PIONLESS EFFECTIVE FIELD THEORY

计晨 Chen Ji

华中师范大学 Central China Normal University

2017手征有效场论研讨会 13-17 October 2017

Effective Theory & Resolution Scale

 Physics at different resolution scales are described by different effective theories

QCD

- \bigcirc describe nucleon structures
- $\bigcirc\,$ de Broglie wavelength: $\lambda\lessapprox 0.2$ fm

Effective Theory & Resolution Scale

 Physics at different resolution scales are described by different effective theories

chiral EFT NN interaction

- $\bigcirc\,$ de Broglie wavelength: $\lambda\sim 1~{\rm fm}$
- \bigcirc short range: $V_s = C_0$
- \bigcirc intermediate range: $V_{1\pi} \sim 1/(q^2 + m_\pi^2)$

Effective Theory & Resolution Scale

 Physics at different resolution scales are described by different effective theories

Separation of Scales & Universality

Fig: Aoki, Hatsuda, Ishii, Comp. Sci. Disc. 1 (2008) 015009 2 / 36

Separation of Scales & Universality

Separation of Scales & Universality

○ separation of scales:

- $\circ~$ an observable's length scale is much larger than the interaction range $a \gg \ell$
- \bigcirc physics at scale *a* is insensitive to physics at scale ℓ
- different few-body systems share universal features

pionless effective field theory:

- represent short-range potentials with contact interactions
- study universality in large-a physics
- systematic expansion in ℓ/a_0

 $\mathcal{L} = \sum c_{\nu} (\ell/a_0)^{\nu} \hat{O}_{\nu}$

 implement power counting to systematically improve accuracy

\bigcirc light nuclei:

- $r_0/a_0 \sim 1/3$
- $\circ\,$ bound states (^2H, $^3\text{H},\,^3\text{He},\,^4\text{He})$
- elastic scattering (pd, p^3H ,...)
- Compton scattering $(np \rightarrow d\gamma)$

see e.g., Bedaque, van Kolck, Ann. Rev. Nucl. Part. Sci. 52 (2002) 339

O light nuclei:

- $r_0/a_0 \sim 1/3$
- bound states (²H, ³H, ³He, ⁴He)
- elastic scattering (pd, p^3H, \cdots)
- Compton scattering $(np \rightarrow d\gamma)$

ultracold atomic gases

- $\circ~$ laser cooling and trapping $\sim n{\rm K}$
- $r_0 \ll a_0$ near Feshbach resonances
- few-body Efimov effects

see e.g., Braaten, Hammer, Phys. Rept. 428 (2006) 259 & Zhai Hui's Talk 3 / 36

○ light nuclei:

- $r_0/a_0 \sim 1/3$
- $\circ\,$ bound states (^2H, $^3\text{H},\,^3\text{He},\,^4\text{He})$
- elastic scattering (pd, p^3H, \cdots)
- Compton scattering $(np \rightarrow d\gamma)$

ultracold atomic gases

- $\circ~$ laser cooling and trapping $\sim n{\rm K}$
- $r_0 \ll a_0$ near Feshbach resonances
- o few-body Efimov effects

halo nuclei

- \circ core + valence nucleons
- $R_{\rm core} \ll R_{\rm halo}$
- o bound-state structure; nuclear reaction

see e.g., Hammer, CJ, Phillips, J. Phys. G 44 (2017) 103002

Lattice simulated nuclei

• $M_{\pi} \gg 140$ MeV; $B/A \ll m_{\pi}$

see e.g., Kirscher, Int. J. Mod. Phys. E 25 (2016) 1641001

Effective Field Theory for Identical Bosons

 \odot Effective Lagrangian with contact interactions in r_0/a_0 expansion

$$\mathscr{L} = \psi^{\dagger} \left(i\partial_0 + \frac{\nabla^2}{2m} \right) \psi - C_0 \left(\psi^{\dagger} \psi \right)^2 - D_0 \left(\psi^{\dagger} \psi \right)^3 - C_2 \left[\left(\psi \psi \right)^{\dagger} \left(\psi \nabla^2 \psi \right) + h.c. \right] + \cdots$$

 \bigcirc 2body scattering: iteratively sum up C_0 to all loop orders

- \bigcirc use Hubbard-Stratonovich transformation
- introduce a two-body auxiliary field (dimer/dibaryon)

$$\mathscr{L} = \psi^{\dagger} \left(i\partial_{0} + \frac{\nabla^{2}}{2m} \right) \psi + d^{\dagger} \left[\eta \left(i\partial_{0} + \frac{\nabla^{2}}{4m} \right) + \Delta_{0} \right] d$$
$$+ \frac{g}{g} \left[d^{\dagger}(nn) + \text{h.c.} \right] + \frac{h}{h} \left(d\psi \right)^{\dagger} \left(d\psi \right) + \cdots$$

Effective Field Theory for Three Identical Bosons

on non-perturbative features in EFT:

- \circ iteratively sum up g and h to all loop orders
- o calculate 2- and 3-body observables by solving integral equations

• 2-body Lippmann-Schwinger equation (LO, tune g) = + +

 \bigcirc 3-body Faddeev-STM equation (LO, tune *h*)

Bedaque, Hammer, van Kolck '99

LO Regularization and Renormalization

- $\circ~$ 3-body spectrum is cutoff dependent $(\Lambda \sim 1/\ell)~~{\rm Platter~'09}$
- three-body force in renormalization
 - tune $H(\Lambda) = \Lambda^2 h/2mg^2$ to fix one 3-body observable
 - limit cycle in running coupling: $H(\Lambda)$ periodic for $\Lambda \to \Lambda(22.7)^n$ Bedaque *et al.* '00
 - discrete scaling invariance \rightarrow Efimov physics Efimov '71

LO Prediction in Efimov Effects

○ three-body systems display universal features (Efimov effects)

• 3-body spectrum: $E_n = f(a)$

discrete scaling symmetry

• $E_n = E_{n-1}/\lambda^2$ in the unitary limit $a \to \infty$

• scattering lengths at resonance/threshold: $a_{(n)}^{\star} = \lambda a_{(n-1)}^{\star}$

Discrete scaling in ultracold atoms

LO Prediction in Efimov Effects

○ three-body systems display universal features (Efimov effects)

• 3-body spectrum: $E_n = f(a)$

○ discrete scaling symmetry

• $E_n = E_{n-1}/\lambda^2$ in the unitary limit $a \to \infty$

 $\circ~$ scattering lengths at resonance/threshold: $a^{\star}_{(n)}=\lambda a^{\star}_{(n-1)}$

3B systems	m_1/m_2	λ
identical bosons	1	22.7
⁶ Li-Cs-Cs	0.045	4.865
⁷ Li-Cs-Cs	0.052	5.465
⁶ Li-Rb-Rb	0.069	6.835
⁷ Li-Rb-Rb	0.080	7.864
⁴⁰ K-Rb-Rb	0.460	122.7
41 K-Rb-Rb	0.471	131.0

Higher Order Corrections in #EFT

- effective range corrections to 2body phase shift $k \cot \delta_0 = -\frac{1}{a} + \frac{r}{2}k^2 + \cdots$
- perturbative expansion of 2body propagator

$$t_{2b} =$$
 $+$ $+$ $+$ $+$

 $\, \odot \,$ 2body scattering t-matrix in lab frame

$$t_{2b}(E, \mathbf{P}) = -\frac{4\pi}{mg^2} \left(-\gamma_0 + \sqrt{\mathbf{P}^2/4 - mE - i\epsilon} \right)^{-1} \\ \times \left[1 + \frac{r_0}{2} \left(\gamma_0 + \sqrt{\mathbf{P}^2/4 - mE - i\epsilon} \right) + \frac{r_0^2}{4} \left(\gamma_0 + \sqrt{\mathbf{P}^2/4 - mE - i\epsilon} \right)^2 \right]$$

Higher Order Corrections in #EFT

- effective range corrections to 2body phase shift $k \cot \delta_0 = -\frac{1}{a} + \frac{r}{2}k^2 + \cdots$
- perturbative expansion of 2body propagator

$$t_{2b} =$$
 $+$ $+$ $+$

 $\, \odot \,$ 2body scattering t-matrix in lab frame

$$t_{2b}(E, \mathbf{P}) = -\frac{4\pi}{mg^2} \left(-\gamma_0 + \sqrt{\mathbf{P}^2/4 - mE - i\epsilon} \right)^{-1} \\ \times \left[1 + \frac{r_0}{2} \left(\gamma_0 + \sqrt{\mathbf{P}^2/4 - mE - i\epsilon} \right) + \frac{r_0^2}{4} \left(\gamma_0 + \sqrt{\mathbf{P}^2/4 - mE - i\epsilon} \right)^2 \right]$$

- fixed scattering length (light nuclei, Helium molecules):
 - o Hammer, Mehen '01; Vanasse, Egolf, Kerin, König, Springer '14; (NLO)
 - Bedaque, Rupak, Grießhammer, Hammer '03; Platter, Phillips '06; CJ, Phillips '13; Vanasse '13; Margaryan, Springer, Vanasse '15; Vanasse '17 (N²LO)
- varied scattering length (ultracold atoms)
 - CJ, Platter, Phillips '09, '10; '12; CJ, Braaten, Phillips, Platter '15; Archarya, CJ, Platter '16 (NLO)

\bigcirc at next-to-leading-order $\mathcal{O}(r_0/a_0)$:

• insert NLO piece into STM equation (1st order perturbation) $\underbrace{t_0 \quad t_0}_{t_0}$ $\underbrace{t_0 \quad t_0}_{t_0}$ $\underbrace{t_0 \quad t_0}_{t_0}$

○ NLO 3-body force:

 $H_1(\Lambda) = r_0 \Lambda \ h_{10}(\Lambda) + r_0/a \ h_{11}(\Lambda)$

- *a* fixed: h_{11} is absorbed (renormalise to LO 3-body parameter)
- *a* varies: one additional 3-body parameter in renormalization

\odot LO: 3BF is a log-periodic function of the cutoff: $H_0[\ln(\Lambda/\kappa_*)]$

- \bigcirc LO: 3BF is a log-periodic function of the cutoff: $H_0[\ln(\Lambda/\kappa_*)]$
- NLO: 3BF is modified by a log-divergence piece that breaks the limit cycle

$$H(\Lambda) = H_0[\ln(\Lambda/\kappa_*)] + \eta H_0'[\ln(\Lambda/\kappa_*)]\ln(\Lambda/Q)\frac{r_0}{a}$$

- \bigcirc LO: 3BF is a log-periodic function of the cutoff: $H_0[\ln(\Lambda/\kappa_*)]$
- NLO: 3BF is modified by a log-divergence piece that breaks the limit cycle

$$H(\Lambda) = H_0[\ln(\Lambda/\kappa_*)] + \eta H'_0[\ln(\Lambda/\kappa_*)]\ln(\Lambda/Q)\frac{r_0}{a}$$

 \bigcirc We treat the r_0/a term as a perturbation, and rewrite 3BF:

$$H(\Lambda) = H_0 \left[\ln(\Lambda/\bar{\kappa}_*(Q, a))^{1+\eta r_0/a} \right]$$

 $\odot\ \bar\kappa_*(Q,a)=(Q/\kappa_*)^{\eta r_0/a}\kappa_*$ is a running Efimov parameter at NLO

Limit Cycle & Renormalization-Group Improvement

- \odot LO 3BF: RG limit cycle ightarrow discrete scaling symmetry λ^n
- \bigcirc Universal correlations: $a_{i,n} = \lambda^n \theta_i \kappa_*^{-1}$

CJ, Braaten, Phillips, Platter, PRA 92 (2015) 030702

Limit Cycle & Renormalization-Group Improvement

- \bigcirc LO 3BF: RG limit cycle \rightarrow discrete scaling symmetry λ^n
- \bigcirc Universal correlations: $a_{i,n} = \lambda^n \theta_i \kappa_*^{-1}$
- NLO 3BF: RG range-modification → discrete scaling breaking ○ insert running parameter $\bar{\kappa}_*(Q, a)$ into LO relation yields:

$$a_{i,n} = \lambda^n \theta_i (\lambda^n |\theta_i|)^{\eta r_0 \kappa_* / (\lambda^n \theta_i)} \kappa_*^{-1} + \tilde{J}_i r_0$$

CJ, Braaten, Phillips, Platter, PRA 92 (2015) 030702

Limit Cycle & Renormalization-Group Improvement

- \odot LO 3BF: RG limit cycle \rightarrow discrete scaling symmetry λ^n
- \bigcirc Universal correlations: $a_{i,n} = \lambda^n \theta_i \kappa_*^{-1}$
- \bigcirc NLO 3BF: RG range-modification \rightarrow discrete scaling breaking \bigcirc insert running parameter $\bar{\kappa}_*(Q, a)$ into LO relation yields:

$$a_{i,n} = \lambda^n \theta_i (\lambda^n |\theta_i|)^{\eta r_0 \kappa_* / (\lambda^n \theta_i)} \kappa_*^{-1} + \tilde{J}_i r_0$$

 \bigcirc expand $a_{i,n}$ up to linear-in- r_0 correction

$$a_{i,n} = \lambda^n \theta_i \kappa_*^{-1} + (J_i + n \eta \ln \lambda) r_0$$

the above pattern has been verified numerically

CJ, Braaten, Phillips, Platter, PRA 92 (2015) 030702

Benchmark Range-Corrected Relations

- \bigcirc the three-body recombination resonance a_- in different Efimov states share a universal relation
 - LO: $(a_{-,n+1}/a_{-,n})/\lambda = 1$
 - $\circ\;$ NLO: $(a_{-,n+1}/a_{-,n})/\lambda\neq 1$ due to finite-range effects

- \bigcirc the three-body recombination resonance a_- in different Efimov states share a universal relation
 - LO: $(a_{-,n+1}/a_{-,n})/\lambda = 1$
 - NLO: $(a_{-,n+1}/a_{-,n})/\lambda \neq 1$ due to finite-range effects
- benchmark with: Deltuva PRA 2012

momentum-space short-range separable potential models

n	0	1	2	3	4
Deltuva 2012	0.7822	0.9665	0.9976	0.9999	1.0000
NLO	<u>0.7822</u>	<u>0.9665</u>	0.9975	0.9998	1.0000
RG-NLO	<u>0.7822</u>	<u>0.9665</u>	0.9975	0.9998	1.0000

Running Efimov Parameter in AAB Systems

- the range-corrected running Efimov parameter also exists in AAB heteronuclear atomic mixtures
- \bigcirc we predict universal range effects to Efimov states in AAB systems

$$a_{i,n} = \lambda^n \theta_i \kappa_*^{-1} + (J_i + n\sigma) r_{AB} + (Y_i + n\bar{\sigma}) a_{AA}$$

3body recombination maximum					
⁶ Li-Cs-Cs	$a_{-}^{(0)}$	$a_{-}^{(1)}$	$a_{-}^{(2)}$	$a_{-}^{(3)}$	
$experiment^{\dagger}$	-350	-1777	-9210	-46635	
$theory^{\star}$	-267	-1677	-9210	-46635	

† Ulmanis *et al.* PRA '16

* Acharya, C.J., Platter, PRA '16

N²LO Corrections in $\not =$ EFT

 \bigcirc at next-to-next-to-leading-order $\mathcal{O}(r_0^2/a_0^2)$:

 \circ single insertion of N²LO piece & double insertion of NLO piece (2nd order perturbation)

 \bigcirc energy-dependent three-body force at N²LO

• $\mathcal{H}_2 = r_0^2 \Lambda^2 h_{20} + r_0^2 m E_t h_{22}$

ightarrow one additional 3-body parameter is needed

N²LO Renormalization in 3-Body Systems

$$\bigcirc$$
 $H_2 = r^2 \Lambda^2 h_{20}$

 $\bigcirc H_2 = r^2 \Lambda^2 h_{20} + r^2 m E_t h_{22}$

The existence of an excited helium trimer, whose binding energy is much shallower than the ground state:

Kunitski	et	al.,	Science	2015
----------	----	------	---------	------

Input		$B_t^{(1)}/B_d$	$B_t^{(0)}/B_d$	γa_{ad}
TTY poten	tial	1.738	96.33	1.205
a_{ad}	LO	1.723	97.12	1.205
a_{ad}	NLO	1.736	89.72	1.205
a_{ad} , $B_t^{(1)}$	N^2LO	1.738	116.9	1.205
$B_{t}^{(1)}$	LO	1.738	99.37	1.178
$B_t^{(1)}$	NLO	1.738	89.77	1.201
$B_t^{\left(1 ight)}$, a_{ad}	N^2LO	1.738	115.9	1.205
C.J., Phillips	s, Platter	Few-Body	Syst. 2013	

The Applications of EFT to Halo Nuclei

 $O^{2}H$

o simplest neutron halo

$O^{2}H$

- simplest neutron halo
- neutron halos with a compound nuclear core
 - ⁶He, ¹¹Be, ...

$O^{2}H$

- simplest neutron halo
- neutron halos with a compound nuclear core
 - \circ ⁶He, ¹¹Be, ...
- \bigcirc proton halos
 - $\circ~^{17}\mathsf{F}^*$ (s-wave halo)
 - ⁸B (p-wave halo)

FMD calculation (T. Neff, GSI)

study neutron/proton rich nuclei beyond the nuclear dripline

future facilities in China: BISOL & HIAF
Halo Physics Near Clustering Threshold

Halo EFT

- core + valence nucleons clustering configuration
- \bigcirc systematic expansion in Q/Λ
- short-range effects from underlying theory are embedded in LECs
 - o e.g., anti-symmetrization of core nucleons

- Based on #EFT, we use contact interactions to describe the clustering mechanism in halo nuclei
- \bigcirc introduce auxiliary dimer fields for nn and nc pairs

$$\begin{aligned} \mathscr{L} &= \mathscr{L}_{1} + \mathscr{L}_{2} + \mathscr{L}_{3} \\ \mathscr{L}_{1} &= n^{\dagger} \left(i\partial_{0} + \frac{\nabla^{2}}{2m_{n}} \right) n + c^{\dagger} \left(i\partial_{0} + \frac{\nabla^{2}}{2m_{c}} \right) c \\ \mathscr{L}_{2} &= s^{\dagger} \left[\eta_{0} \left(i\partial_{0} + \frac{\nabla^{2}}{4m_{n}} \right) + \Delta_{0} \right] s + \sigma^{\dagger} \left[\eta_{1} \left(i\partial_{0} + \frac{\nabla^{2}}{2(m_{n} + m_{c})} \right) + \Delta_{1} \right] \sigma \\ &+ g_{0} \left[s^{\dagger}(nn) + \text{h.c.} \right] + g_{1} \left[\sigma^{\dagger}(nc) + \text{h.c.} \right], \\ \mathscr{L}_{3} &= h \left(\sigma n \right)^{\dagger} \left(\sigma n \right) \end{aligned}$$

 $g \leftarrow$ 2-body observable

 $h \leftarrow$ 3-body observable

 \bigcirc 2n halo with s-wave neutron-core interactions

similarity to Efimov physics

- o ¹¹Li, ¹²Be, ²⁰C [Canham, Hammer, EPJA '08, NPA '10]
- o ²²C [Yamashita et al., PLB '11; Acharya, CJ, Phillips, PLB '13]
- o ⁶²Ca [Hagen, Hagen, Hammer, Platter, PRL '13]

 \bigcirc 2n halo with s-wave neutron-core interactions

similarity to Efimov physics

- ¹¹Li, ¹²Be, ²⁰C [Canham, Hammer, EPJA '08, NPA '10]
- ²²C [Yamashita et al., PLB '11; Acharya, CJ, Phillips, PLB '13]
- ⁶²Ca [Hagen, Hagen, Hammer, Platter, PRL '13]

 \bigcirc 2n halo with p-wave neutron-core interactions

universality beyond Efimov effects

⁶He [Rotureau, van Kolck, FBS '13; CJ, Elster, Phillips, PRC '14]

Two Neutron Halos in Faddeev Formalism

coupled-channel Faddeev equations $A_{\text{res}} = 2 \times A_{\text{res}}$ $A_{\text{res}} = \sqrt{A_{\text{res}}} + \sqrt{A_{\text{res}}} + A_{\text{res}}$

 $\bigcirc\,$ three-body wave functions

○ two-body form factors

$$F_{2b}(k^2) = \iint d^3p d^3q \Psi_i^\dagger(oldsymbol{p},oldsymbol{q}) \Psi_i(oldsymbol{p}+oldsymbol{k},oldsymbol{q})$$

○ low-momentum expansion & pair distance

$$F_{2b}(k^2) = 1 - \frac{1}{6} \langle r_{2b}^2 \rangle k^2 + \cdots$$

○ two-body form factors

$$F_{2b}(k^2) = \iint d^3p d^3q \Psi_i^\dagger(oldsymbol{p},oldsymbol{q}) \Psi_i(oldsymbol{p}+oldsymbol{k},oldsymbol{q})$$

low-momentum expansion & pair distance

$$F_{2b}(k^2) = 1 - \frac{1}{6} \langle r_{2b}^2 \rangle k^2 + \cdots$$

• matter radius (with point-like core) $R_{\text{matter}} = \sqrt{A r_c^2 + 2 r_n^2} / (A + 2)$

 \odot charge radius (with point-like protons) $R_{
m charge} = r_c$

○ ab intio calculation

- o no-core shell model Navrátil et al. '01; Sääf, Forssén '14
- NCSM-RGM/Continuum Romero et al. '14 '16
- Green's function Monte Carlo Pieper et al. '01; '08
- o hyperspherical harmonics (EIHH) Bacca et al. '12

○ Halo EFT in ⁶He ground state

- EFT+Gamow shell model Rotureau, van Kolck Few Body Syst. '13
- EFT+Faddeev equation C.J., Elster, Phillips, PRC '14
- o different power-counting Ryberg, Forssén, Platter, arXiv:1701.08576

$n-\alpha$ P-Wave Interactions

 $\odot~n-\alpha$ scattering is dominated by the $3/2^-$ resonance state

$n-\alpha$ P-Wave Interactions

 \bigcirc $n-\alpha$ scattering is dominated by the $3/2^-$ resonance state

$$a = \frac{2\pi}{\mu} \frac{\vec{p} \cdot \vec{q}}{-1/a_1 + r_1 k^2/2 - ik^3}$$

 \bigcirc causality $r_1 \not\rightarrow 0$ Nishida '12

- \bigcirc both a_1 and r_1 enter at leading order
- \bigcirc p-wave power counting
 - \circ resum ik^3 : $1/a_1 \sim Q^3$, $r_1 \sim Q$ [Bertulani, Hammer, van Kolck NPA '02]

• perturbative
$$ik^3$$
: $1/a_1 \sim Q^2 \Lambda$, $r_1 \sim \Lambda$
[Bedaque, Hammer, van Kolck PLB '03]

P-Wave Power Counting: ik^3 Resummation

 ik^3 resummation: $\circ 1/a_1 \sim Q^3 r_1 \sim Q$

 $\circ\;$ two fine tunings at LO

○ for $a_1 < 0$: ⁵He (3/2⁻)

o a broad shallow resonance

• a shallow bound state (spurious)

Bertulani, Hammer, van Kolck NPA '02

P-Wave Power Counting: Perturbative ik^3

 $\begin{array}{l} \mbox{perturbative ik^3:}\\ \circ \ 1/a_1\sim Q^2\Lambda \ \ r_1\sim\Lambda\\ \circ \ \mbox{one fine tuning at LO} \end{array}$

Bedaque, Hammer, van Kolck PLB '03

• for $a_1 < 0$: ⁵He (3/2⁻) • a narrow shallow resonance • a deep bound state (unphysical) $\begin{array}{c}
n - \alpha (^{2}P_{3/2}) \\
\text{Bedaque et al. '03} \\
\end{array}$ $\begin{array}{c}
\text{Im}(k) \\
\gamma_1 \sim -\frac{r_1}{2} \\
\hline \gamma_1 \sim -\frac{r_1}{2} \\
\hline k_R - i\Gamma \\
\hline k_R - i\Gamma \\
\hline k_R \sim \sqrt{\frac{2}{a_1r_1}} \\
\end{array}$

P-Wave Power Counting: Perturbative ik^3

perturbative ik^3 : $\circ 1/a_1 \sim Q^2 \Lambda \quad r_1 \sim \Lambda$ \circ one fine tuning at LO Bedaque, Hammer, van Kolck PLB '03

 $\Lambda \operatorname{Im}(k)$ $n - \alpha \left({}^{2}\mathrm{P}_{3/2} \right)$ \bigcirc for $a_1 < 0$: ⁵He (3/2⁻) $\gamma_1 \to \infty$ o a narrow shallow resonance Bedaque et al. '03 • a deep bound state (unphysical) • drop ik^3 term at LO: $\Gamma \to 0, \gamma_1 \to \infty$ k_{R} $-k_B$ $\operatorname{Re}(k)$ $k_{\rm R} \sim$

P-Wave Power Counting: Perturbative ik^3

perturbative ik^3 : • $1/a_1 \sim Q^2 \Lambda \quad r_1 \sim \Lambda$ • one fine tuning at LO Bedaque, Hammer, van Kolck PLB '03

$n-\alpha$ Scattering Cross Sections

 \bigcirc ik^3 resummation works better when E is close to E_R

$n-\alpha$ Scattering Cross Sections

- \bigcirc ik^3 resummation works better when E is close to E_R
- $\bigcirc\ ik^3$ resummation creates spurious bound-state pole; perturbative ik^3 does not

$n-\alpha$ Scattering Cross Sections

- \bigcirc ik^3 resummation works better when E is close to E_R
- $\bigcirc\ ik^3$ resummation creates spurious bound-state pole; perturbative ik^3 does not
- $\bigcirc~$ In $^6{\rm He}$ three-body calculation, $E \rightarrow -\Lambda$ in loop integral
 - $\circ~$ Rotureau, van Kolck, FBS '13: ik^3 resummation + spurious pole subtraction
 - C.J., Elster, Phillips, PRC '14: perturbative ik^3 (free from spurious pole)

Running of P-Wave 3-Body Coupling

○ p-wave 3body coupling:

Running of P-Wave 3-Body Coupling

○ p-wave 3body coupling:

reproduce $S_{2n} = 0.973 \text{ MeV}$

 discrete scaling symmetry is broken due to p-wave interactions

 \bigcirc 3-body form factor (with p-wave nc interactions)

 \bigcirc 3-body form factor (with p-wave nc interactions)

- The two-body current is needed for gauge invariance in p-wave channels
- $\odot~$ The two-body current counterterm is fixed by parameter r_1 in $n\alpha~~3/2^-$ state

Universal Correlations Among Radii & S_{2n} in ⁶He

Universal Correlations Among Radii & S_{2n} in ⁶He

- Physics at different scales can be connected by universality in few-body systems
- $\odot~{\rm \# EFT}$ aims to describe low-energy features in systems with short-range interactions
 - Efimov physics in ultracold atoms
 - o halo nuclei beyond the nuclear dripline
- \bigcirc Using the systematic expansion of the Q/Λ , #EFT can predict few-body observables with controlled theoretical uncertainties

Combining Halo EFT with Many-Body Techniques

$\supset \ ^{9}\mathsf{Be} \ lpha - lpha - n$

- $\circ~$ construct $\alpha\text{-}\alpha$ and $n\text{-}\alpha$ interaction from halo EFT
- combine with hyperspherical harmonics method and Lorentz integral transform
- calculate photoabsorption cross section
- $\circ~$ study astrophysical reaction rate $\alpha(\alpha n,\gamma)^9 {\rm Be}$ with Manzata, Andreatta, Orlandini, Leidemann

Combining Halo EFT with Many-Body Techniques

$\supset \ ^{9}\mathsf{Be} \ lpha - lpha - n$

- $\circ~$ construct $\alpha\text{-}\alpha$ and $n\text{-}\alpha$ interaction from halo EFT
- combine with hyperspherical harmonics method and Lorentz integral transform
- calculate photoabsorption cross section
- $\circ~$ study astrophysical reaction rate $\alpha(\alpha n,\gamma)^9 {\rm Be}$ with Manzata, Andreatta, Orlandini, Leidemann
 - $\odot \ lpha$ clustering in light/medium nuclei
 - $\circ \ ^{12}{\rm C} \rightarrow {}^{16}{\rm O} \rightarrow \cdots \rightarrow {}^{40}{\rm Ca}$
 - $\circ~{\rm EFT}$ potential for $\alpha\alpha$ interactions + Diffusion Monte Carlo
 - $\circ~$ explore Efimov physics in $\alpha\mbox{-clustering}$ with van Kolck, Pederiva

Collaborations

D. R. Phillips; C. Elster

B. Acharya

THEUNIVERSITY

- Z.-Z. Ren; M.-J. Lyu; L.-Y. Zhang
- G. Orlandini; W. Leidemann
- F. Pederiva
- U. van Kolck

H.-W. Hammer

	^{2}H	$^{11}{ m Be}$	15 C	19 C
EXP				
S_{1n} [MeV]	2.224573(2)	0.50164(25)	1.2181(8)	0.58(9)
E_c^* [MeV]	140	3.36803(3)	6.0938(2)	1.62(2)
$\langle r_{nc}^2 angle^{1/2}$ [fm]	3.936(12)	6.05(23)	4.15(50)	6.6(5)
	3.95014(156)	5.7(4)	7.2±4.0	6.8(7)
		5.77(16)	4.5(5)	5.8(3)
EFT				
Q/Λ	0.33	0.39	0.45	0.6
r_0/a_0	0.32	0.32	0.43	0.33
$C_{\sigma}/C_{\sigma,LO}$	1.295	1.3	1.63	1.3
$\langle r_{nc}^2 angle^{1/2}$ [fm]	3.954	6.85	4.93	5.72

Coulomb dissociation in 1n halos

Coulomb dissociation

- o breakup by colliding a halo nucleus with a high-Z nucleus
- $\circ~$ the halo dynamics dominates when $Q_{\gamma}\sim Q$

EFT on Coulomb dissociation

EFT on Coulomb dissociation

¹¹Be photo-dissociation

¹⁹C photo-dissociation

[Acharya, Phillips, NPA '13]

[Hammer, Phillips, NPA '11]

EFT on Coulomb dissociation

39 / 36

Three-body renormalization

 \bigcirc running of three-body coupling

• tune $H(\Lambda) = \Lambda^2 h/2mg^2$:

reproduce one observable in a $2n\mbox{-halo}$

Three-body renormalization

\bigcirc running of three-body coupling

• tune
$$H(\Lambda) = \Lambda^2 h/2mg^2$$
:

reproduce one observable in a 2n-halo

•
$$H(\Lambda)$$
 periodic for $\Lambda o \lambda \Lambda$ $[A = 1$ Bedaque *et al.* '00]

\bigcirc running of three-body coupling

• tune
$$H(\Lambda) = \Lambda^2 h/2mg^2$$
:

reproduce one observable in a $2n\mbox{-halo}$

- $H(\Lambda)$ periodic for $\Lambda \to \lambda \Lambda$ [A = 1 Bedaque *et al.* '00]
- $H(\Lambda)$ appears as RG limit cycle [Mohr et al., AnnPhys '06]

 \circ discrete scale invariance \rightarrow Efimov physics

Efimov universality in 2n s-wave halo

 \bigcirc contour constraints on ground-state energy S_{2n} if the excited-state energy $B_3^* = \max\{0, E_{nn}, S_{1n}\}$

Canham, Hammer, EPJA '08; Frederico et al. PPNP '12; 41 / 36
	²⁰ C	²¹ C	²² C
bound/unbound	bound	unbound	bound
ground state	0+	$S_{1/2}$	0^{+}
		$S_{1n}: -0.01(47)$	$S_{2n}: 0.11(6)$
binding/virtual	$S_{2n}: 3.50(24)$	AME2012	AME2012
energy [MeV]	AME2012	< -2.9	$S_{2n}: -0.14(46)$
		Mosby et al. '13	Gaudefroy et al. '12
matter radius	$2.97^{+0.03}_{-0.05}$		3.44(8)
r_m [fm]	Togano et al. '16		Togano et al. '16

Correlations in ^{22}C

use EFT universal correlations to constrain undetermined quantities

$$\langle r_m^2 \rangle_{2n-\text{halo}} = \frac{1}{m_n S_{2n}} f\left(\frac{E_{nn}}{S_{2n}}, \frac{S_{1n}}{S_{2n}}; A\right)$$

Acharya, C.J., Phillips,

bands: uncertainty from NLO EFT

Other experimental bound:

 $\circ~$ AME2012 $S_{2n} < 170~{\rm keV}$

 $\circ~$ Gaudefroy et al., PRL '12 $S_{1n} < -2.9~{\rm MeV} \label{eq:sigma}$

43 / 36