

陕西-西安, 2017年10月13日 – 17日

Relativistic chiral nucleon-nucleon interaction

Xiu-Lei Ren (任修磊)

School of Physics, Peking University

Institute of theoretical physics II, Ruhr-Universität Bochum

Collaborators:

Li-Sheng Geng, Jie Meng, Evgeny Epelbaum, Kai-Wen Li, Bing-Wei Long, Peter Ring

Introduction

Theoretical framework

Results and discussion

Summary and perspectives

Introduction

□ Theoretical framework

Results and discussion

Summary and perspectives

Basic for all nuclear physics

Precise understanding of the nuclear force

Complexity of the nuclear force (vs. electromagnetic force)

- Finite range
- Intermediate-range attraction
- Short-range **repulsion**-"hard core"
- Spin-dependent **non-central** force
 - Tensor interaction
 - Spin-orbit interaction
- Charge independent (approximate)

Nuclear force (NF) from QCD

Residual quark-gluon strong interaction

Understood from QCD

At low-energy region

- Running coupling constant $\alpha_s \ge 1$
- Nonperturbative QCD -- unsolvable

Phenomenological models

- Lattice QCD simulation

Chiral effective field theory

NF from phenomenological models

Phenomenological analysis

Operator structures (allowed by symmetries)

$$V_{NN} = V_{0}(r) + V_{\sigma}(r)\boldsymbol{\sigma}_{1} \cdot \boldsymbol{\sigma}_{2} + V_{r}(r)\boldsymbol{\tau}_{1} \cdot \boldsymbol{\tau}_{2} + V_{\sigma\tau}(r)(\boldsymbol{\sigma}_{1} \cdot \boldsymbol{\sigma}_{2})(\boldsymbol{\tau}_{1} \cdot \boldsymbol{\tau}_{2}) \quad \text{Gammel-Thaler (1957)} \\ + V_{LS}(r)\boldsymbol{L} \cdot \boldsymbol{S} + V_{LSr}(r)(\boldsymbol{L} \cdot \boldsymbol{S})(\boldsymbol{\tau}_{1} \cdot \boldsymbol{\tau}_{2}) \quad \text{Hamada-Johnston (1962)} \\ + V_{T}(r)S_{12} + V_{Tr}(r)S_{12}\boldsymbol{\tau}_{1} \cdot \boldsymbol{\tau}_{2} \quad \text{Reid 68, Argonne V14} \\ + V_{Q}(r)Q_{12} + V_{Qr}(r)Q_{12}\boldsymbol{\tau}_{1} \cdot \boldsymbol{\tau}_{2} \quad \text{Reid 93, Argonne V18} \\ + V_{PP}(r)(\boldsymbol{\sigma}_{1} \cdot \boldsymbol{p})(\boldsymbol{\sigma}_{2} \cdot \boldsymbol{p}) + V_{PPr}(r)(\boldsymbol{\sigma}_{1} \cdot \boldsymbol{p})(\boldsymbol{\sigma}_{2} \cdot \boldsymbol{p})(\boldsymbol{\tau}_{1} \cdot \boldsymbol{\tau}_{2}) \\ + \dots$$

Meson "theory"

Partovi-Lomon (1970) Stony Brook (1975) Paris potential (1980) Bonn (1987), CD-Bonn(2001)

NF from phenomenological models

NF from phenomenological models

But, these potentials are not constructed from the fundamental level.

NF from Lattice QCD

- - Discretized Euclidean space-time
 - Monte Carlo method
- □ Extract the nuclear force
 - HAL QCD coll. T. Hatsuda, S. Aoki, et al.
 - **NPLQCD** coll. S. R. Beane, M. J. Savage, et al.
 - CalLat coll. / T. Yamazaki et al.

Preliminary results at physical point

□ Lattice set-up

- Pion mass: $m_{\pi} \sim = 145 \text{ MeV}$
- Lattice box size: L ~= 8 fm
- Lattice spacing: 1/a ~= 2.3 GeV
- Central/Tensor forces for NN

T. Doi, Lattice2016

NF from Chiral EFT

□ Chiral effective field theory *S. Weinberg, Phys. A* 1979

- Effective field theory (EFT) of low-energy QCD
- Model independent to study the nuclear force S. Weinberg, PLB1990
- □ Main advantages of chiral nuclear force
 - Self-consistently include many-body forces

$$V = V_{2N} + V_{3N} + \dots + V_{iN} + \dots$$

• Systematically improve NF order by order

 $V_{iN} = V_{iN}^{\text{LO}} + V_{iN}^{\text{NLO}} + V_{iN}^{\text{NNLO}} + \cdots$

• Systematically estimate theoretical uncertainties

$$|V_{iN}^{\mathrm{LO}}| > |V_{iN}^{\mathrm{NLO}}| > |V_{iN}^{\mathrm{NNLO}}| > \cdots$$

Current status of chiral NF

□ Nonrelativistic (NR) chiral NF

• NN interaction

- up to NLO U. van Kolck et al., PRL, PRC1992-94; N. Kaiser, NPA1997
- up to NNLO U. van Kolck et al., PRC1994; E. Epelbaum, et al., NPA2000
- up to $N^{3}LO$ R. Machleidt et al., PRC2003; E. Epelbaum et al., NPA2005
- up to N⁴LO E. Epelbaum et al., PRL2015, D.R. Entem, et al., PRC2015
- up to N⁵LO (dominant terms) D.R. Entem, et al., PRC2015

• 3N interaction

- up to NNLO U. van Kolck, PRC1994
- up to $N^{3}LO$ S. Ishikwas, et al, PRC2007; V. Bernard et al, PRC2007
- up to N⁴LO *H. Krebs, et al., PRC2012-13*

• 4N interaction

• up to N³LO *E. Epelbaum, PLB 2006, EPJA 2007*

P. F. Bedaque, U. van Kolck, Ann. Rev. Nucl. Part. Sci. 52 (2002) 339 E. Epelbaum, H.-W. Hammer, Ulf-G. Meißner, Rev. Mod. Phys. 81 (2009) 1773 R. Machleidt, D. R. Entem, Phys. Rept. 503 (2011) 1

Chiral NN potential is of high precision

	Phenomenological forces			NR Chiral nuclear force				
	Reid93	AV18	CD-Bonn	LO	NLO	NNLO	N ³ LO	N ⁴ LO
No. of para.	50	40	38	2+2	9+2	9+2	24+2	24+3
χ ² /datum <i>np data</i> <i>0-290 MeV</i>	1.03	1.04	1.02	94	36.7	5.28	1.27	1.10

D.Entem, et al., PRC96(2017)024004

Chiral force has been extensively applied in the study of nuclear structure and reactions within the non-relativistic few-/many-body theories.

E. Epelbaum, et al., PRL 106(2011) 192501, PRL109(2012)252501, PRL112(2014)102501; S. Elhatisari, et al., Nature 528 (2015) 111, arXiv:1702.05177; G. Hagen, et al., PRL109(2012)032502; H. Hergert, et al., PRL110(2013)24501; G.R. Jansen, et al., PRL113(2014)102501; S.K.Bogner, et al., PRL113(2014)142501; J.E. Lynn, et al., PRL113(2014)192501; V. Lapoux, et al., PRL117(2016)052501......

Limitations of current chiral NF

- □ Not "renormalization group invariance"
 - Dependent on the UV cutoff
 - Impact on multi-nucleon system
- **Based on heavy baryon ChEFT**
 - Cannot be used directly in relativistic nuclear structure studies

Relativistic nuclear force based on covariant ChEFT?

Relativistic effects are important

□ The success of **covariant density functional** theory (CDFT) in the nuclear structure studies.

P. Ring, PPNP (1996), D. Vretenar et al., Phys. Rept. (2005), J. Meng, PPNP(2006), Phys.Rept.(2015), IRNP(2016)

 Relativistic Brueckner-Hartree-Fock theory in nuclear matter and finite nuclei (input: relativistic Bonn)

S.H. Shen, et al., CPL(2016), PRC(2017)

Relativistic nuclear force based on ChEFT is needed

Relativistic effects are important

The success of covariant density functional theory (CDFT) in the nuclear structure studies. *P. Ring, PPNP (1996), D.Vretenar et al., Phys. Rept. (2005),*

J. Meng, PPNP(2006), Phys.Rept.(2015), IRNP(2016)

□ Covariant ChEFT with *extended-on-mass-shell* scheme

J.Gegelia, PRD(1999), Fuchs, PRD(2003)

- Maintains all the symmetry and analyticity
- Successfully applied to the one-nucleon(baryon) sector
 - Baryon mass, magnetic moments, π -N scattering ...

V. Pascalutsa, PLB2004; L.S. Geng, PRL2008; XLR, JHEP2012; Y.H. Chen, PRD(2013),

• Shows a faster convergence than the NR ChEFT case

Relativistic chiral force has relatively fast convergence?

In this work

We extend covariant ChEFT to the nucleonnucleon sector and construct a relativistic nuclear force up to next-to-leading order

- Construct the kernel potential in **covariant power counting**
 - Employ the Lorentz invariant chiral Lagrangains
 - Retain the complete form of Dirac spinor
 - Use naïve dimensional analysis to determine the chiral dimension
- Employ the 3D-reduced **Bethe-Salpeter** equation, such as **Kadyshevsky** equation, to resum the potential.

OUTLINE

Introduction

Theoretical framework

- NN potential concepts
- Relativistic chiral force up to NLO

Results and discussion

Summary and perspectives

NN potential concept

Often-thought as nonrelativistic quantity

• Appear in the **Schrödinger** equation

$$-\frac{\hbar^2}{2m}\nabla^2\Psi(t,\boldsymbol{r}) + \boldsymbol{V}(\boldsymbol{r})\Psi(t,\boldsymbol{r}) = i\hbar\frac{\partial}{\partial t}\Psi(t,\boldsymbol{r}).$$

• (or) Appear in the **Lippmann-Schwinger** equation

$$T(\mathbf{p}',\mathbf{p}) = V(\mathbf{p}',\mathbf{p}) + \int \frac{d\mathbf{k}}{(2\pi)^3} V(\mathbf{p}',\mathbf{k}) \frac{m_N}{\mathbf{p}^2 - \mathbf{k}^2 + i\epsilon} T(\mathbf{k},\mathbf{p}).$$

- Generalize the definition of potential
 - An interaction quantity appearing in a three-dimensional scattering equation can be referred as a NN potential.

M.H. Partovi, E.L. Lomon, PRD2 (1970) 1999 K. Erkelenz, Phys.Rept. 13C(1974) 191

Bethe-Salpeter equation

□ For the relativistic nucleon-nucleon scattering

$$p \quad \mathbf{T} \quad p' = p \quad \mathbf{A} \quad p' + p \quad \mathbf{T} \quad \mathbf{G} \quad \mathbf{A} \quad p'$$

 $W = \sqrt{s}/2$

Bethe-Salpeter equation with an operator form:

$$\mathcal{T}(p',p|W) = \mathcal{A}(p',p|W) + \int \frac{d^4k}{(2\pi^4)} \mathcal{A}(p',p|W) G(k|W) T(k,p|W),$$

- \mathcal{T} : Invariant scattering amplitude
- \mathcal{A} : Interaction kernel (sum all the irreducible diagrams)
- G: Two-nucleon's Green function

$$G(k|W) = i \frac{1}{[\gamma^{\mu}(W+k)_{\mu} - m_N + i\epsilon]^{(1)} [\gamma^{\mu}(W-k)_{\mu} - m_N + i\epsilon]^{(2)}},$$

Bethe-Salpeter equation

□ For the relativistic nucleon-nucleon scattering

$$p \quad \mathbf{T} \quad p' \quad \equiv \quad p \quad \mathbf{A} \quad p' \quad + \quad p \quad \mathbf{T} \quad \mathbf{G} \quad \mathbf{A} \quad p'$$

 $W = \sqrt{s}/2$

Bethe-Salpeter equation with an operator form:

$$\mathcal{T}(p',p|W) = \mathcal{A}(p',p|W) + \int \frac{d^4k}{(2\pi^4)} \mathcal{A}(p',p|W) G(k|W) T(k,p|W),$$

- \mathcal{T} : Invariant scattering amplitude
- \mathcal{A} : Interaction kernel (sum all the irreducible diagrams)
- G: Two-nucleon's Green function It is hard to solve the BS equation, one always perform the 3-dimensional reduction.

Reduction of BS equation

- \square Introduce a three dimensional Green function g
 - Maintain the same elastic unitarity of G at physical region
 - We choose the Kadyshevsky propagator V. Kadyshevsky, NPB (1968).

$$g = 2\pi \frac{m_N^2}{E_k^2} \frac{\Lambda_+^{(1)}(\mathbf{k}) \Lambda_+^{(2)}(-\mathbf{k})}{\sqrt{s} - 2E_k + i\epsilon} \delta[\mathbf{k}_0 - (E_k - \frac{\sqrt{s}}{2})].$$

□ To replace G with g, one can introduce the effective interaction kernel γ

$$\mathcal{T} = \mathcal{A} + \mathcal{A}G\mathcal{T}. \quad \left\{ \begin{array}{l} \mathcal{T} = \mathcal{V} + \mathcal{V} \ g \ \mathcal{T}. \\ \mathcal{V} = \mathcal{A} + \mathcal{A} \ (G - g) \ \mathcal{V}. \end{array} \right.$$

Reduction of BS equation

BS equation reduces to the **Kadyshevsky equation**:

$$\begin{aligned} \mathcal{T} &= \mathcal{V} + \mathcal{V} \ g \ \mathcal{T} \\ &= \mathcal{V} + \int \frac{d\mathbf{k}}{(2\pi)^3} \int \frac{dk_0}{2\pi} \ \mathcal{V} \times 2\pi \frac{m_N^2}{E_k^2} \frac{\Lambda_+^{(1)}(\mathbf{k})\Lambda_+^{(2)}(-\mathbf{k})}{\sqrt{s} - 2E_k + i\epsilon} \delta[k_0 - (E_k - \frac{\sqrt{s}}{2})] \times \mathcal{T} \\ &= \mathcal{V} + \int \frac{d\mathbf{k}}{(2\pi)^3} \ \mathcal{V} \ \frac{m_N^2}{E_k^2} \frac{\Lambda_+^{(1)}(\mathbf{k})\Lambda_+^{(2)}(-\mathbf{k})}{\sqrt{s} - 2E_k + i\epsilon} \ \mathcal{T}, \quad \text{with } k_0 = E_k - \frac{\sqrt{s}}{2}. \end{aligned}$$

• Sandwiched by Dirac spinors:

$$T(\mathbf{p}', \mathbf{p}) = V(\mathbf{p}', \mathbf{p}) + \int \frac{d^3k}{(2\pi)^3} V(\mathbf{p}', \mathbf{k}) \ \frac{m_N^2}{2E_k^2} \frac{1}{E_p - E_k + i\epsilon} T(\mathbf{k}, \mathbf{p}),$$

V. Kadyshevsky, NPB (1968).

• Relativistic potential definition:

 $egin{aligned} V(m{p}',m{p}) &= ar{u}(m{p}',s_1)ar{u}(-m{p}',s_2) imes \ \mathcal{V}(m{p}_0' &= E_{p'} - \sqrt{s}/2,m{p}'; p_0 = E_p - \sqrt{s}/2,m{p}|W) \ imes u(m{p},s_1)u(m{p}',s_2). \end{aligned}$

Calculate potential in ChEFT

D To obtain the potential

$$V(\boldsymbol{p'},\boldsymbol{p}) = ar{u}_1ar{u}_2 \ \boldsymbol{\mathcal{V}}(\boldsymbol{p},\boldsymbol{p'}) \ u_1u_2.$$

□ Solve the iterated equation perturbatively

$$\mathcal{V} = \mathcal{A} + \mathcal{A}(G - g)\mathcal{V}.$$

$$\mathcal{V}^{(0)} = \mathcal{A}^{(0)},$$

$$\mathcal{V}^{(2)} = \mathcal{A}^{(2)} + \mathcal{A}^{(0)}(G-g)\mathcal{A}^{(0)}$$

Large cancellation, neglected

K. Erkelenz, ZPA1973, Phys.Rept.1974 R. Machleit, Phys.Rept.1987

 Interaction kernel, A, can be calculated by using covariant ChEFT order by order.

Interaction kernel in covariant ChEFT

Perturbative expansion

$$\mathcal{A} = \sum_{i} C[g_i(\mu)] \left(\frac{\mathbf{Q}}{\mathbf{\Lambda}_{\mathbf{\chi}}}\right)^{n_{\mathbf{\chi}}}$$

• Expansion parameters

$$(Q/\Lambda_{\chi})^{n_{\chi}}$$
 light --- $Q \sim p, m_{\pi}$, heavy --- $\Lambda_{\chi} \sim 1 \text{ GeV}$

• Chiral dimension n_{χ} (naïve dimensional analysis)

$$n_{\chi} = 4L - 2N_{\pi} - N_n + \sum_k kV_k$$

• We have the **power counting** to collect the effective Lagrangians and corresponding diagrams.

Interaction kernel up to NLO

Covariant chiral Lagrangians

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\pi\pi}^{(2)} + \mathcal{L}_{\pi N}^{(1)} + \mathcal{L}_{NN}^{(0)} + \mathcal{L}_{NN}^{(2)}$$

• LO contact Lagrangian

$$\mathcal{L}_{NN}^{(0)} = -\frac{1}{2} \left[\mathbf{C}_{\mathbf{S}}(\bar{\Psi}\Psi)(\bar{\Psi}\Psi) + \mathbf{C}_{\mathbf{A}}(\bar{\Psi}\gamma_{5}\Psi)(\bar{\Psi}\gamma_{5}\Psi) + \mathbf{C}_{\mathbf{V}}(\bar{\Psi}\gamma_{\mu}\Psi)(\bar{\Psi}\gamma_{\mu}\Psi)(\bar{\Psi}\gamma_{\mu}\Psi) + \mathbf{C}_{\mathbf{V}}(\bar{\Psi}\gamma_{\mu}\Psi)(\bar{\Psi}\gamma_{5}\gamma_{\mu}\Psi)(\bar{\Psi}\gamma_{5}\gamma_{\mu}\Psi) + \mathbf{C}_{\mathbf{T}}(\bar{\Psi}\sigma_{\mu\nu}\Psi)(\bar{\Psi}\sigma^{\mu\nu}\Psi) \right]$$

H. Polinder, J. Haidenbauer, U.-G. Meißner, NPA779, 244 (2006)

NLO contact Lagrangian --- to be constructed

 $(Q/\Lambda_{\chi})^2$ χ \downarrow \downarrow \downarrow

Feynman diagrams

 $(\boldsymbol{Q}/\boldsymbol{\Lambda_{\chi}})^0$

Relativistic chiral NF up to NLO

$$V_{\rm LO} = \bar{u}_1 \bar{u}_2 \left[\left(\begin{array}{c} \\ \\ \end{array} \right) u_1 u_2 u_2 \right] \right]$$

Scattering equation and Phase shifts

Perform the partial wave projection, one can obtain the Kadyshevesky equation in |LSJ> basis

$$\begin{split} T_{L',L}^{SJ}(\boldsymbol{p}',\boldsymbol{p}) &= V_{L',L}^{SJ}(\boldsymbol{p}',\boldsymbol{p}) \\ &+ \sum_{L''} \int_{0}^{+\infty} \frac{\boldsymbol{k}^2 dk}{(2\pi)^3} V_{L',L}^{SJ}(\boldsymbol{p}',\boldsymbol{k}) \frac{M_N^2}{2(\boldsymbol{k}^2 + M_N^2)} \frac{1}{\sqrt{\boldsymbol{p}^2 + M_N^2} - \sqrt{\boldsymbol{k}^2 + M_N^2} + i\epsilon} T_{L'',L}^{SJ}(\boldsymbol{k},\boldsymbol{p}). \end{split}$$

- Cutoff renormalization for scattering equation
 - Potential regularized by an exponential regulator function

$$V(\boldsymbol{p}',\boldsymbol{p}) \rightarrow V(\boldsymbol{p}',\boldsymbol{p}) \exp[-(|\boldsymbol{p}'|/\Lambda)^{2n} - (|\boldsymbol{p}|/\Lambda)^{2n}].$$
 $n=2$

• On-shell *S* matrix and phase shift δ

$$S_{L'L}^{SJ} = \delta_{L'L} - \frac{i}{8\pi^2} \frac{M_N^2 |\mathbf{p}|}{E_p} T_{L'L}^{SJ}.$$

E.Epelbaum et al., NPA(2000)

$$S = \exp(2i\delta)$$

For couple channel: Stapp parameterization

V. Kadyshevsky, NPB (1968).

Results and discussion for LO potential

XLR, K.-W. Li, L.-S. Geng, B. Long, P. Ring, J. Meng, accepted by Chinese Physics C, arXiv: 1611.08475

XLR, K.-W. Li, L.-S. Geng, J. Meng, et al., in preparation

Relativistic chiral potential at LO

Contact potential (momentum space):

- One-pion-exchange potential (momentum space):

$$V_{\text{OPEP}} = -\frac{g_A^2}{4f_\pi^2} \boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2 \frac{(\bar{u}_1 \gamma^\mu \gamma_5 q_\mu u_1)(\bar{u}_2 \gamma^\nu \gamma_5 q_\nu u_2)}{(E_{p'} - E_p)^2 - \boldsymbol{q}^2 - m_\pi^2}.$$

Retardation effect included

• In the static limit ($m_N \rightarrow infinity$), the NR results can be recovered

$$V^{\text{NonRel.}} = \underbrace{(C_S + C_V)}_{C_S^{\text{HB}}} - \underbrace{(C_{AV} - 2C_T)}_{C_T^{\text{HB}}} \sigma_1 \cdot \sigma_2 - \frac{g_A^2}{4f_\pi^2} \tau_1 \cdot \tau_2 \frac{\sigma_1 \cdot q\sigma_2 \cdot q}{q + m_\pi^2 + i\epsilon} + \mathcal{O}(\frac{1}{M_N}).$$

$$S. Weinberg, PLB1990$$

Relativistic potential in LSJ basis

rotation invariant

conservation of total spin

 $\Rightarrow \langle L'SJ|V_{\rm LO}|LSJ\rangle$

All partial waves with J = 0, I

 $\langle p'|V_{\rm LO}|p\rangle$

$$\begin{split} V_{1S0} &= \xi_{N} \left[\mathbf{C_{1S0}} \left(1 + R_{p}^{2} R_{p'}^{2} \right) + \hat{\mathbf{C}_{1S0}} \left(R_{p}^{2} + R_{p'}^{2} \right) \right], \\ V_{3P0} &= -2\xi_{N} \mathbf{C_{3P0}} R_{p} R_{p'}, \\ V_{1P1} &= -\frac{2\xi_{N}}{3} \mathbf{C_{1P1}} R_{p} R_{p'}, \\ V_{3P1} &= -\frac{4\xi_{N}}{3} \mathbf{C_{3P1}} R_{p} R_{p'}, \\ V_{3S1} &= \frac{\xi_{N}}{9} \left[\mathbf{C_{3S1}} \left(9 + R_{p}^{2} R_{p'}^{2} \right) + \hat{\mathbf{C}_{3S1}} \left(R_{p}^{2} + R_{p'}^{2} \right) \right], \\ V_{3D1} &= \frac{8\xi_{N}}{9} \mathbf{C_{3S1}} R_{p}^{2} R_{p'}^{2}, \\ T_{3S1-3D1} &= \frac{2\sqrt{2}\xi_{N}}{9} \left(\mathbf{C_{3S1}} R_{p}^{2} R_{p'}^{2} + \hat{\mathbf{C}_{3S1}} R_{p}^{2} \right), \\ T_{3D1-3S1} &= \frac{2\sqrt{2}\xi_{N}}{9} \left(\mathbf{C_{3S1}} R_{p}^{2} R_{p'}^{2} + \hat{\mathbf{C}_{3S1}} R_{p'}^{2} \right). \end{split}$$

 $\xi_N = 4\pi N_p^2 N_{p'}^2, R_p = |\vec{p}|/\epsilon_p, \text{ and } R_{p'} = |\vec{p'}|/\epsilon_{p'}.$

$$C_{1S0} = (C_S + C_V + 3C_{AV} - 6C_T),$$

$$\hat{C}_{1S0} = (3C_V + C_A + C_{AV} + 6C_T).$$

$$C_{3P0} = (C_S - 4C_V + C_A - 4C_{AV}).$$

$$C_{1P1} = (C_S + C_A).$$

$$C_{3P1} = (C_S - 2C_V - C_A + 2C_{AV} + 4C_T)$$

$$\hat{C}_{3S1} = (C_S + C_V - C_{AV} + 2C_T),$$

$$\hat{C}_{3S1} = 3(C_V - C_A - C_{AV} + 2C_T).$$

7 combinations, only 5 independent.

Numerical details

- \Box 5 LECs $C_{S,A,V,AV,T}$ are determined by fitting
 - NPWA: p-n scattering phase shifts of Nijmegen 93

V. Stoks et al., PRC48(1993)792

- 7 partial waves: J=0, 1 ${}^{1}S_{0}, {}^{3}P_{0}, {}^{1}P_{1}, {}^{3}P_{1}, {}^{3}D_{1}, {}^{3}S_{1}, \epsilon_{1}$
- 42 data points: 6 data points for each partial wave $(E_{\text{lab}} = 1, 5, 10, 25, 50, 100 \text{ MeV})$

Description of J=0, I partial waves

- Red variation bands: cutoff 500~1000 MeV
- Improve description of ¹S₀, ³P₀ phase shifts

 Quantitatively similar to the nonrelativistic case for J=I partial waves

Higher partial waves Only OPEP contributes

The relativistic results are almost **the same** as the non-relativistic case.

Relativistic correction of OPEP is small !

1S0 wave phenomena

- □ Interesting phenomena of 1S0 wave
 - Large variance of phase shift from 60 to -10 (zero point: $k_0 = 340.5$ MeV)
 - Virtual bound state at very low-energy region (pole postition: -*i10* MeV)
 - Significantly large scattering length (a=-23.7 fm)

These typical energy scales are smaller than chiral symmetry breaking scale (~1GeV)

The 1S0 phenomena **should be roughly reproduced simultaneously** at the **lowest order** of chiral nuclear force

Bira van Kolck, et al., 1704.08524.

1S0 in relativistic chiral force (LO)

□ A good description of 1S0 phase shift:

Predicted results: (reproduced simultaneously)

	Nijmegen PWA	Global-Fit
$\Lambda \; [{ m MeV}]$	_	750_{1000}^{500}
scattering length a [fm]	-23.7	$-20.3^{-19.8}_{-16.2}$
effective range r [fm]	2.70	$2.45^{2.41}_{2.24}$
virtual pole position $i\gamma$ [MeV]	-i10	$-i9.2^{-i9.4}_{-i11.4}$

XLR, L.-S. Geng, J. Meng, et al., in preparation

Work in progress: Construction NLO potential

In collaboration with: L.-S. Geng, J. Meng, E. Epelbaum

NLO corrections for chiral force

□ Two pion exchange:

- Except football diagram, the expresses are very complicated with 3-/4-point functions
- Introduce the power counting breaking terms
- Keep the four **external legs off-shell** (cannot use Dirac eq.)
- □ Contact potential:
 - Construct the effective Lagrangian with two derivatives

Take left-triangle diagram for example

ightarrow Left triangle contributions

- *M.J. Zuilhof et al.*, *PRC26*, *1277 (1982)*
- $V = \frac{ig_A^2}{8F^4} \vec{\tau}_1 \cdot \vec{\tau}_2 \left[(\bar{u}_3 u_1) (\bar{u}_4 u_2) \times F_{LT}^1 (A_0, B_0, C_0 ...) + (\bar{u}_3 u_1) (\bar{u}_4 \gamma^0 u_2) \times F_{LT}^2 (A_0, B_0, C_0 ...) \right]$ $+(\bar{u}_{3}\gamma^{0}u_{1})(\bar{u}_{4}u_{2})\times F^{3}_{LT}(A_{0},B_{0},C_{0}...)+(\bar{u}_{3}\gamma^{0}u_{1})(\bar{u}_{4}\gamma^{0}u_{2})\times F^{4}_{LT}(A_{0},B_{0},C_{0}...)$ $+(\bar{u}_{3}\gamma^{\mu}u_{1})(\bar{u}_{4}\gamma^{0}\gamma_{\mu}u_{2})\times F^{5}_{LT}(A_{0},B_{0},C_{0}...)+(\bar{u}_{3}\gamma^{\mu}u_{1})(\bar{u}_{4}\gamma_{\mu}\gamma^{0}u_{2})\times F^{6}_{LT}(A_{0},B_{0},C_{0}...)$ $+(\bar{u}_{3}\gamma^{\mu}u_{1})(\bar{u}_{4}\gamma^{0}\gamma_{\mu}\gamma^{0}u_{2})\times F_{LT}^{7}(A_{0},B_{0},C_{0}...)+(\bar{u}_{3}\gamma^{\mu}u_{1})(\bar{u}_{4}\gamma_{\mu}u_{2})\times F_{LT}^{8}(A_{0},B_{0},C_{0}...)]$

Compact form of TPE contributions

Using the aforementioned "(off-shell) Dirac eqs.", one can express TPE diagrams in terms of twenty tensor structures

$$\begin{aligned} O_{1} &= 1^{(1)}1^{(2)}, \quad O_{2} = 1^{(1)}\gamma_{0}^{(2)}, \quad O_{3} = \gamma_{0}^{(1)}1^{(2)}, \quad O_{4} = \gamma_{0}^{(1)}\gamma_{0}^{(2)}, \quad O_{5} = \gamma_{\mu}^{(1)}\gamma^{\mu(2)}, \\ O_{6} &= \gamma_{\mu}^{(1)}(\gamma_{0}\gamma^{\mu})^{(2)}, \quad O_{7} = \gamma_{\mu}^{(1)}(\gamma^{\mu}\gamma_{0})^{(2)}, \quad O_{8} = (\gamma_{0}\gamma_{\mu})^{(1)}\gamma^{\mu(2)}, \quad O_{9} = (\gamma_{\mu}\gamma_{0})^{(1)}\gamma^{\mu(2)}, \\ O_{10} &= (\gamma_{0}\gamma_{\mu})^{(1)}(\gamma_{0}\gamma^{\mu})^{(2)}, \quad O_{11} = (\gamma_{0}\gamma_{\mu})^{(1)}(\gamma^{\mu}\gamma_{0})^{(2)}, \quad O_{12} = (\gamma_{\mu}\gamma_{0})^{(1)}(\gamma_{0}\gamma^{\mu})^{(2)}, \quad O_{13} = (\gamma_{\mu}\gamma_{0})^{(1)}(\gamma^{\mu}\gamma_{0})^{(2)}, \\ O_{14} &= (\gamma_{\mu})^{(1)}(\gamma_{0}\gamma^{\mu}\gamma_{0})^{(2)}, \quad O_{15} = (\gamma_{0}\gamma_{\mu}\gamma_{0})^{(1)}(\gamma^{\mu}\gamma_{0})^{(2)}, \quad O_{16} = (\gamma_{0}\gamma_{\mu})^{(1)}(\gamma_{0}\gamma^{\mu}\gamma_{0})^{(2)}, \quad O_{17} = (\gamma_{\mu}\gamma_{0})^{(1)}(\gamma_{0}\gamma^{\mu}\gamma_{0})^{(2)}, \\ O_{18} &= (\gamma_{0}\gamma_{\mu}\gamma_{0})^{(1)}(\gamma_{0}\gamma^{\mu})^{(2)}, \quad O_{19} = (\gamma_{0}\gamma_{\mu}\gamma_{0})^{(1)}(\gamma^{\mu}\gamma_{0})^{(2)}, \quad O_{20} = (\gamma_{0}\gamma_{\mu}\gamma_{0})^{(1)}(\gamma_{0}\gamma^{\mu}\gamma_{0})^{(2)}. \end{aligned}$$

$$V_{\text{TPE}} = \sum_{n} o_{n} F_{n}(A_{0}, B_{0}, C_{0}, D_{0}, \ldots)$$

- Superposition of **PaVe functions**
- Evaluated by LoopTools / Package-X
- Contain power-counting breaking (PCB) terms

Football diagram contribution

□ Partial wave potential V_{1S0} (Rel. vs. NR)

- Relativistic correction is small
- Only pion propagators in football diagram

• Consistent with one-pionexchange diagram.

working on

(Left) triangle diagram contribution

 \square Partial wave potential V_{1S0} (Rel. vs. NR)

- Relativistic correction is relatively large
- Contains the nucleon propagator in triangle diagram

• Box diagrams are working on!

NLO contact Lagrangian

- Chiral dimension of building blocks:
 - Clifford algebra and fields

1,
$$\gamma_5$$
, γ_{μ} , $\gamma_5\gamma_{\mu}$, $\sigma_{\mu\nu} \sim \mathcal{O}(p^0) \quad \psi, \ \bar{\psi} \sim \mathcal{O}(p^0)$

$$\mathcal{L}_{NN}^{(0)} = -\frac{1}{2} \left[\mathbf{C}_{\mathbf{S}}(\bar{\Psi}\Psi)(\bar{\Psi}\Psi) + \mathbf{C}_{\mathbf{A}}(\bar{\Psi}\gamma_{5}\Psi)(\bar{\Psi}\gamma_{5}\Psi) + \mathbf{C}_{\mathbf{V}}(\bar{\Psi}\gamma_{\mu}\Psi)(\bar{\Psi}\gamma^{\mu}\Psi) + \mathbf{C}_{\mathbf{A}}(\bar{\Psi}\gamma_{5}\gamma_{\mu}\Psi)(\bar{\Psi}\gamma_{5}\gamma^{\mu}\Psi) + \mathbf{C}_{\mathbf{T}}(\bar{\Psi}\sigma_{\mu\nu}\Psi)(\bar{\Psi}\sigma^{\mu\nu}\Psi) \right]$$

H. Polinder, J. Haidenbauer, U.-G. Meißner, NPA779, 244 (2006)

- Partial derivative --- to increase the chiral order
 - \blacktriangleright acting on the whole bilinear

$$\partial^{\mu} \left(\bar{\psi} \psi \right) \sim \bar{u}_1 i (p_3^{\mu} - p_1^{\mu}) u_1 \sim \mathcal{O}(p^1)$$

acting on the inside of bilinear (contracted pair)

$$(\bar{\psi}\partial_{\mu}\psi)(\bar{\psi}\partial^{\mu}\psi) \sim -p_1 \cdot p_2(\bar{\psi}\psi)(\bar{\psi}\psi) \sim \mathcal{O}(p^0)$$

We need subtract the mass terms: D. Djukanovic, et al., FBS41(2007)141 $(\bar{\psi}\partial_{\mu}\psi)(\bar{\psi}\partial^{\mu}\psi) \sim \left[-p_{1}\cdot p_{2}+m_{N}^{2}\right](\bar{\psi}\psi)(\bar{\psi}\psi) \sim \mathcal{O}(p^{2})$

working on

Summary

- We performed an exploratory study to construct the relativistic nuclear force up to leading order in covariant ChEFT
 - Relativistic chiral force can improve the description of ¹S₀ and ³P₀ phase shifts at LO
 - For the phase shifts of partial waves with high angular momenta (J>=1), the relativistic results are **quantitatively** similar to the nonrelativistic counter parts.

□ We are now working on the NLO studies

- Calculate the two-pion exchange potentials (almost finished)
- Construct the contact Lagrangians with two derivatives

Perspectives

Chiral order	χ²/datum (Fit: 0-100MeV)				
	Rel. chiral NF	Nonrel. chiral NF			
LO	2.0~6.0	~100			
NLO		2.5			
NNLO		1.0			

Our final goal: construct a high precision chiral nuclear force

- Study the **chiral extrapolation** of nuclear force from LQCD
- Study the few-body systems by using the Gaussian Expansion Method
- Study the nuclear structure by using the Dirac Brueckner– Hartree–Fock theory

Thank you very much for your attention!

Back up slides

Hint at a more efficient formulation

\Box V_{1S0}: 1/m_N expansion

$$V_{1S0} = 4\pi \left[C_{1S0} + (C_{1S0} + \hat{C}_{1S0}) \left(\frac{\vec{p}^2 + \vec{p'}^2}{4M_N^2} + \cdots \right) \right] + \frac{\pi g_A^2}{2f_\pi^2} \int_{-1}^1 \frac{dz}{\vec{q}^2 + m_\pi^2} \left[\vec{q}^2 - \left(\frac{(\vec{p}^2 - \vec{p'}^2)^2}{4M_N^2} + \cdots \right) \right]$$

- Relativistic corrections are suppressed
- One has to be careful with the new contact term, the momentum dependent term, which is desired to achieve a reasonable description of the phase shifts of 1S0 channel.

J. Soto et al., PRC(2008), B. Long, PRC (2013)

Only two LECs fit:

$$V_{\text{CTP}}^{\text{NonRel.}} = (C_S + C_V) - (C_{AV} - 2C_T)\boldsymbol{\sigma}_1 \cdot \boldsymbol{\sigma}_2 + \mathcal{O}(\frac{1}{M_N}).$$

- □ Take CS and CAV as free parameters
- □ Best fit result:
 - chi^2/d.o.f. = **84.5**

	Relativistic Chiral NF	Non-relativistic Chiral NF		
Chiral order	LO	LO	NLO*	
No. of LECs	5	2	9	
χ²/d.o.f.	2.9	147.9	~2.5	

Errors and correlation matrix

TABLE I: The best fit results of five LECs appearing in the contact terms (in unit of 10^4GeV^{-2}) with the momentum cutoff $\Lambda = 747 \text{ MeV}$.

LECs	C_S	C_A	C_V	C_{AV}	C_T
Best fit	0.13515 ± 0.00307	-0.055963 ± 0.018217	-0.26857 ± 0.01151	-0.24427 ± 0.01141	-0.062538 ± 0.001319

	Cs	C _A	C _V	C _{AV}	C _T
C _S	1.00	0.21	-0.93	-0.58	-0.39
C _A	0.23	1.00	-0.15	0.45	0.21
C _v	-0.93	-0.15	1.00	0.77	0.69
C _{AV}	-0.57	0.45	0.77	1.00	0.89
C _T	-0.39	0.21	0.69	0.89	1.00

Tlab [MeV]	1	50	100	150	200	250	300
Pcm [MeV]	21.67	153.22	216.68	265.38	306.43	342.60	375.30
Vcm	0.023 c	0.16 c	0.23 c	0.28 c	0.33 c	0.36 c	0.40 c
E_corr(2n) [MeV]	0.25	12.5	25	37.5	50	62.5	75

$$p_{\rm cm} = \sqrt{\frac{m_N T_{\rm lab}}{2}} \quad V_{\rm cm} = \frac{p_{\rm cm}}{m_N} c$$
$$E_T^{\rm corr} = \frac{p_{\rm cm}^2}{2m_N}$$

Strategies to construct NLO Lagrangian

 $\mathcal{O}_{\Gamma_A\Gamma_B}^{(n)} \sim (\overline{\psi}i\overleftrightarrow{\partial}^{\mu_1}i\overleftrightarrow{\partial}^{\mu_2}\cdots i\overleftrightarrow{\partial}^{\mu_n}\Gamma_A^{\alpha}\psi)(\overline{\psi}i\overleftrightarrow{\partial}_{\mu_1}i\overleftrightarrow{\partial}_{\mu_2}\cdots i\overleftrightarrow{\partial}_{\mu_n}\Gamma_{B\alpha}\psi)$ $\mathcal{O}_{\Gamma_A\Gamma_B}^{(n)} \sim [(p_1 + p_3) \cdot (p_2 + p_4)]^n$

- $\square \text{ Keep } n=1 \text{ terms} \qquad L. \text{ Girlanda, et al., PRC81(2010)034005}$
 - perform non-rel. expansion

Outlook: application to nuclear matter

- Relativistic Brueckner-Hartree-Fock theory
 - Kadyshevsky equation in nuclear matter (angle average)

$$G(\mathbf{p}', \mathbf{p} | \mathbf{P}) = V(\mathbf{p}', \mathbf{p}) + \int \frac{d^3k}{(2\pi)^3} V(\mathbf{p}', \mathbf{k}) \frac{{M^*}^2}{2E^*{}^2_{\mathbf{P}/2 + \mathbf{k}}} \frac{\bar{Q}(\mathbf{k}, \mathbf{P})}{E^*_{\mathbf{P}/2 + \mathbf{p}} - E^*_{\mathbf{P}/2 + \mathbf{k}}} G(\mathbf{k}, \mathbf{p} | \mathbf{P})$$

- **G** matrix: effective interaction in nuclear matter
- $M^* = M_N U_S$: effective mass; $Q(\mathbf{k}, \mathbf{P})$: Pauli operator

- Saturated around $\rho = 0.15 \text{ fm}^{-3}$
- E/A = -7.4 MeV

R. Machleidt et al., *PRC***81**, 024001 (2010) J.N. Hu et al., arXiv:1612.05433