Beam Optics & Dynamic Aperture of FCC-ee

Nov. 1, 2017 @ DA Workshop

K. Oide (KEK) on behalf of the FCC-ee Collaboration

The FCC Design Study

- Requested from European Strategy (2013)
 - "Ambitious post-LHC accelerator project"
 - Study kicked off in Geneva in Feb. 2014
- International collaboration to study circular colliders (111 institutes)
 - Fitting in a new 100 km infrastructure, in the Geneva area
- Ultimate goal: 100TeV pp collider (FCC-hh)
 - Requires R&D for 16T magnets
 - Defines the infrastructure
- Possible first steps
 - e+e- collider (FCC-ee) at the intensity frontier
 - High luminosity, $\sqrt{s} = 90-400 \text{ GeV}$
 - pp collider (HE-LHC) in the LEP/LHC tunnel
 - With FCC-hh technology ($16T \rightarrow 28 \text{ TeV}$)
- Possible add-on
 - e-p option (FCC-eh)

- European Strategy update (2019)
 - Conceptual design report (CDR)
 - Cost review for tunnel and each collider
 - Schedules and operation models

The FCC Home

Alignment Location

Optimized length: 97.5 km

- Accessibility, rock type, shaft depth, etc.
- Tried different options from 80 to 100 km

Tunneling

- Molasse 90% (easy to dig)
- Limestone 5%, Moraines 5% (tougher)

Shallow implementation

- 3om below Leman lakebed
- Only one very deep shaft (F, 476m)
 - Alternatives studied (e.g. inclined access)

FCC-ee Beam Optics

- A baseline optics* for FCC-ee was once established in Oct. 2016 characterized by:
 - 100 km circumference, 2 IP/ring
 - Common lattice for all energies
 - ✤ 90°/90° FODO cell in the arc with non-interleaved sextupole pairs (294 families)
 - ✤ 30 mrad crossing angle at the IP, with the crab-waist scheme
 - Local chromaticity correction for *y*-plane, incorporated with crab sextupoles
 - 100 MW total SR power for all energies
 - Limit the SR toward the IP below 100 keV at 175 GeV, up to 450 m upstream
 - Tapering of magnets along the ring to compensate the effects of SR on orbit/optics
 - Sufficient dynamic aperture for beamstrahlung and top-up injection
- Motivations for changes in 2017:
 - Mitigation of the coherent beam-beam instability at Z
 - Smaller β_x^* at Z, W, Zh.
 - $60^{\circ}/60^{\circ}$ cell in the arc at Z
 - ✤ Longer bunch lengths by SR and beamstrahlung.
 - The baseline beam energy for ttbar is set at 182.5 GeV.
 - Adopt the "Twin Aperture Quadrupole" scheme for arc quadrupoles
 - Fit the footprint to a new FCC-hh layout

Layout of FCC-ee

Layout in the tunnel

- A new layout of the FCC-ee collider and booster has been proposed by V. Mertens as above.
- The main booster sits right on the FCC-hh footprint.
- The collider comes outside of the booster/FCC-hh by 1 m.
- The collider optics has been modified to fit the new layout.
- The shift of the ee's IP from the hh's IP is 10.7 m.
- The layouts in the straight sections are subject to change.

Parameters 2017

Parameters 2017				(FEC hheehe)	
parameter	Z	W	H (ZH)	ttbar	
beam energy [GeV]	45.6	80	120	182.5	
Circumferene [km]	97.756				
arc cell optics	60/60	90/90			
momentum compaction [10-5]	1.48	0.73			
horizontal emittance [nm]	0.27	0.28	0.63	1.43	
vertical emittance [pm]	1.0	1.0	1.3	2.9	
horizontal beta* [m]	0.15	0.2	0.3	1	
vertical beta* [mm]	0.8	1	1	2	
length of interaction area [mm]	0.42	0.5	0.9	2.0	
tunes, half-ring (x, y)	(0.569, 0.60)	(0.577, 0.61)	(0.565, 0.60)	(0.552, 0.588)	
synchrotron tune (half ring)	0.0124	0.0114	0.0180	0.0340	
long. damping time [ms]	414	77	23	6.6	
SR energy loss / turn [GeV]	0.0360	0.334	1.69	9.05	
total RF voltage [GV]	0.096	0.43	1.96	10.6	
RF acceptance [%]	1.9	1.9	2.3	4.7	
energy acceptance [%]	±1.3	±1.3	±1.5	-2.8/+2.4	
energy spread (SR / BS) [%]	0.038 / 0.132	0.066 / 0.153	0.099 / 0.151	0.153 / 0.195	
bunch length (SR / BS) [mm]	3.5 / 12.1	3.3 / 7.65	3.15 / 4.9	2.5 / 3.3	
Piwinski angle (SR / BS)	8.2 / 28.5	6.6 / 15.3	3.4 / 5.3	1.0 / 1.3	
bunch intensity [10 ¹¹]	1.7	1.5	1.5	2.8	
number of bunches / beam	16640	2030	401	40	
beam current [mA]	1390	150	29.6	5.5	
luminosity [10 ³⁴ cm ⁻² s ⁻¹]	> 200	> 30	> 7	> 1.3	
beam-beam parameter (x / y)	0.004 / 0.133	0.0065 / 0.118	0.016 / 0.108	0.090 / 0.148	
luminosity lifetime [min]	70	50	42	39	
time between injections [sec]	122	44	31	32	
allowable asymmetry [%]	±5	±3	±3	±3	
required lifetime by BS [min]	29	16	11	12	
actual lifetime (w) by BS [min]	> 200	20	20	25	

Luminosity vs. Energy

ELECTROWEAK COUPLINGS OF THE TOP QUARK(2)

- Large statistics and final state polarization allow a full separation of the ttZ/γ couplings with NO need for polarization in the initial state.
 - -30% -20% -10% FCC-ee^{10%} 20% 30% -10% ΔgL/gL(%)

- Fit includes conservative assumptions detector performance
- Theory uncertainty on production mechanism dominates

FCC-ee expected precision of order 10⁻² to 10⁻³

Patrizia Azzi - FCC-Week Berlin 2017

≻Optimal √s= 365-370 GeV

conservative revised operation model

working point	luminosity/IP [10 ³⁴ cm ⁻² s ⁻¹]	total luminosity (2 IPs)/ year	physics goal	run time [years]
<i>Z</i> first 2 years	100	26 ab ⁻¹ /year	150 ab-1	4
Z later	200	52 ab ⁻¹ /year		
W	30	7.8 ab-1/year	10 ab-1	~1
Н	7.0	1.8 ab ⁻¹ /year	5 ab-1	3
top	1.3	0.34 ab ⁻¹ /year	1.5 ab ⁻¹	5

total run time: 12-13 years

F. Zimmermann

- (FEC hheehe
- A new coherent instability in x-z plane was first found by K. Ohmi by FCC Week 2016 with a strong-strong beam-beam simulation.
- D. Shatilov confirmed their phenomenon by a completely independent simulation, with a turn-byturn alternating quasi-strong-strong method. The results of these two agree to each other very well.

* A semi-analytic scaling the threshold bunch intensity has been derived by K. Ohmi:

$$N_{
m th} \propto rac{lpha_p \sigma_\delta \sigma_z}{eta_x^*}$$

- Thus a smaller β_x^* and a larger momentum compaction α_p are favorable. The latter can be achieved by changing the phase advances to $60^\circ/60^\circ$ of the arc at Z.
- Longer bunch lengths by SR as well as beamstrahlung stabilizes the instability.
- This instability appears up to Zh (120 GeV). A longer bunch length by a strong beamstrahlung can mitigate it, then an imbalance in the charges of the two colliding bunches may cause flip-flop: a "bootstrap" injection is necessary (D. Shatilov).

Bootstrapping

• The maximum bunch charge is determined considering the balance of beamstrahlung, momentum acceptance, and the capability of injector.

The arc cells 90°/90° (tt, Zh, WW) 60°/60° (Z) FCCee_t_208_nosol_3.sad FCCee z 208 nosol 3.sad $\sqrt{\beta_x}, \sqrt{\beta_y} \ (\sqrt{m})$ $\sqrt{\beta_x}, \sqrt{\beta_y} (\sqrt{m})$ 300 300 250 25 η_y (mm) ²⁰⁰ ^k 150 ^k 100 (mm) 200 150 ح Ъ, 100 400 600 800 1000 1200 200 400 LXSF90.3 _XSD90 _XSD90. _XSF90.8 _XSD60. .XSF90.6 _XSD90.9 XSD90.7 XSD90 XSF60. KSD60 (SD90. (SF90.8 (SF90) SF60.6

14 sext pairs / 28 FODOs

10 sext pairs / 28 FODOs

- The length of dipoles are adjusted to fill spaces, with three lengths of dipoles (21.84 m, 23.54 m, 24.44 m) with equal bending radius.
- While the β -functions are more or less uniform, there appear some wiggling in the horizontal dispersion.
- Sextupoles are made longer, from 0.7 m to 0.8 m (Z), and from 2.1 m to 2.4 m (tt).
- The resulting packing factor of the dipoles in the arc has been improved from 81.7% to 83.2%.

Reduction of βx^* at Z, W, Zh

 $\beta_{x,y}^{*} = (1 \text{ m}, 2 \text{ mm}) @ \text{ tt}$

 $\beta_{x,y}^{*} = (15 \text{ cm}, 1 \text{ mm}) @ Z$

* Divide QC1 into three independent pieces, reverse the polarity at Z.

				1. The second				
	L (m)	B' @ tt (T/	B' @ Z (T/			L (m)	B' @ tt (T/	B′ @ Z (T /
QC1L1	1.2	-94.4	-96.3		QC1R1	1.2	-99.9	-97.2
QC1L2	1	-92.6	+50.3		QC1R2	1	-99.9	+51.2
QC1L3	1	-96.7	+9.8		QC1R3	1	-99.9	+12.0
QC2L1	1.25	+45.8	+6.7		QC2R1	1.25	+78.6	+7.3
QC2L2	1.25	+74.0	+3.2		QC2R2	1.25	+76.2	+7.2

* By this split the chromaticity and the peaks of $\beta_{x,y}$ around the IP are suppressed for the reduction of $\beta_{x,y}^*$ at Z to (1/7, 1/2) at tt.

- * A sext consists of two pieces, 0.8 m and 1.6 m long with same field strength.
- * Only the thinner piece of the sext is used at Z.

Twin Aperture Quadrupole

- An idea of "twin aperture quadrupole" has been developed by A. Milanese to save the power consumption of quadrupole magnets.
- * The currents in the magnet are always surrounded by iron to maximize the usage.

An example of the cross section of a twin aperture quadrupole for FCC-ee (A. Milanese).

The separation between two beams is 30 cm.

- The power consumption of the twin aperture quad: 22 MW at 175 GeV with Cu coil = half of single-aperture quads.
- * Dipoles are also "twin": power consumption = 17 MW at 175 GeV with Al bus bar.

Dipole Prototype @ CERN

- Measurement of field quality is going on.
- ✤ A prototype of quadrupole comes soon.

A. Milanese

Half Ring Optics

• Above are the half optics $\beta *_{x/y} = 1 \text{ m} / 2 \text{ mm}$ at ttbar.

- 2 IPs / ring.
- The optics for straight sections except for the IR are tentative, to be customized for injection/extraction/collimation/polarimeter/beam instumentation, etc.

Synchrotron radiation toward the IP @ 182.5 GeV

 $u_c < 100$ keV up to 480 m from the IP.

The RF section (FCC-ee @ 182.5 GeV)

- The usage of the straights on the both sides of the RF is to be determined.
- If the nominal strengths of quads are symmetrical in the common section, it matches to the optics of both beam.
- This section is compatible with the RF staging scenario. For lower energy, the common RF and cross
 over will not be necessary.

The Sawtooth & Tapering (FCC-ee @ 182.5 GeV)

No Taper

Tapered

- The change of the orbit due to energy loss along the arc causes serious deformation on the optics, causing the loss of the dynamic aperture.
- Everything can be cured almost completely by "tapering", i.e. scaling the strengths of all magnets along the local energy of the beam: this is one of the best merits of a double-ring collider (F. Zimmermann).

Asymmetric acceptance (ttbar)

 $\sigma_{\rm E0}$ = 0.00153, $\sigma_{\rm E}$ = 0.00193, Black line: Gauss with $\sigma_{\rm E}$ = 1.3 $\sigma_{\rm E0}$

Energy acceptance: 2.5% = 16.3 σ_{FO}

- The expected energy distribution of the beam has asymmetric tail due to beamstrahlung (D. Shatilov, as above).
- Thus the required momentum acceptance should be asymmetric: Wider aperture in the negative side.
- The aperture of the positive side can be expressed as the summation of damping and diffusion terms in a half synchrotron period:

$$A_{+} \approx -A_{-} \exp(-\alpha_{z}/2\nu_{s}) + 3\sigma_{\delta,\mathrm{BS}}\sqrt{1 - \exp(-\alpha_{z}/\nu_{s})}$$

with the damping rate α_z .

Dynamic Aperture

Dynamic Aperture (cont'd : on-momentum transverse)

Effects included in the dynamic aperture survey

Effects	Included?	Significance
Synchrotron motion	Yes	Essential
Radiation loss in dipoles	Yes	Essential – improves the
		aperture
Radiation loss in	Yes	Essential – reduces the
quadrupoles		aperture esp. at $t\bar{t}$
Radiation fluctuation	after optimization	Essential
Tapering	Yes	Essential
Crab waist	Yes	transverse aperture is
		reduced by $\sim 20\%$
Maxwellian fringes	Yes	small
Kinematical terms	Yes	small
Solenoids	Evaluated separately	minimal, if locally
		compensated
Beam-beam effects and	after optimization (D. Zhou, D. El Kechen)	affects the lifetime for
beamstrahlung for stored		$\beta_y^* = 1 \text{ mm at } t\bar{t}$
beam		
Beam-beam effects for	on going	
injected beam		
Higher order fields /	on going	Essential, development
errors / misalignments		of correction/tuning
		scheme is necessary

Several effects on the dynamic aperture (ttbar)

Synchrotron radiation in quadrupoles

 Horizontal betatron oscillation (left) causes a synchrotron motion (right) due to the energy loss by the synchrotron radiation in arc quadrupoles.

$$\Delta p = \frac{\Delta p_1}{2\pi\nu_s} \exp(-\alpha_z/4\nu_s) = \frac{\alpha_z}{\pi\nu_s J_z} R_{\rm Q} n^2 \varepsilon_x \exp(-\alpha_z/4\nu_s) ,$$
$$R_{\rm Q} = \frac{2\sqrt{2}}{\theta_c^2} \left(\frac{\sqrt{2}+1}{\ell_{\rm QF}} + \frac{\sqrt{2}-1}{\ell_{\rm QD}}\right) \quad (90^\circ \text{ FODO})$$

Such particles can not stay on momentum: reduction of the dynamic aperture.

Synchrotron radiation in quadrupoles (cont'd)

 $E = 175 \text{ GeV}, \beta_{x,y} = (1 \text{ m}, 2 \text{ mm})$

- The dynamic aperture without radiation loss in quadrupoles (left) has a sharp peak at on momentum.
- The peak is destroyed if the radiation in quads is turned on (right).
- The parabolas on the left show the amplitude of the synchrotron motion due to the radiation in the quadrupole. For a given transverse amplitude, if the parabola is beyond the DA, the particle with that amplitude will be lost.
- More effects will be presented by A. Bogomyagkov in this workshop.

Less chromaticity \neq better dynamic aperture

 $\beta^*_{x,y} = (0.5 \text{ m}, 1 \text{ mm})$, no radiation damping

Effect of Radiation Fluctuation

$E = 182.5 \text{ GeV}, \beta_{x,y} = (1 \text{ m}, 2 \text{ mm})$

Radiation damping only

Radiation damping + fluctuation

• (Right figure) 100 samples are taken to evaluate the dynamic aperture with radiation fluctuation.

- Within the lines: particles survive for 75% of the samples.
- Error bars correspond to the range of survival between 50% and 100% of the samples.
- It may reasonable that the 50% loss corresponds to the original aperture.
- The thickness between 50% and 100% survival can be attributed to the fractal structure of unstable orbits or resonances in the phase space.

Summary

- Modification of the beam optics for FCC-ee has been performed over the base line optics 2016:
 - Mitigation of the coherent beam-beam instability at Z
 - By achieving smaller β_x^* at Z, W, Zh.
 - Applying 60°/60° cell in the arc, only at Z, compatible with 90°/90° cell at higher energies.
 - The base energy for tuba is raised to 182.5 GeV, keeping the SR to IP below 100 keV.
 - Adopt the "Twin Aperture Quadrupole" scheme for arc quadrupoles.
 - ✤ Fit the footprint to a new FCC-hh layout.
- The resulting dynamic aperture is sufficient for the beamstrahlung and top-up injection.