R = \frac{\Gamma(\tau \to \text{strange-hadrons}\,\nu_{\tau})}{\Gamma(\tau \to e\,\bar{\nu}_e\,\nu_{\tau})}$$

Optical theorem: Hadronic spectral func. of inclusive decay ⇔ imag. of HVP

$$\frac{dR}{ds} = \frac{12\pi |V_{us}|^2 S_{EW}}{m_{\tau}^2} \left(1 - \frac{s}{m_{\tau}^2}\right)^2 \left[\left(1 + 2\frac{s}{m_{\tau}^2}\right) \ln \Pi^{(1)}(s) + \ln \Pi^{(0)}(s) \right]$$

8 / 45

Theoretical approaches to treat with inclusive au decay

Im $\Pi^{(J)}(s)$ is generically non-perturbative at small s

• Conventional approach: use dispersion relation

[E. Braaten et. al., NPB373 (1992) 581; E. Gámiz et. al., PRL94 (2005) 011803]

$$\int_{0}^{s_{0}} ds W(s) \operatorname{Im} \Pi(s) = \frac{i}{2} \oint_{|s|=s_{0}} ds W(s) \Pi(s)$$

LHS given by $\frac{dR}{ds}$; RHS given by pQCD+OPE

Theoretical approaches to treat with inclusive au decay

Im $\Pi^{(J)}(s)$ is generically non-perturbative at small s

• Conventional approach: use dispersion relation

[E. Braaten et. al., NPB373 (1992) 581; E. Gámiz et. al., PRL94 (2005) 011803]

$$\int_{0}^{s_{0}} ds W(s) \operatorname{Im} \Pi(s) = \frac{i}{2} \oint_{|s|=s_{0}} ds W(s) \Pi(s)$$

LHS given by $\frac{dR}{ds}$; RHS given by pQCD+OPE

• Study dependence on s_0 and W(s) or use lattice data $\xrightarrow{\text{fit}}$ high-dim. OPE [R. Hudspith et. al arXiv:1702.01767]

 $|V_{us}| = \begin{cases} 0.2229(22) & \text{using BaBar } \tau \to K \pi^0 \nu_{\tau}, \ 3.2\sigma \to 1.2\sigma \\ 0.2204(23) & \text{using HFAG } \tau \to K \pi^0 \nu_{\tau}, \ 3.2\sigma \to 2.2\sigma \end{cases}$

Theoretical approaches to treat with inclusive au decay

Im $\Pi^{(J)}(s)$ is generically non-perturbative at small s

• Conventional approach: use dispersion relation

[E. Braaten et. al., NPB373 (1992) 581; E. Gámiz et. al., PRL94 (2005) 011803]

$$\int_0^{s_0} ds W(s) \operatorname{Im} \Pi(s) = \frac{i}{2} \oint_{|s|=s_0} ds W(s) \Pi(s)$$

LHS given by $\frac{dR}{ds}$; RHS given by pQCD+OPE

• Study dependence on s_0 and W(s) or use lattice data $\xrightarrow{\text{fit}}$ high-dim. OPE [R. Hudspith et. al arXiv:1702.01767]

 $|V_{us}| = \begin{cases} 0.2229(22) & \text{using BaBar } \tau \to K \pi^0 \nu_{\tau}, \ 3.2\sigma \to 1.2\sigma \\ 0.2204(23) & \text{using HFAG } \tau \to K \pi^0 \nu_{\tau}, \ 3.2\sigma \to 2.2\sigma \end{cases}$

• Lattice QCD + dispersion relation [H. Ohki, Friday 17:50@Seminarios 6+7] PQCD OPE Im(s) spectral data use $W(s) = \prod_{k}^{N_{p}} \frac{1}{s + Q_{k}^{2}}$ and let $|s| = s_{0} \rightarrow \infty$ Residue at $s = -Q_{k}^{2}$ is given by Lattice HVPs 9/45

$|V_{us}|$ determined from inclusive τ decay + lattice HVPs

Choice of Q_k^2 : separated by a spacing $\Delta = \frac{0.2}{N-1}$ GeV² and $C = \frac{Q_{min}^2 + Q_{max}^2}{2}$

- Not too large to suppress contribution from pQCD+OPE at $s>m_\tau^2$ and noisy experimental data at larger $s< m_\tau^2$
- Not too small to avoid large statistical error from lattice HVPs

B_K for SM and beyond

"standard" quantities in Kaon physics: B_K

Short distance dominance \Rightarrow OPE \Rightarrow Wilson coeff. $C(\mu) \times \text{operator } Q^{\Delta S=2}(\mu)$

$$\mathcal{H}^{\Lambda^0}_{\text{eff}} \qquad \mathcal{H}^{\Delta S=2}_{\text{eff}} = \frac{G_F^2 M_W^2}{16\pi^2} C(\mu) Q^{\Delta S=2}(\mu)$$

• Serve as a dominant contribution to the indirect *CP* violation ϵ_K

 $\epsilon_{\mathcal{K}} = \exp(i\phi_{\epsilon})\sin(\phi_{\epsilon}) \left[\frac{\operatorname{Im}[\langle \overline{\mathcal{K}^{0}} | \mathcal{H}_{\operatorname{eff}}^{\Delta S=2} | \mathcal{K}^{0} \rangle]}{\Delta M_{\mathcal{K}}} + \frac{\operatorname{Im}[\mathcal{M}_{00}^{\operatorname{LD}}]}{\Delta M_{\mathcal{K}}} + \frac{\operatorname{Im}[\mathcal{A}_{0}]}{\operatorname{Re}[\mathcal{A}_{0}]} \right]$

• Within Standard Model, only single operator with V - A structure $Q^{\Delta S=2} = [\bar{s}_2 \gamma_{\mu} (1 - \gamma_5) d_a] [\bar{s}_b \gamma_{\mu} (1 - \gamma_5) d_b]$

Beyond SM, 4 other operators possible

$$\begin{aligned} Q_2^{\Delta S=2} &= [\bar{s}_a(1-\gamma_5)d_a][\bar{s}_b(1-\gamma_5)d_b]\\ Q_3^{\Delta S=2} &= [\bar{s}_a(1-\gamma_5)d_b][\bar{s}_b(1-\gamma_5)d_a]\\ Q_4^{\Delta S=2} &= [\bar{s}_a(1-\gamma_5)d_a][\bar{s}_b(1+\gamma_5)d_b]\\ Q_5^{\Delta S=2} &= [\bar{s}_a(1-\gamma_5)d_b][\bar{s}_b(1+\gamma_5)d_a]\end{aligned}$$

FLAG average for Standard Model B_K

- B_K in NDR- $\overline{\text{MS}}$ scheme: $B_K(\mu) = \frac{\langle \overline{K^0} | Q^{\Delta S=2}(\mu) | K^0 \rangle}{\frac{8}{3} f_K^2 m_K^2}$
- Renormalization group independent *B* parameter \hat{B}_{K} : $\hat{B}_{K} = \left(\frac{\bar{g}(\mu)^{2}}{4\pi}\right)^{-\gamma_{0}/(2\beta_{0})} \exp\left\{\int_{0}^{\bar{g}(\mu)} dg\left(\frac{\gamma(g)}{\beta(g)} + \frac{\gamma_{0}}{\beta_{0}g}\right)\right\} B_{K}(\mu)$

• $N_f = 2 + 1 + 1$: $\hat{B}_K = 0.717(24)$

•
$$N_f = 2 + 1$$
:
 $\hat{B}_K = 0.763(10)$

• $N_f = 2$: $\hat{B}_K = 0.727(25)$

FLAG average for BSM B_i , updated in Dec. 2016

$$B_{i}(\mu) = \frac{\langle K^{0} | Q_{i}(\mu) | K^{0} \rangle}{N_{i} \langle \overline{K}^{0} | \overline{s} \gamma_{5} d | 0 \rangle \langle 0 | \overline{s} \gamma_{5} d | K^{0} \rangle},$$

$$\{N_2, \dots, N_5\} = \{-5/3, 1/3, 2, 2/3\}$$

 $B_i(\mu)$ at $\mu_{\overline{\mathrm{MS}}}$ = 3 GeV

For $N_f = 2 + 1$, $B_2 = 0.502(14)$, $B_3 = 0.766(32)$, $B_4 = 0.926(19)$, $B_5 = 0.720(38)$

Resolution of the discrepancy for B_4 , B_5

 $N_f = 2 + 1$ DWF, a = 0.08, 0.11 fm, $m_{\pi} = 300$ MeV [RBC-UKQCD, JHEP11(2016)001]

Plot, courtesy of N. Garron

- Use both RI/MOM and SMOM ⇒ the former is significantly smaller
- Use two RI/SMOM schemes, (q, q) and $(\gamma_{\mu}, \gamma_{\mu}) \Rightarrow$ consistent results
- RI/(S)MOM result compatible with previous RI/(S)MOM calculation

Study suggests RI/MOM suffers from large IR artifacts \Rightarrow discrepancy

Go beyond "standard" quantities in lattice Kaon physics

• $K \rightarrow \pi \pi$ decays and direct *CP* violation

Final state involves $\pi\pi$ (multi-hadron system)

- Long-distance contributions to flavor changing processes
 - ΔM_K and ϵ_K

• Rare kaon decays: $K \to \pi \nu \bar{\nu}$ and $K \to \pi \ell^+ \ell^-$

Hadronic matrix element for bilocal operators

 $\int d^4x \langle f | T[Q_1(x)Q_2(0)] | i \rangle$

$K \rightarrow \pi\pi$ decays and direct *CP* violation

CP violation is first observed in neutral Kaon decays

• CP eigenstates

- Under *CP* transform: $CP|K^0\rangle = -|\overline{K^0}\rangle$
- Define *CP* eigenstates: $K_{\pm}^0 = (K^0 \mp \overline{K^0})/\sqrt{2}$
- Weak eigenstates
 - $K_S \rightarrow 2\pi (CP = +)$
 - $K_L \rightarrow 3\pi (CP = -)$
- Neglecting *CP* violation, we have $K_S = K^0_+$ and $K_L = K^0_-$

1964, BNL discovered $K_L \rightarrow 2\pi \Rightarrow CP$ violation \Rightarrow Nobel prize (1980)

Direct and indirect CP violation

• $K_{L/S}$ are not CP eigenstates

$$|\mathcal{K}_{L/S}\rangle = \frac{1}{\sqrt{1+\bar{\epsilon}^2}} \left(|\mathcal{K}^0_{\mp}\rangle + \bar{\epsilon}|\mathcal{K}^0_{\pm}\rangle\right)$$

•
$$K_L \rightarrow 2\pi (CP = +)$$

• $K^0_+ \rightarrow 2\pi (\text{indirect } CP \text{ violation, } \epsilon \text{ or } \epsilon_K)$
• $K^0_- \rightarrow 2\pi (\text{direct } CP \text{ violation, } \epsilon')$

Direct and indirect CP violation

• $K_{L/S}$ are not CP eigenstates

$$|\mathcal{K}_{L/S}\rangle = \frac{1}{\sqrt{1+\overline{\epsilon}^2}} \left(|\mathcal{K}^0_{\pm}\rangle + \overline{\epsilon}|\mathcal{K}^0_{\pm}\rangle\right)$$

•
$$K_L \rightarrow 2\pi (CP = +)$$

• $K^0_+ \rightarrow 2\pi (\text{indirect } CP \text{ violation, } \epsilon \text{ or } \epsilon_K)$
• $K^0_- \rightarrow 2\pi (\text{direct } CP \text{ violation, } \epsilon')$

Experimental measurement

$$\frac{A(K_L \to \pi^+ \pi^-)}{A(K_S \to \pi^+ \pi^-)} \equiv \eta_{+-} \equiv \epsilon + \epsilon'$$
$$\frac{A(K_L \to \pi^0 \pi^0)}{A(K_S \to \pi^0 \pi^0)} \equiv \eta_{00} \equiv \epsilon - 2\epsilon'$$

• Using $|\eta_{+-}|$ and $|\eta_{00}|$ as input, PDG quotes

 $|\epsilon| \approx \frac{1}{3} \left(2|\eta_{+-}| + |\eta_{00}| \right) = 2.228(11) \times 10^{-3}, \quad \operatorname{Re}[\epsilon'/\epsilon] \approx \frac{1}{3} \left(1 - \frac{|\eta_{00}|}{|\eta_{+-}|} \right) = 1.66(23) \times 10^{-3}$

 ϵ' is 1000 times smaller than the indirect CP violation ϵ

Thus direct *CP* violation ϵ' is very sensitive to New Physics

19/4

$K \rightarrow \pi \pi$ decays and *CP* violation

• Theoretically, Kaon decays into the isospin I = 2 and 0 $\pi\pi$ states

 $\Delta I = 3/2 \text{ transition:} \quad \langle \pi \pi (I=2) | H_W | \mathcal{K}^0 \rangle = A_2 e^{i\delta_2} \\ \Delta I = 1/2 \text{ transition:} \quad \langle \pi \pi (I=0) | H_W | \mathcal{K}^0 \rangle = A_0 e^{i\delta_0}$

• If CP symmetry were protected $\Rightarrow A_2$ and A_0 are real amplitudes

• ϵ and ϵ' depend on the $K \to \pi \pi(I)$ amplitudes A_I

$$\begin{aligned} \epsilon &= \overline{\epsilon} + i \left(\frac{\operatorname{Im}[A_0]}{\operatorname{Re}[A_0]} \right) \\ \epsilon' &= \frac{i e^{i(\delta_2 - \delta_0)}}{\sqrt{2}} \frac{\operatorname{Re}[A_2]}{\operatorname{Re}[A_0]} \left(\frac{\operatorname{Im}[A_2]}{\operatorname{Re}[A_2]} - \frac{\operatorname{Im}[A_0]}{\operatorname{Re}[A_0]} \right) \end{aligned}$$

The target for lattice QCD is to calculate both amplitude A_2 and A_0

Weak Hamiltonian is given by local four-quark operator

$$\mathcal{H}^{\Delta S=1} = \frac{G_F}{\sqrt{2}} V_{ud} V_{us}^* \left\{ \sum_{i=1}^{10} \left[z_i(\mu) + \tau y_i(\mu) \right] Q_i \right\}, \quad \tau = -\frac{V_{td} V_{ts}^*}{V_{ud} V_{us}^*}$$

•
$$\tau = -\frac{V_{td}V_{ts}^*}{V_{ud}V_{us}^*} = 1.543 + 0.635i$$

• $z_i(\mu)$ and $y_i(\mu)$ are perturbative Wilson coefficients

• Q_i are local four-quark operator

Electro-weak penguin $Q_7 - Q_{10}$ Q_7, Q_8 dominate Im[A_2]

Recent results for $K \rightarrow \pi \pi (I = 2)$

Results for A2 [RBC-UKQCD, PRD91 (2015) 074502]

• Use two ensembles (both at m_{π} = 135 MeV) for continuum extrapolation

 $48^3 \times 96$, a = 0.11 fm, L = 5.4 fm, $N_{\rm conf} = 76$ $64^3 \times 128$, a = 0.084 fm, L = 5.4 fm, $N_{\rm conf} = 40$

• After continuum extrapolation:

$$\begin{aligned} &\operatorname{Re}[A_2] = 1.50(4)_{\operatorname{stat}}(14)_{\operatorname{syst}} \times 10^{-8} \text{ GeV} \\ &\operatorname{Im}[A_2] = -6.99(20)_{\operatorname{stat}}(84)_{\operatorname{syst}} \times 10^{-13} \text{ GeV} \end{aligned}$$

• Experimental measurement:

 $Re[A_2] = 1.479(3) \times 10^{-8} \text{ GeV}$ Im[A₂] is unknown

• Scattering phase at $E_{\pi\pi} = M_K$

 $\delta_2 = -11.6(2.5)(1.2)^\circ$

consistent with phenomenological analysis [Schenk, NPB363 (1991) 97]

Resolve the puzzle of $\Delta I = 1/2$ rule

 $\Delta I = 1/2$ rule: $A_0 = 22.5 \times A_2 \implies a > 50$ year puzzle

- Wilson coefficient only contributes a factor of ~ 2
- $\bullet \ \operatorname{Re}[\mathcal{A}_2]$ and $\operatorname{Re}[\mathcal{A}_0]$ are dominated by diagrams \mathcal{C}_1 and \mathcal{C}_2

Color counting in LO PT \Rightarrow $C_2 = C_1/3$; Non-PT effects \Rightarrow $C_2 \approx -0.7C_1$

• $\operatorname{Re}[A_2] \propto C_1 + C_2$, while $\operatorname{Re}[A_0] \propto 2C_1 - C_2 \Rightarrow$ another factor of ~ 10

Puzzle of $\Delta I = 1/2$ rule is resolved from first principles

Recent results for $K \rightarrow \pi \pi (I = 0)$

Results for A₀ [RBC-UKQCD, PRL115 (2015) 212001]

• Use a $32^3 \times 64$ ensemble, $N_{\rm conf}$ = 216, a = 0.14 fm, L = 4.53 fm

 $M_{\pi} = 143.1(2.0) \text{ MeV}, \quad M_{K} = 490(2.2) \text{ MeV}, \quad E_{\pi\pi} = 498(11) \text{ MeV}$

- G-boundary condition is used: non-trivial to tune the volume $\Rightarrow M_K = E_{\pi\pi}$
- The largest contributions to Re[A₀] and Im[A₀] come from Q₂ (current-current) and Q₆ (QCD penguin) operator

• Scattering phase at $E_{\pi\pi} = M_{K}$: $\delta_0 = 23.8(4.9)(1.2)^{\circ}$

• somewhat smaller than phenomenological expectation $\delta_0 = 38.0(1.3)^{\circ}$ [Courtesy of G. Colangelo] 24/45

Results for $\operatorname{Re}[A_0]$, $\operatorname{Im}[A_0]$ and $\operatorname{Re}[\epsilon'/\epsilon]$

[RBC-UKQCD, PRL115 (2015) 212001]

- Determine the $K \rightarrow \pi \pi (I = 0)$ amplitude A_0
 - Lattice results

$$\begin{split} &\operatorname{Re}[A_0] = 4.66(1.00)_{\mathrm{stat}}(1.26)_{\mathrm{syst}} \times 10^{-7} \text{ GeV} \\ &\operatorname{Im}[A_0] = -1.90(1.23)_{\mathrm{stat}}(1.08)_{\mathrm{syst}} \times 10^{-11} \text{ GeV} \end{split}$$

Experimental measurement

 ${
m Re}[A_0] = 3.3201(18) \times 10^{-7} {
m GeV}$ ${
m Im}[A_0]$ is unknown

• Determine the direct *CP* violation $\operatorname{Re}[\epsilon'/\epsilon]$

$$\begin{split} & {\rm Re}[\epsilon'/\epsilon] = 0.14(52)_{\rm stat}(46)_{\rm syst} \times 10^{-3} & {\rm Lattice} \\ & {\rm Re}[\epsilon'/\epsilon] = 1.66(23) \times 10^{-3} & {\rm Experiment} \end{split}$$

2.1 σ deviation \Rightarrow require more accurate lattice results
Improve both statistics and systematics

Efforts for statistics improvement

- Statistics increased: $216 \rightarrow 584$
- Aim to reduce stat. error by a factor of 2 within the next year

26 / 45

Improve both statistics and systematics

Efforts for systematic improvement

- Add the σ field to study $\sigma \rightarrow \pi\pi$ in the I = 0 channel
- Include EM in $K \rightarrow \pi \pi$

• $\Delta I = 1/2$ rule may make the $O(\alpha_e)$ EM effect on A_2 20 times larger

- Calculate Wilson coefficients non-perturbatively
 - currently use unphysically light W-boson around 2 GeV

Long-distance contributions to flavor changing processes

ΔM_K and ϵ_K

Weak interaction causes the mixing between K^{0} - $\overline{K^{0}}$ K^{0}

• Time evolution of the K^{0} - $\overline{K^{0}}$ mixing system

$$i\frac{d}{dt}\begin{pmatrix}K^{0}\\\overline{K}^{0}\end{pmatrix} = \left[\begin{pmatrix}M_{00} & M_{0\overline{0}}\\M_{\overline{0}0} & M_{\overline{0}\overline{0}}\end{pmatrix} - \frac{i}{2}\begin{pmatrix}\Gamma_{00} & \Gamma_{0\overline{0}}\\\Gamma_{\overline{0}0} & \Gamma_{\overline{0}\overline{0}}\end{pmatrix}\right]\begin{pmatrix}K^{0}\\\overline{K}^{0}\end{pmatrix}$$

• 2×2 *M* and Γ matrices are calculated to 2nd-order in H_W $M_{ij} = M_K \delta_{ij} + \langle i | H_W | j \rangle + \mathcal{P} \oint_{\alpha} \frac{\langle i | H_W | \alpha \rangle \langle \alpha | H_W | j \rangle}{M_K - E_{\alpha}}$ $\Gamma_{ij} = 2\pi \oint_{\alpha} \langle i | H_W | \alpha \rangle \langle \alpha | H_W | j \rangle \, \delta(E_{\alpha} - M_K)$

• ΔM_K and ϵ_K are related to $\operatorname{Re}[M_{0\overline{0}}]$ and $\operatorname{Im}[M_{0\overline{0}}]$, respectively $\Delta M_K = M_{K_L} - M_{K_S} = 2\operatorname{Re}[M_{0\overline{0}}]$

$$\epsilon_{\mathcal{K}} = e^{i\phi_{\epsilon}} \sin(\phi_{\epsilon}) \left[\frac{\mathrm{Im}[M_{0\bar{0}}]}{\Delta M_{\mathcal{K}}} + \frac{\mathrm{Im}[A_0]}{\mathrm{Re}[A_0]} \right], \quad \phi_{\epsilon} = \arctan \frac{-2\Delta M_{\mathcal{K}}}{\Delta \Gamma_{\mathcal{K}}} \approx 45^{\circ}$$

Long-distance contribution to ΔM_K and ϵ_K

• $\Delta M_K \Rightarrow \operatorname{Re}[M_{0\overline{0}}] \Rightarrow CP$ conserving part of $K^0 - \overline{K^0}$ mixing

Dominant contribution from charm-charm loop:

$$\lambda_c^2 \frac{m_c^2}{M_W^2} >> \lambda_t^2 \frac{m_t^2}{M_W^2}, \quad \text{where } \lambda_q = V_{qd} V_{qs}^*, \text{ for } q = u, c, t$$

 \Rightarrow historically led to the predication of the mass scale of charm quark

Long-distance contribution to ΔM_{κ} and ϵ_{κ}

• $\Delta M_K \Rightarrow \operatorname{Re}[M_{0\overline{0}}] \Rightarrow CP$ conserving part of $K^0 - \overline{K^0}$ mixing

Dominant contribution from charm-charm loop:

$$\lambda_c^2 \frac{m_c^2}{M_W^2} \gg \lambda_t^2 \frac{m_t^2}{M_W^2}, \quad \text{where } \lambda_q = V_{qd} V_{qs}^*, \text{ for } q = u, c, t$$

⇒ historically led to the predication of the mass scale of charm quark • ϵ_K ⇒ Im[$M_{0\bar{0}}$] ⇒ CP violating part of K^{0} - $\overline{K^{0}}$ mixing

Top-top, top-charm and charm-charm loops compete in size \Rightarrow important top-top loop, thus $\epsilon_{\mathcal{K}}$ is sensitive to λ_t (determined from V_{cb})

Status for ΔM_K

Use $32^3 \times 64$ ensemble: $a^{-1} = 1.38$ GeV, $m_{\pi} = 170$ MeV, $m_c = 750$ MeV [Preliminary results from Z. Bai, for RBC-UKQCD]

• Results based on 120 configurations

			$\Delta M_K \ [10^{-12} \text{ MeV}]$
d		Type 1-4	3.85(46)
		Type 1-2	4.49(16)
		η	0
Type 1	Type 2	π	0.39(15)
d s		$\pi\pi_{I=0}$	-0.06(2)
$\langle \check{0}, \rangle$		$\pi\pi_{I=2}$	$-6.25(11) imes 10^{-4}$
s d		FV	0.024(11)
Type 3		Exp	3.483(6)
.)			

Status for ΔM_K

Use $32^3 \times 64$ ensemble: $a^{-1} = 1.38$ GeV, $m_{\pi} = 170$ MeV, $m_c = 750$ MeV [Preliminary results from Z. Bai, for RBC-UKQCD]

• Results based on 120 configurations

			$\Delta M_K \ [10^{-12} \text{ MeV}]$
d		Type 1-4	3.85(46)
		Type 1-2	4.49(16)
		η	0
Type 1	Type 2	π	0.39(15)
d s		$\pi\pi_{I=0}$	-0.06(2)
$\langle \check{O}_{\pm} \rangle$		$\pi\pi_{I=2}$	$-6.25(11) imes 10^{-4}$
s d	$\langle , \rangle () \langle , \rangle \rangle$	FV	0.024(11)
Type 3		Exp	3.483(6)
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	.,		

• Double GIM cancellation \Rightarrow No SD divergence, but significantly rely on m_c

Status for ΔM_K

Use $32^3 \times 64$ ensemble: $a^{-1} = 1.38$ GeV, $m_{\pi} = 170$ MeV, $m_c = 750$ MeV [Preliminary results from Z. Bai, for RBC-UKQCD]

• Results based on 120 configurations

			$\Delta M_K [10^{-12} \text{ MeV}]$
d		Type 1-4	3.85(46)
		Type 1-2	4.49(16)
		η	0
Type 1	Type 2	π	0.39(15)
d s		$\pi\pi_{I=0}$	-0.06(2)
$\langle \check{0}, \rangle$		$\pi\pi_{I=2}$	$-6.25(11) imes 10^{-4}$
s d		FV	0.024(11)
Type 3		Exp	3.483(6)
. , , , , , , , , , , , , , , , , , , ,	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		

• Double GIM cancellation \Rightarrow No SD divergence, but significantly rely on m_c New project: $64^3 \times 128$, $a^{-1} = 2.36$ GeV, $m_c = 1.2$ GeV, $m_{\pi} = 136$ MeV

• Based on 59 configurations: $\Delta M_{K} = 5.5(1.7) \times 10^{-12} \text{ MeV}$

Status for ϵ_K

SM predication vs Exp measurement [summarized by W. Lee @ Kaon 2016]

$$\begin{split} \left| \epsilon_{K}^{\rm SM} \right| &= 1.69(17) \times 10^{-3} \quad \text{using Exclusive } V_{cb} \text{ (Lattice QCD)} \\ \left| \epsilon_{K}^{\rm SM} \right| &= 2.10(21) \times 10^{-3} \quad \text{using Inclusive } V_{cb} \text{ (QCD sum rule)} \\ \left| \epsilon_{K}^{\rm Exp} \right| &= 2.228(11) \times 10^{-3} \end{split}$$

- 3.2 σ deviation between SM (exclusive V_{cb}) and experiment
- SM uncertainty is ~ 10%, dominated by V_{cb}
- Also important to determine LD contribution to $\epsilon_{\mathcal{K}}$ (a few %)

Status for ϵ_K

SM predication vs Exp measurement [summarized by W. Lee @ Kaon 2016]

$$\begin{split} \left| \epsilon_K^{\rm SM} \right| &= 1.69(17) \times 10^{-3} & \text{using Exclusive } V_{cb} \text{ (Lattice QCD)} \\ \left| \epsilon_K^{\rm SM} \right| &= 2.10(21) \times 10^{-3} & \text{using Inclusive } V_{cb} \text{ (QCD sum rule)} \\ \left| \epsilon_K^{\rm Exp} \right| &= 2.228(11) \times 10^{-3} \end{split}$$

- 3.2 σ deviation between SM (exclusive V_{cb}) and experiment
- SM uncertainty is ~ 10%, dominated by V_{cb}
- Also important to determine LD contribution to $\epsilon_{\mathcal{K}}$ (a few %)

GIM subtraction of charm: $\lambda_u \times (u - c)$ and $\lambda_t \times (t - c)$

• Three terms: λ_u^2 λ_t^2 λ_t^2 $\lambda_u \lambda_t$ irrelevant for ϵ_{κ} SD dominated need LQCD

$\lambda_u \lambda_t$ contribution to ϵ_K

- In the $\lambda_u \lambda_t$ contribution, the top quark field has been integrated out
 - leaving QCD penguin operator and extra Type 5 quark contraction

$\lambda_u \lambda_t$ contribution to ϵ_K

- In the $\lambda_u \lambda_t$ contribution, the top quark field has been integrated out
 - leaving QCD penguin operator and extra Type 5 quark contraction

• Without top quark in the lattice QCD calculation, logarithmic divergence

- Define the bilocal operator in the RI/SMOM scheme
- Subtract $X(\mu_{RI}, a)Q^{\Delta S=2}$ to remove the lattice cutoff effects

[from Z. Bai, for RBC-UKQCD]

• Use $24^3 \times 64$ lattice with DWF + Iwasaki gauge action

 $a^{-1} = 1.78 \text{ GeV}, \quad m_{\pi} = 340 \text{ MeV}, \quad m_{K} = 590 \text{ MeV}, \quad m_{c} = 970 \text{ MeV}$

- All Type 1-5 diagrams are evaluated
- Preliminary results based on 200 configurations

μ_{RI}	$\operatorname{Im} M^{ut,RI}_{\bar{0}0}$	$\operatorname{Im} M^{ut,RI \to \overline{MS}}_{\overline{0}0}$	$\mathrm{Im} M^{ut, ld corr}_{\bar{0}0}$	$\epsilon_{K}^{ut, ld corr}$
1.54 GeV	-0.75(39)	0.28	-0.46(39)	$0.091(76) imes 10^{-3}$
1.92 GeV	-0.91(39)	0.38	-0.53(39)	$0.104(76) imes 10^{-3}$
2.11 GeV	-0.99(39)	0.43	-0.55(39)	$0.108(76) imes 10^{-3}$
2.31 GeV	-1.05(39)	0.49	-0.57(39)	$0.111(77) imes 10^{-3}$
2.56 GeV	-1.12(39)	0.55	-0.57(39)	$0.111(77) imes 10^{-3}$

Experimental value for $|\epsilon_K| = 2.228(11) \times 10^{-3}$

• LD correction to ϵ_K is about 5% at unphysical kinematics

Rare Kaon decays

$K^+ \rightarrow \pi^+ \nu \bar{\nu}$: Experiment vs Standard model

 $K^+ \rightarrow \pi^+ \nu \bar{\nu}$: largest contribution from top quark loop, thus theoretically clean

$$\mathcal{H}_{eff} \sim \frac{G_F}{\sqrt{2}} \cdot \underbrace{\frac{\alpha_{\rm EM}}{2\pi \sin^2 \theta_W} \lambda_t X_t(x_t)}_{\mathcal{N} \sim 2 \times 10^{-5}} \cdot (\bar{s}d)_{V-A} (\bar{\nu}\nu)_{V-A}$$

Probe the new physics at scales of $\mathcal{N}^{-\frac{1}{2}}M_W = O(10 \text{ TeV})$

Past experimental measurement is 2 times larger than SM prediction

 $\begin{array}{l} {\rm Br}(K^+ \to \pi^+ \nu \bar{\nu})_{\rm exp} = 1.73^{+1.15}_{-1.05} \times 10^{-10} & [{\rm BNL \ E949, \ '08}] \\ {\rm Br}(K^+ \to \pi^+ \nu \bar{\nu})_{\rm SM} = 9.11 \pm 0.72 \times 10^{-11} & [{\rm Buras \ et. \ al., \ '15}] \end{array}$

but still consistent with > 60% exp. error

New experiments

New generation of experiment: NA62 at CERN

- aims at observation of O(100) events [2014-2018]
- 10%-precision measurement of $Br(K^+ \rightarrow \pi^+ \nu \bar{\nu})$

Latest results reported at FPCP 2017

- Detector installation completed in 09.2016
- 5% of 2016 data \Rightarrow no event yet
- Full 2016 data $\Rightarrow O(1)$ events

2nd-order weak interaction and bilocal matrix element

Hadronic matrix element for the 2nd-order weak interaction

$$\int_{-T}^{T} dt \langle \pi^{+} \nu \bar{\nu} | T [Q_{A}(t)Q_{B}(0)] | K^{+} \rangle$$

=
$$\sum_{n} \left\{ \frac{\langle \pi^{+} \nu \bar{\nu} | Q_{A}| n \rangle \langle n | Q_{B}| K^{+} \rangle}{M_{K} - E_{n}} + \frac{\langle \pi^{+} \nu \bar{\nu} | Q_{B}| n \rangle \langle n | Q_{A}| K^{+} \rangle}{M_{K} - E_{n}} \right\} \left(1 - e^{(M_{K} - E_{n})T} \right)$$

• For $E_n > M_K$, the exponential terms exponentially vanish at large T

- For $E_n < M_K$, the exponentially growing terms must be removed
- \sum_{n} : principal part of the integral replaced by finite-volume summation
 - possible large finite volume correction when $E_n \rightarrow M_K$

[Christ, XF, Martinelli, Sachrajda, PRD 91 (2015) 114510]

Low lying intermediate states

Lattice results

First results @ m_{π} = 420 MeV, m_c = 860 MeV

[Bai, Christ, XF, Lawson, Portelli, Schrajda, PRL 118 (2017) 252001]

 $P_c = 0.2529(\pm 13)_{\rm stat}(\pm 32)_{\rm scale}(-45)_{\rm FV}$

Lattice QCD is now capable of first-principles calculation of rare kaon decay

• The remaining task is to control various systematic effects

$K \rightarrow \pi \ell^+ \ell^-$: *CP* conserving chanel

CP conserving decay: $K^+ \rightarrow \pi^+ \ell^+ \ell^-$ and $K_S \rightarrow \pi^0 \ell^+ \ell^-$

• Involve both γ - and Z-exchange diagram, but γ -exchange is much larger

- Unlike Z-exchange, the γ -exchange diagram is LD dominated
 - By power counting, loop integral is quadratically UV divergent
 - EM gauge invariance reduces divergence to logarithmic
 - c u GIM cancellation further reduces log divergence to be UV finite

Focus on γ -exchange

• Hadronic part of decay amplitude is described by a form factor

$$T^{\mu}_{+,S}(p_{K},p_{\pi}) = \int d^{4}x \, e^{iqx} \langle \pi(p_{\pi}) | T\{J^{\mu}_{em}(x)\mathcal{H}^{\Delta S=1}(0)\} | \mathcal{K}^{+}/\mathcal{K}_{S}(p_{K}) \rangle$$

$$= \frac{G_{F}M^{2}_{K}}{(4\pi)^{2}} V_{+,S}(z) \left[z(p_{K}+p_{\pi})^{\mu} - (1-r^{2}_{\pi})q^{\mu} \right]$$

with
$$q = p_K - p_{\pi}$$
, $z = q^2 / M_K^2$, $r_{\pi} = M_{\pi} / M_K$

The target for lattice QCD is to calculate the form factor $V_{+,S}(z)$

- Lattice calculation strategy (I): [RBC-UKQCD, PRD92 (2015) 094512]
 - Use conserved vector current to protect the EM gauge invariance
 - · Use charm as an active quark flavor to maintain GIM cancellation

First exploratory calculation on $K^+ \rightarrow \pi^+ \ell^+ \ell^-$

Use 24³ × 64 ensemble, *N*_{conf} = 128 [RBC-UKQCD, PRD94 (2016) 114516]

 $a^{-1} = 1.78 \text{ GeV}, m_{\pi} = 430 \text{ MeV}$ $m_{K} = 625 \text{ MeV}, m_{c} = 530 \text{ MeV}$

Momentum dependence of $V_+(z)$

 $V_+(z) = a_+ + b_+ z$ $\Rightarrow a_+ = 1.6(7), b_+ = 0.7(8)$

First exploratory calculation on $K^+ \rightarrow \pi^+ \ell^+ \ell^-$

Conclusion

• For "standard" quantities such as f_K/f_{π} , $f_+(0)$ and B_K

	N _f	FLAG average	Frac. Err.
f_K/f_π	2 + 1 + 1	1.1933(29)	0.25%
$f_{+}(0)$	2 + 1 + 1	0.9706(27)	0.28%
Âκ	2 + 1	0.7625(97)	1.27%

lattice QCD calculations play important role in precision flavor physics

- It's time to go beyond "standard"
 - $K \rightarrow \pi\pi$ and ϵ'
 - ΔM_K and ϵ_K
 - rare kaon decays: $K \to \pi \nu \bar{\nu}$ and $K \to \pi \ell^+ \ell^-$
- Lattice QCD is now capable of first-principles calculation of the above "beyond-standard" quantities
- Realistic calculation of some of these quantities may require the next generation of super-computers

Backup slides

$K_L \rightarrow \pi^0 \ell^+ \ell^-$ decay: *CP* violating channel

 $K_L \rightarrow \pi^0 \ell^+ \ell^-$ decay contains important *CPV* information

- Indirect *CPV*: $K_L \xrightarrow{\epsilon} K^0_+ \to \pi^0 \gamma^* \to \pi^0 \ell^+ \ell^-$
- Direct + indirect CPV contribution to branching ratio [Cirigliano et. al., Rev. Mod. Phys. 84 (2012) 399]

$$\operatorname{Br}(K_L \to \pi^0 e^+ e^-)_{CPV} = 10^{-12} \times \left[15.7 |a_S|^2 \pm 6.2 |a_S| \left(\frac{\operatorname{Im} \lambda_t}{10^{-4}} \right) + 2.4 \left(\frac{\operatorname{Im} \lambda_t}{10^{-4}} \right)^2 \right]$$

- Im λ_t -term from direct *CPV*, $\lambda_t \approx 1.35 \times 10^{-4}$
- $|a_S|$ -term from indirect *CPV*, $a_S = V_S(0)$
- \pm arises due to the unknown sign of a_S

Even a determination of the sign of a_S from lattice is desirable

$K \rightarrow \pi \pi$: Error in ensemble generation

Duplicated RNG seeds used in quark forces \Rightarrow

- Such correlation is observed in plaquettes separated by 12 in y-direction
- Its size is only $\sim 5 \times 10^{-5}$
- Unlikely affect A₂, A₀ strongly, whose errors are ~ 1000 times larger

Average plaquette

- Correct ensemble 0.512239(3)(7)
- Incorrect ensemble 0.512239(6)

Systematic error breakdown for Re A₂ and Im A₂

[RBC-UKQCD, PRD91 (2015) 074502]

Systematic errors	$\operatorname{Re} A_2$	$\operatorname{Im} A_2$
NPR (nonperturbative)	0.1%	0.1%
NPR (perturbative)	2.9%	7.0%
Finite-volume corrections	2.4%	2.6%
Unphysical kinematics	4.5%	1.1%
Wilson coefficients	<mark>6.8</mark> %	10%
Derivative of the phase shift	1.1%	1.1%
Total	9%	12%

Systematic error for individual operator contributions to Re(A₀), Im(A₀) [RBC-UKQCD, PRL115 (2015) 212001]

Description	Error	Description	Error
Finite lattice spacing	12%	Finite volume	7%
Wilson coefficients	12%	Excited states	≤ 5%
Parametric errors	5%	Operator renormalization	15%
Unphysical kinematics	≤ 3 %	Lellouch-Lüscher factor	11%
Total (added in quadrature)			27%

ΔM_{κ} and ϵ_{κ} : Removal of the exponentially growing terms

• Determine the hadronic matrix element for all low-lying intermediate states

$$\frac{\langle \overline{K^0} | H_W | n \rangle \langle n | H_W | K^0 \rangle}{M_K - E_n} \left(1 - e^{(M_K - E_n)T} \right)$$

- Change of weak operator $H_W \to H_W + c_s \bar{s}d + c_p \bar{s}\gamma_5 d$ does not affect the physical amplitude
 - Apply the chiral Ward identity

$$\partial_{\mu}\bar{s}\gamma_{\mu}d = (m_{s} - m_{d})\bar{s}d$$
$$\partial_{\mu}\bar{s}\gamma_{\mu}\gamma_{5}d = (m_{s} + m_{d})\bar{s}\gamma_{5}d$$

• $K^0 - \overline{K^0}$ transition amplitude is given by

 $\int d^4x \, \langle \overline{K^0} | T[H_W(x)H_W(0)] | K^0 \rangle$

 $\partial_\mu \bar{s} \gamma_\mu d$ and $\partial_\mu \bar{s} \gamma_\mu \gamma_5 d$ do not contribute to the $\int d^4 x$ integral

• Choose appropriate c_s and c_p , e.g.

ΔM_{κ} : Lattice artifacts with physical charm quark mass

Naive estimate of lattice artifacts ~ $(m_c^{\overline{\rm MS}}(2~{\rm GeV})a)^2$ = 25% with a^{-1} = 2.36 GeV

D meson dispersion relation

$$c^2 = \frac{E^2 - m^2}{p^2}, \quad \mu^2 = p^2$$

- The physical charm quark mass [™]_o is related to bare mass m_ca = 0.32
- c^2 value deviate from 1 by $\sim 10\%$

$K^+ \rightarrow \pi^+ \nu \bar{\nu}$: OPE to separate SD and LD parts

$K^+ \rightarrow \pi^+ \nu \bar{\nu}$: Bilocal contribution vs local contribution

Bilocal $C_A^{\overline{MS}}(\mu)C_B^{\overline{MS}}(\mu)r_{AB}^{\overline{MS}}(\mu)$ vs Local $C_0^{\overline{MS}}(\mu)$ [Buras, Gorbahn, Haisch, Nierste, '06]

At μ = 2.5 GeV, 50% charm quark contribution from bilocal term

$K^+ \rightarrow \pi^+ \nu \bar{\nu}$: Lattice results

Use $m_{\pi} = 420$ MeV, $m_c = 860$ MeV [RBC-UKQCD, arXiv:1701.02858]

$K \rightarrow \pi \ell^+ \ell^-$ in 3-flavor theory

From 4-flavor to 3-flavor theory

$$C^{N_{f}=4}(\mu_{c})\underbrace{\langle H_{W}^{N_{f}=4}(\mu_{c})J^{\mu}\rangle}_{\text{UV finite}} = C^{N_{f}=3}(\mu_{c})\underbrace{\langle H_{W}^{N_{f}=3}(\mu_{c})J^{\mu}\rangle}_{\text{log divergent}} + \sum_{i}\underbrace{C_{i}(\mu_{c})\langle Q_{i}^{\mu}(\mu_{c})\rangle}_{\text{counter term}}$$

• The local counter term is mainly given by the penguin operator

$$Q_a^{\mu} = (\delta^{\mu\nu}\partial^2 - \partial^{\mu}\partial^{\nu})\bar{s}\gamma_{\nu}(1-\gamma_5)d$$

Use NPR to convert bare lattice bilocal operator to RI/SMOM scheme

Use PT to convert RI/SMOM bilocal operator to $\overline{\mathrm{MS}}$ scheme
Important to have a physical point simulation, however

- physical m_{π} requires large lattice volume to control FV effects
- physical m_c requires ultra-fine lattice spacing

 \Rightarrow very high demanding on computer resources

Important to have a physical point simulation, however

- physical m_{π} requires large lattice volume to control FV effects
- physical *m_c* requires ultra-fine lattice spacing

 \Rightarrow very high demanding on computer resources

One solution is to improve quark action to reduce $O(a^2)$ effects for charm

• Explore dispersion relation and unphysical poles for Möbius DWF

Important to have a physical point simulation, however

- physical m_{π} requires large lattice volume to control FV effects
- physical m_c requires ultra-fine lattice spacing

 \Rightarrow very high demanding on computer resources

One solution is to improve quark action to reduce $O(a^2)$ effects for charm

• Explore dispersion relation and unphysical poles for Möbius DWF

Another solution is to integrate out charm quark \Rightarrow strategy (II)

- Perturbatively treat the charm quark contribution
- Lattice calculation uses physical pion mass + rather coarse lattice
- No GIM cancellation, thus log divergence exists for lattice calculation

"standard" quantities in charm physics: f_D and f_{D_s}

Flavor Lattice Averaging Group (FLAG) average, updated in Nov. 2016

Experimental determination of f_D and f_{D_s} [quoted by PDG 2015 update]

$$f_D = 203.7(4.8) \text{ MeV} \Rightarrow 2.4\% \text{ error}$$

 $f_{D_s} = 257.8(4.1) \text{ MeV} \Rightarrow 1.6\% \text{ error}$

56 / 45

Charm physics: $f_{+}^{D\pi}(0)$ and $f_{+}^{DK}(0)$

Flavor Lattice Averaging Group (FLAG) average, updated in Nov. 2016

$$\begin{array}{rcl} f_{+}^{D\pi}(0) = 0.666(29) & \Rightarrow & 4.4\% \text{ error} \\ f_{+}^{DK}(0) = 0.747(19) & \Rightarrow & 2.5\% \text{ error} \end{array}$$

Experimental averages from HFAG 2014

$$\begin{array}{ll} f_{+}^{D\pi}(0)|V_{cd}| = 0.1425(19) \ \mbox{MeV} & \Rightarrow & 1.3\% \ \mbox{error} \\ f_{+}^{DK}(0)|V_{cs}| = 0.728(5) \ \mbox{MeV} & \Rightarrow & 0.69\% \ \mbox{error} \end{array}$$