ICFA Mini-Workshop on Dynamic Apertures of Circular Accelerators

DA studies in CEPC by downhill method

Dou Wang, Yuan Zhang, Yiwei Wang, Huiping Geng, Chenghui Yu, Weiren Chou, Jie Gao

Many Thanks: K. Oide(KEK), Y. Cai (SLAC), D. Zhou(KEK)

1-3 November 2017, IHEP.

Outline

- Introduction Downhill method & modifications
- > Application on CDR lattice
- Application on new lattice with combined magnets (dipole + sextupole) in arcs

Dynamic aperture study in CEPC

DA requirement for Higgs (with errors, crab sextupoles and beam-beam)

- On-momentum: $20\sigma x \times 30\sigma y$
- Energy acceptance: 1.5%
- Multi-sextupole optimization
 - Two methods:
 - Downhill Simplex, K. Oide@KEK
 - MODE (Multi-Objective optimization by Differential Evolution), Y. Zhang@IHEP
 - Effects included in DA tracking
 - Synchrotron oscillation
 - SR Damping
 - Sawtooth + tampering
 - Quantum fluctation
- Difference of two methods
 - Downhill: local search, quick convergence, need less cpu.
 - MODE: global search, time consuming, need strong computers.

Both methods were used on CEPC to complement each other.

Principle of downhill optimization

- 1. Scan the strength of sextupoles;
- 2. DA tracking for the energy list
- 3. Calculate the objective function (DA)
- 4. Find the minimum of the objective function by the downhill simplex method
- 5. Go to 1.
- 6. Optimization stop when

(fmax-fmin)/(abs(fmax)+abs(fmin)) < Tolerance

Objective function for DA optimization

 \succ Case I: wth \geq 0, optimize the energy bandwidth

 $F = -\left[t + w^* Bandwith(0) + w1^* Bandwith(wth)\right]$

- -- t: Touschek lifetime
- -- *Bandwith*(*n*): DA bandwidth according to $n^*\sigma$ DA reference
- -- *w* & *w*1: weight for the DA bandwidth
- Case II: wth < 0, optimize the total DA value</p>

$$F = -\sum_{j=1}^{6} \left(\sum_{i} w(i) * DA_{j}(i) \right)$$

-- $DA_j(i)$: DA for $i^*\sigma_{\delta}$ energy deviation with the jth initial phase (totally 6 phases) -- w(i): DA weight for $i^*\sigma_{\delta}$ energy deviation

$$w(i) = \exp\left[2*\left(\frac{|i*\sigma_{\delta}|}{m*\sigma_{\delta}}\right)\right] \quad (i = -m, ..0, ..m.)$$

Downhill Simplex modification

- DA results not stable while opening fluctuation
- Cancel the noise due to fluctuation
- Two methods:
 - 1. Scan whole DA list (5 seeds) \rightarrow Minimum
 - 2. Scan DA at center

energy (10 seeds) \rightarrow

 $\mathsf{Minimum} \to \mathsf{Clip}$

So far, we used method 2 to save computer time.

CEPC CDR lattice - arc

- FODO cell, 90°/90°, non-interleaved sextupole scheme
- 224 sextupole pairs in the half ring

CEPC CDR lattice - IR

- Final Telescope + CCY + CCX + Matching + crab section
- 10 sextupole pairs in the half ring
 - CCY: 4 pairs \rightarrow linear chromaticity + sextupole length effect
 - CCX: 4 pairs \rightarrow linear chromaticity + sextupole length effect
 - Image points: 2 pairs \rightarrow third order chromaticity (vertical)

Sawtooth effect

> With only two RF station, the sawtooth orbit : ~1mm

- ➤ ~5% distortion of beam optics and DA reduction
- > sawtooth orbit after tapering: ~1um
- > DA study always include sawtooth + tampering

Initial DA

DA-after optimization

- 234 sextupole knobs (no check for variable redundancy)

Quadrupoles optimization in MODE

- 12*6 quadrupoles are varied for phase advance tuning
- Working points are locked.

DA optimization with MODE's K1

> Optimization with additional K1 knobs give ~20% DA enlargement.

Principle of combined D+S scheme

The power consumption of the arc sextupoles are too high.

- Sextupole : 16.7 MW (copper coils)
- Dipole: 6.5 MW (Al coils)
- Reducing the strength of the stand-alone sextupoles can make help.
- Combined function magnet: dipole + sextupole
 - Combined sextupoles: correct part (all) of the linear chromaticity
 - Stand-alone sextupoles: correct higher order chromaticity

New lattice with combined D+S

- Five dipoles between two quadrupoles in the arc
- Combined sextupoles are on the first and fifth dipoles $(\beta_{x,y} >> \beta_{y,x})$
 - -- one dipole is cut into 6 slices
 - -- 7 thin sextupoles are insert in one dipole
- No additional power sources for SF and SD

Primary magnet design for combined D+S

- Twin aperture dipole
- Separation of two ring: 0.35m

Case I: 50% K2 reduction

Chromaticity correction with SF & SD

DA before multi-sextupole optimization

DA after multi-sextupole optimization

DA comparison

Strength of independent sextupoles

w combined D+S (Case I)

w/o combined D+S

Case II: 90% K2 reduction

Chromaticity correction with SF & SD

DA before multi-sextupole optimization

DA after multi-sextupole optimization

DA comparison

Strength of independent sextupoles

w combined D+S (Case II)

w/o combined D+S

Summary

- Both Downhill and MODE were used to complement each other.
- Downhill can give almost same results as MODE.

-- Plan to introduce K1 knobs in Downhill

• First taste of combined magnet (D+S) looks good.

-- Power for sextupoles $\rightarrow \frac{1}{4}$, 50% reduction of independent K2

-- Still need careful check for the DA results