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Introduction



Doubly charmed hadrons

• Discoveries of Ξcc: (ccq)
Ξ+

cc was discovered by SELEX collaboration, and

has been confirmed by LHCb group but with different mass this year

• Interests on exotic states: (cc̄qq̄)
keeping update of X, Y, Z states from experiment
debate with different interpretations:

molecules? tetraquark? ordinary charmonium? two diquark?

• Possible states: (ccq̄q̄)
no mixing with ordinary chamoniums
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Molecular states made of two heavy mesons

• Not unfamiliar
Deuteron is a famous molecule made of a proton and neutron

• Interactions are important
attractive interaction

• Different models and approaches

• one-boson-exchange model
• lattice study
• QCD sum rule
• diquark model
• ...
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Study of Interactions within χEFT

• EFT with respect on symmetries of QCD

• Power counting
systematically study, order by order, error controlled, check of SM

• Natual extension
2-body force, 3-body force,...

• Wide applications
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χEFT with heavy hadrons involved

• Dealing systems with light mesons
χEFT results can be expanded as power series of

mϕ/Λχ, q/Λχ, ...

• Power Counting Breaking (PCB) in systems with heavy hadrons
involved
large masses of heavy hadrons make qµ is never small again
expanded with the help of residual momentum q̃µ

q̃µ = qµ − m(1, 0⃗).
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Solutions for systems with one heavy hadron

• Heavy hadron EFT
nonrelativistic reduction at Lagrangian level, breaking of analyticity.

Simple and still correct if not analytically extending results too far away

• Infrared regularization
relativistic Lagrangian, drop PCB terms at regularization

good power counting and analyticity

• Extended on-mass-shell scheme
relativistic Lagrangian, drop PCB terms at final results

good power counting and analyticity

Results with three different schemes will be same if

• being summarized at ALL orders, or
• the mass of heavy hadron becomes infinite.
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χEFT with few hadrons involved—new trouble

The amplitude of following 2-Particle-Reducible diagram contains 1

I ≡ i
∫

dl0 i
l0 + P0 + iε

i
−l0 + P0 + iε =

π

P0 + iε ≈ π

P⃗2/(2mN) + iε
. (1)

• naïve power counting scheme → I ∼ O(1/|P⃗|)

• eq. (1) → I ∼ O(mN/|P⃗|2)

I is actually enhanced by a large factor mN/|P⃗|.

l l

P + l

P − lP

P

Solid line for nucleon, dashed line for pion.
(P represents the residual momentum)

Box Diagram.
1we have not listed the parts preserving power counting
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Weinberg scheme

• not directly calculate physical observables with perturbation theory

• systematically study effective potentials first (without 2PR
contribution)

• solve the dynamical equation to get the physical observables
(equivalent to recover the 2PR contributions)
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Effective potentials between

heavy mesons



With Heavy Meson EFT, we study the systems made up of

• DD

• D∗D

• D∗D∗

Similar for B(∗)B(∗) and corresponding anti-meson pair system.

We have not studied systems like DD̄ because there exist annihilation
effects and it is beyond the ability of heavy meson EFT.

10



Lagrangians

• Leading order vertice
contact terms: D(∗)D(∗)D(∗)D(∗) vertice

D(∗)D(∗)π, D(∗)D(∗)ππ vertice

• Next-to-leading order vertice
they absorb divergences, provide finite higher-order corrections

L(0)
4H = Da Tr [HγµH̄]Tr [HγµH̄] + Db Tr [Hγµγ5H̄]Tr [Hγµγ5H̄]

+Ea Tr [Hγµλ
aH̄]Tr [HγµλaH̄] + Eb Tr [Hγµγ5λ

aH̄]Tr [Hγµγ5λaH̄],

L(1)
Hϕ = −⟨(iv · ∂H)H̄⟩ − ⟨Hv · ΓH̄⟩+ g⟨H ̸uγ5H̄⟩ − 1

8∆⟨HσµνH̄σµν⟩,
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Lagrangians

• Leading order vertice
contact terms: D(∗)D(∗)D(∗)D(∗) vertice

D(∗)D(∗)π, D(∗)D(∗)ππ vertice
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L(2)
4H = Dh

a Tr [HγµH̄]Tr [HγµH̄]Tr (χ+) + ...

+Dd
a Tr [Hγµχ̃+H̄]Tr [HγµH̄] + ...

+Dq
1 Tr [(DµH)γµγ5(DνH̄)]Tr [Hγνγ5H̄] + ...
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Diagrams

• Leading order
contact, one-pion exchange

• Next-to-leading order
two-pion exchange, renormalization to D(∗)D(∗)π coupling, loop
corrections to contact term, tree diagrams with NL vertice

(a) (b)
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Diagrams

• Leading order
contact, one-pion exchange

• Next-to-leading order
two-pion exchange, renormalization to D(∗)D(∗)π coupling, loop
corrections to contact term, tree diagrams with NL vertice

(a1) (a2) (a3) (a4)

(a5) (a6) (a7) (a8)

(a9) (a10) (a11) (a12)

(a13) (a14)

12



Regularization and renormalization

We calculate diagrams with dimension regularization and modified
minimal subtraction scheme.

We have checked that the potentials are finite after the renormalization
of the wavefunctions and vertice.
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Determination of low-energy constants

• fit to experimental data

• first principle of QCD

• fit to data of Lattice QCD

• phenomenological models
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Determination of low-energy constants

• fit to experimental data

• first principle of QCD

• fit to data of Lattice QCD

• phenomenological models
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Effective potentials in momentum space
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Possible molecular states



Search for new states

• Potentials→ partial waves, dynamical equation (momentum space)
→ T matrices → poles

• Potentials→ Fourier transform, dynamical equation (coordinate

space)
→ eigenvalues of bound states for different partial waves

Taking DD∗ as an example
I = 0: bound state with around E = 21 MeV.

I = 1: no bound state.
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Cutoff dependence of potentials
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Binding energies are 2.5, 21.5, and 59.0 MeV as cutoff takes values of 0.6
GeV, 0.7 GeV, and mρ without considering cutoff dependence of
couplings.
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Comparison with one-boson-exchange model

Similar results as those in Phys. Rev. D 88, 114008 (2013).

ρ contribution is covered not only by the two-pion-exchange part but also
by contact terms.
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Summary for heavy meson

potentials and possible molecules



Summary for heavy meson potentials and possible molecules

We are studying the potentials between heavy mesons.

By solving the Schrodinger equations, we found some bound states in
some channels.
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Introduction



Hadron Physics

Hadron physics is mainly focused on hadron scatterings, spectra,
structures, interactions, etc.

• Hadron spectra are obtained from experimental
Hadron scattering.

• Hadron structures and interactions ⇌
Hadron spectra and scattering.

Hadron physics lies in the region of low energies with a large αs,
traditional perturbation expansion in series of (αs)n cannot work here.

• constituent quark model
• effective field theory —expanded by small momenta
• lattice QCD —discretized QCD
• QCD sum rule —operator product expansion—twist
• large Nc —1/Nc
• ... 2



Low-lying Baryons

There are much more scattering data on low-lying baryons, N∗(1440),
N∗(1535), Λ(1405), compared to those for large-mass resonances or
charmed hadrons.

Naive quark model predicts the wrong order for masses of N∗(1440) and
N∗(1535).

IF: harmonic form for confinement potential
Then: E = (2nr + L + 3/2)ω
N∗(1440): nr = 1, L = 0
N∗(1535): nr = 0, L = 1

Λ(1405) is lower than other members of JP = 1/2− octet even if it
contains an s quark.

Triquark or pentaquark state?

Liu, Zou, Phys. Rev. Lett. 96, 042002 (2006) ...
3



Lattice QCD

• LQCD starts from the first principle of QCD
• model independent, reliable
• LQCD gives hadron spectra and quark distribution functions

at finite volumes, large quark masses, discrete spaces
• not directly related to physical observables
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Connection between Scattering Data and Lattice QCD Data

Lattice QCD

• large pion mass: extrapolation
• finite volume
• discrete space

Lattice QCD Data → Physical Data

• Lüscher Formalisms and extensions:
Model independent; efficient in single-channel problems

Spectrum → Phaseshifts; mKL − mKS etc.
• Effective Field Theory (EFT), Models, etc

with low-energy constants fitted by Lattice QCD data

Physical Data → Lattice QCD Data

• EFT: discretization, analytic extension, Lagrangian modification
• various discretization: eg. discretize the momentum in the loop
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Lattice QCD and Effective Field Theory

Effective field theory deals with extrapolation powerfully.
Guo, Hanhart, Llanes-Estrada, Meißner, Quark mass dependence of the pion vector form factor, Phys.Lett.B678:90-96,2009.

Finite-volume effect can be studied by discretizing the EFT.
Molina, Doring, Pole structure of the Λ(1405) in a recent QCD simulation, Phys.Rev. D94 (2016) no.5, 056010, Addendum: Phys.Rev.

D94 (2016) no.7, 079901

discretize the mass equation (in integral form )
(most of time, potentials are momentum independent.)
Hall, Hsu, Leinweber, Thomas, Young, Finite-volume matrix Hamiltonian model for a ∆ → Nπ system, Phys.Rev. D87 (2013) no.9,

094510

discretize the Hamiltonian equation (in differential form )

Discrete spacing effects can also be studied with EFT.

Ren, Geng, Meng, Baryon chiral perturbation theory with Wilson fermions up to O(a2) and discretization effects of latest nf=2+1 LQCD

octet baryon masses, Eur.Phys.J. C74 (2014) no.2, 2754
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Scattering Data and Lattice QCD data are two important sources for
studying resonances.

We should try to analyse them both at the same time.
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Hamiltonian Effective Field Theory

Hamiltonian Effective Field Theory (HEFT)
analyses both experimental data at infinite volume
and lattice QCD results at finite volume at the same time.

• at infinite volume
Lagrangian (via 2-particle irreducible diagrams) →

potentials (via Betha-Salpeter Equation) →
phaseshifts and inelasticities

• at finite volume
potentials discretized (via Hamiltonian Equation)→ spectra
wavefunctions: analyse the structure of the eigenstates on the lattice

• finite-volume and infinite-volume results are connected by the
coupling constants etc.
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This Work

We use Hamiltonian effective field theory to analyse the scatterings data
at experiment and spectra of lattice QCD which are related to

• N∗(1535)
• N∗(1440)
• Λ(1405)

By our analyses, we try to better understand the structures of those
resonances and relevant interactions.
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Hamiltonian effective field theory
study of the N∗(1535) resonance
in lattice QCD



N∗(1535) with πN Scattering

N∗(1535) is the lowest resonance with I(JP) = 1
2 (

1
2
−
).

• One needs to consider the interactions
among the bare baryon N∗

0 , πN channel, and ηN channel.
• Phase shifts and inelasticities

are obtained by solving Bethe-Salpeter equation with the interactions.
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Particle Data Group (PDG): 1510±20 − i 85 ± 40 MeV. 10
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Spectra at Finite Volumes

3 sets of lattice data at different pion masses and finite volumes
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3 sets of lattice QCD data at different pion masses and finite volumes
Non-interacting energies of the two-particle channels
Eigenenergies of Hamiltonian effective field theory
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Spectra at Finite Volumes

3 sets of lattice data at different pion masses and finite volumes
Eigenenergies of Hamiltonian effective field theory
Coloured lines indicating most probable states observed in LQCD
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Components of Eigenstates with L ≈ 3 fm
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• The 1st eigenstate at light quark masses is mainly πN scattering
states.

• The most probable state at physical quark mass is the 4th eigenstate.
It contains about 60% bare N∗(1535), 20% πN and 20% ηN.
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Components of Eigenstates with L ≈ 3 fm
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Lattice Results → Experimental Results

• Experimental Data → Lattice Data We have shown that.
• Lattice Data → Experimental Data We show it here.
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Spectra with I(JP) = 1

2 (
1
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−
) and the bare mass is fitted by LQCD data

By fitting lattice data, the pole position for N∗(1535) at infinite volume
is 1602 ± 48 − i 88.6+0.7

−2.8 MeV. PDG: 1510±20 − i 85 ± 40. 13



Effects of Separable Potentials

fit for lattice QCD data
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Hamiltonian effective field theory
study of the N∗(1440) resonance
in lattice QCD



N∗(1440) Resonance

• N∗(1440), usually called Roper , is the excited state I(JP) = 1
2 (

1
2
+
)

• Naive quark model predicts mN∗(1440) > mN∗(1535)
if they are both dominated by 3-quark core. But contrary to experiment.

To check whether a 3-quark core largely exists in Roper, we consider models

• with a bare Roper

• without any bare baryons

• including the effect of the bare nucleon

15



N∗(1440) Resonance
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πN scattering with I(JP) = 1
2 (

1
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+
)

• with a bare Roper
• without any bare baryons
• including the effect of the bare nucleon
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Results of the Model with a Bare Roper
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Spectrum given by the scenario with a bare Roper.
I(JP) = 1

2 (
1
2
+
) and L ≈ 3 fm.

At low pion masses, the 2nd state contains more than 20% bare Roper,
so this state should be observed with a 3-quark interpolating operators
on the lattice.

But it is not. 16



Results of the Model without Bare Baryons
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Spectrum given by the scenario without any bare baryon.
I(JP) = 1

2 (
1
2
+
) and L ≈ 3 fm.

• The lattice data sit on the eigenenergy spectrum of this model;
• ALTHOUGH it is hard to predict which state is easier to observe on

the lattice,
• we notice that lattice QCD prefers to extract eigenstates with

non-trivial mixing of scattering states. 17



Including the Effect of the Bare Nucleon
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Spectrum given by the scenario with a bare nucleon.
I(JP) = 1

2 (
1
2
+
) and L ≈ 3 fm.

• The bare nucleon does not affect the spectrum very much compared
to the results of the model without any bare baryons;

• We can plot the probability based on the distribution of the bare
nucleon;

• It can explain both the experimental data and lattice data. 18



Our results are verified
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No these two higher states with N−P(0)π(0)... from CMMS. 19



Structure of the Λ(1405) from
Hamiltonian effective field theory



Λ(1405) with K−p scattering

• The well-known Weinberg-Tomozawa potentials are used.
momentum-dependent, non-separable

• We can fit the cross sections of K−p well
both with and without a bare baryon.
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• Two-pole structure of Λ(1405)
1430 − i 22 MeV, 1338 − i 89 MeV
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Λ(1405) with K−p scattering

• The well-known Weinberg-Tomozawa potentials are used.
momentum-dependent, non-separable

Vα,β(k, k′) = gα,β
ωαM(k) + ωβM(k′)

8π2f2
√

2ωαM(k)
√
ωβM(k′)

• We can fit the cross sections of K−p well
both with and without a bare baryon.
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Λ(1405) with K−p scattering

• The well-known Weinberg-Tomozawa potentials are used.
momentum-dependent, non-separable

• We can fit the cross sections of K−p well
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Spectrum on the Lattice
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Spectra with S = −1, I(JP) = 0( 1

2
−
) in the finite volume.

• The bare baryon is important for interpreting the lattice QCD data
at large pion masses.
The bare state introduces a new pole for Λ(1670) at 1660-30i MeV

• Λ(1405) is mainly a K̄N molecular state
containing very little of bare baryon at physical pion mass.
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Summary



Summary

We have analysed the scattering data at experiment and the lattice
spectra on the lattice relevant to N∗(1440), N∗(1535), and Λ(1405) with
Hamiltonian effective field theory

• N∗(1535) contains a 3-quark core;

• N∗(1440) should contain little of 3-quark consistent;

• Λ(1405) is mainly a K̄N molecular state at physical quark mass,
while a 3-quark core dominates at large quark masses.
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Future Improvement

Future improvement:

• couple-channel effect
• dynamical mechanism
• higher order loop effect
• ...
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