
Singularity and Stability in a 
Periodical System  

Yunhai Cai  
  

SLAC National Accelerator Laboratory 
 
 
 

November 1-3, 2017 
Beam Dynamics Workshop, IHEP, Beijing 

 
 
  
 



Periodic Cell: FODO 
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How to compute the Courant-Synder parameters and dispersions? 
For simplicity, we can use thin-lens approximation for quadrupoles, 
and small angle approximation for dipoles, and no gaps between any  
magnets. 
 
What’s the problem if we use these FODO cells to build entire ring? 
Why do we need to introduce sextupole magnets? How they work? 
 

Can we understand nonlinear beam dynamics? 
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Hamiltonian and Transfer Map  
for a Sector Bend Magnet 

Use s as the independent variable, Hamiltonian in the paraxial  
approximation is given by [1,2] 

M1 = x +
L

1+δ
(px +

θδ
2
),

M2 = px +θδ,

M3 = y+
Lpy
1+δ

,

M4 = py,
M5 = δ,,

M6 = ℓ+θx +
L

2(1+δ)2
[px

2 + py
2 +θ(1+ 2δ)(px +

θδ
3
)],

Solving the Hamiltonian equations, we obtain the transfer map of a 
sector bend: 

where L is the length and θ = L/ρ the bending angle of the dipole. 
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Transfer Map  
for Thin Quadrupole and Sextupole 

M1 = x,

M2 = px −
x
f
−
κ
2
(x2 − y2 ),

M3 = y,

M4 = py +
y
f
+κ xy,

M5 = δ,,
M6 = ℓ,

Transfer map is given by a kick: 

where f is the focusing (in horizontal plane) length of quadrupole and   
κ is the integrated strength of sextupole. 
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Concept of Transfer Map 
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A set (six) of functions of canonical coordinates. It’s called symplectic if its 
Jacob is symplectic.  

z(s2 ) =M1→2 (z(s1)).

abbreviated map notation 
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Concatenation of Maps 
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s2 

Element 1 

Δs1 s1 s3 
Δs2 

Element 2 
propagating 
direction 

z(s2 ) =M1→2 (z(s1)),
z(s3 ) =M2→3 (z(s2 )).

If we have the transfer map for each individual elements: 

z(s3 ) =M1→2 !M2→3 (z(s1)) ≡M2→3 (M1→2z(s1)),

Then the transfer map for the combined elements is given by 

nested functions M1→3
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Property of Symplectic Maps 
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J(M)• J • J(M)T = J

Jacobian of a map:                                    constant J matrix: 

Symplectic condition: 

Specifically, R-matrix [3] is given by J(M)|x=px=y=py=d=l=0. So it is sympletic as well. 
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Courant-Snyder Parameters 
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Matrix of periodic system:  [1]                                Rotation matrix: 

where A-1 is a transformations from physical to normalized coordinates: 

We have: 
1ARAM −=

A is an “ascript” and is not unique. Since two-dimensional rotational group 
is commutative AR(q) is also an ascript. Courant and Synder choose to 
have A12=0. 
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Linear Optics 

9 

βx =
L(1+ sin µ

2
)

sinµ
,βy =

L(1− sin µ
2
)

sinµ
,

sin µ
2
=
L
4 f
,

Using the transfer map of the cell and the R-matrix, we find that the 
betatron phase advances in both planes are the same µx=µy=µ and 
given by, 

where L is the cell length. The beta functions at the beginning:  

and the periodical dispersion:  

η0 =
Lφ(1+ 1

2
sin µ
2
)

4sin2 µ
2

.

 No surprises. They agree with the well-known results. 
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To the first-order of δ
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Mη0 = Aη0 !Mcell !A
-1
η0,

Make a similar transformation to obtain the feed-down effects from the 
dispersive orbit, 

A1 = x +η0δ,
A2 = px,
A3 = y,
A4 = py,
A5 = δ,
A6 = ℓ−η0p x ,

where the dispersive map is given by, 

Rη0 (δ) = J[Mη0 ]≡ J(Mη0 ) |x=px=y=py=l=0
Introducing a Jacobian operator, we find the matrix with dependence of δ: 

Like the R-matrix, it is symplectic. 
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Linear Chromaticity 

11 

µx (δ) = µ − tan
µ
2
[2− 1

4sin µ
2

(1
2
+

1

sin2 µ
2

)(κ f −κd ) fLφ −
3

8sin2 µ
2

(κ f +κd ) fLφ]δ,

µy (δ) = µ − tan
µ
2
[2− 1

4sin µ
2

(1
2
−

1

sin2 µ
2

)(κ f −κd ) fLφ −
1

8sin2 µ
2

(κ f +κd ) fLφ]δ,

Betatron phase advances up to the first-order of δ: 

where κf,κd are the integrated strengths of the sextupoles. We can set 
their values: 

κ f =
4sin2 µ

2
fLφ(1+ 1

2
sin µ
2
)
,κd =

4sin2 µ
2

fLφ(1− 1
2
sin µ
2
)
,

to cancel the linear chromaticities in both planes. The settings are 
expected for the local compensation to the chromatic errors by 
quadrupoles. 
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To the second-order of δ

12 

Mη1 = Aη1 !Aη0 !Mcell !A
-1
η0 !A

-1
η1,

Make a similar transformation to obtain the feed-down effects from the 
dispersive orbit, 

A1 = x +η1
δ 2

2
,

A2 = px,
A3 = y,
A4 = py,
A5 = δ,
A6 = ℓ−η1p xδ,

where the new  
dispersive map  
is given by, 

][)(1 1MJ ηη δ =R
Using the Jacobian operator, we find the matrix with dependence of d: 

Like the R-matrix, it is symplectic. 

η1 = −
fφ
2
.

where the first-order dispersion 
is found in the same way as the 
zeroth-order one, we have 
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Second-Order Beta Beating 

•  half integer resonance 
seen 

•  not good if  
    m >1350 

13 

].
)
2

sin
2

sin54(2

)
2

sin
2

sin
2

sin32(3
1[)(

],
)
2

sin
2

sin54(2
2

sin3
2

sin
2

sin1310
1[)(

2

42

432

2

42

432

δ
µµ

µµµ

δβδβ

δ
µµ

µµµ

δβδβ

+−

+−−
+−=

+−

+−−
+−=

yy

xx

The beta functions at the beginning of the cell, up to the second-order 
of δ: 
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Second-Order Chromatic Effects 

14 

µx (δ) = µ −
tan µ

2
(1− 1

2
sin2 µ

2
)

2(1− 1
4
sin2 µ

2
)

δ 2,µy (δ) = µ +
tan µ

2
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2
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2
)
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4
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)

δ 2.

The betatron phase advances up to the second-order of δ: 

Comparison to a numerical simulation in LEGO in a ring that consists 
of 101 900 cells. 

horizontal 

vertical 
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Poisson Bracket 
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[ f ,g]= ( ∂f
∂qii=1

3

∑ ∂g
∂pi

−
∂f
∂pi

∂g
∂qi
)

Given coordinate qi, and its conjugate momentum pi, the Poisson bracket is 
defined as,  

Fundamental brackets: 
[qi,qj ]= 0
[pi,pj ]= 0
[qi,pj ]= δij

It is closely resemble the commutator in Quantum mechanics. It acts like 
a derivative with respect to its conjugate, for example, 

[q1,g]=
∂g
∂p1
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Taylor Series and Exponential Lie Operator 

16 

For any function f(s), we have the Taylor expansion 

s1 s2 

element 

L 

a symbolic notation 

direction of propagating 

segment plane 

In particular, if there is no explicit dependent of s in the function f(s), 
namely f(s) = f(x(s),px(s),…), we have  

,::],[ fHfH
ds
df

−≡−=

Used Hamiltonian equation and the definition of the Poisson bracket.  
Combining these symbolic notations, we have the exponential Lie operator  

another symbolic notation 

f(s2 ) =
Ln

n!n=0

∞

∑ dn f
dsn s1

≡ e
L d
dx f(s)s1

f(s2 ) = e
−L:H: f(s)s1
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Lie Operator as a Transfer Map 

17 

f(s2 ) = e
−L:H: f(s)s1.

s1 s2 

element 

L 

direction of propagating 

segment plane 

In the previous slide, we have shown that 

If we apply this formula to a particular function: z=x, or px, or y, or py,  
or δ or l, and then we have    

z(s2 ) = e
−L:H:z(s1).

Therefore, this exponential Lie operator is a transfer map. We have 

M1→2 = e
−L:H :
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Lie Operators and Map Concatenation 

18 

s2 

H1 

L1 s1 s3 
L2 

H2 

It is obvious that 

f(s+ L) = e−L:H: f(x, px ,...) = f(e
−L:H:x,e−L:H: px ,...) = f(x(s+ L), px (s+ L),...)

obviously true 

just shown 

just shown 

The Lie operator acts only on the arguments of function . This precisely the  
definition of the map concatenation we introduced early. So we have 

M1→3 = M1→2 !M2→3 = e
−L1:H1:e−L2:H2:.

propagating 
direction 

The dot is removed because Lie operator automatically has the property. 
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Similarity Transformation 

19 

:::::::: :: BeABA A

eeee =−

Here is a proof. Set f=e-:A:g, so we have  

]...]]],,...[[,[
!

:::::: fBBB
n

efee ABA ∑=
1

=
1
n!∑ e:A:[B,[B,...[B, f ]...]]

=
1
n!∑ [e:A:B,e:A:[B,...[B, f ]...]]

=
1
n!∑ [e:A:B,[e:A:B,...[e:A:B,e:A: f ]...]]

=
1
n!∑ [e:A:B,[e:A:B,...[e:A:B,g]...]]

= e:e
:A:B:g

We used  e:A:[ f1, f2 ]= [e
:A: f1,e

:A: f2 ] ],[][ ::::::
x

AA
x

A pexex,pe =(                                     ) 
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The Cambell-Baker-Hausdorf (CBH) 
Theorem 

20 

:...],[::::: +++
=

BA
2
1BABA eee

The bracket notes the Poisson bracket. This theorem can be shown easily 
using the definition of the exponential Lie operator and the Jacob identity 
for the Poisson brackets: 

To combine two exponential Lie operators, we have 

0[C,[A,B]][B,[C,A]][A,[B,C]] =++

In general, it should be considered as a part of perturbation theory. It is  
good when A and B are small. 

:::::: BABA eee +=
If [A, B]=0, then 

In particular,  e−:A: e:A:is the inverse of         . 
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CBH Theorem, in Second Form 

21 

e:A:e:B: = exp[: A+ ( : A :
1− e−:A:

)B+O(B2 ) :]

To combine two exponential Lie operators, we have[6] 
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It should be used when A is large and B is small, for example,  

A = f2 = −µJ

and B = f3, the third-order polynomial. 



Dragt-Finn Factorization 
Given a nonlinear Taylor map M, we   

Here M1 is the linear part of M. It is clear that I2 is a second order of nonlinear  
map near identity. It’s lowest perturbation is the second order, indicated with  
its subscript. Now,  we would like to write I2 as a Lie operator , namely 

 M1
−1 !M = I2

22 

 M1
−1 M = I2 = exp[: f3 :]

Once we have f3, then we can compute the next of by 

 e−: f3:M1
−1 M = I3

I3 is a third of order nonlinear map near identity. Similar process can be  
continued to the next order. Finally, this procedure leads to the Dragt-Finn 
factorization, 

 M =M1 e
: f3:e: f4: ...e: fn+1:

Here n is the truncation order of the Taylor map M. 
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Extraction of a First Order Lie Factor 

23 

[ fn+1, z]= In
To solve the equation,  

Here z is the vector in the phase space in the Poisson bracket. Its solution  
is given by 

fn+1 =
1
n+1

[z2k−1(In − I )2k
k=1

3

∑ − z2k (In − I )2k−1]

It is valid only if the map is symplectic. 
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f3: Geometric Aberration 

24 

f3
(g) = F ×{−

3[7(Jx + 2Jy )+ (Jx + 2Jy )cosµ + 2(Jx + 6Jy )sin
µ
2
]

(cosµ
4
+ sin µ

4
)2

cos(ψx −
µ
2
)

−
Jx (−2+ 9cosµ + cos2µ −14sin

µ
2
)

(cosµ
4
+ sin µ

4
)2

cos(3ψx −
3µ
2
)

+6Jy (2− 6cosµ −10sin
µ
2
+ sin 3µ

2
)cos(ψx + 2ψy −

3µ
2
)

+6Jy (−4+ sin
µ
2
)cos(ψx − 2ψy −

µ
2
)}

The third-order Lie factor is given by, 

resonance 
driving terms 

where 
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Effective Hamiltonian 

25 

Given a single-Lie factor written in terms of the action-angle variables,  

f = − [Cm,n
m,n
∑ (Jx, Jy )cos(mψx + nψy )+ Sm,n (Jx, Jy )sin(mψx + nψy )]

combine it with the linear map in the normalized coordinates, at the 1st-order  
Perturbation. The effective Hamiltonian is given by, 

HEff = 2π (ν xJx +ν yJy )+
π (mν x + nν y )

sin[π (mν x + nν y )]
{Cm,n

m,n
∑ (Jx, Jy )

cos[m(ψx +πν x )+ n(ψy +πν y )]+ Sm,n (Jx, Jy )sin[m(ψx +πν x )+ n(ψy +πν y )]}

where νx, νy are the betatron tunes. Noting that at the resonance condition, 

nν x +mν y = p
for an integer p, the effective Hamiltonian becomes singular. And near the 
resonance, we have the problem of a small denominator. 
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Third-Order Effective Hamiltonian 

26 

H (g) = µ(Jx + Jy )−F ×{−
3µ[7(Jx + 2Jy )+ (Jx + 2Jy )cosµ + 2(Jx + 6Jy )sin

µ
2
]

2sin µ
2
(cosµ

4
+ sin µ

4
)2

cosψx

−
3µJx (−2+ 9cosµ + cos2µ −14sin

µ
2
)

2sin 3µ
2
(cosµ

4
+ sin µ

4
)2

cos3ψx

+
9µJy (2− 6cosµ −10sin

µ
2
+ sin 3µ

2
)

sin 3µ
2

cos(ψx + 2ψy )

+
3µJy (−4+ sin

µ
2
)

sin µ
2

cos(ψx − 2ψy )}

The effective Hamiltonian (                     ) is given by,  e−:H : =M1e
: f3:

Only see the problem of the small denominators in the sum resonances: 
3νx and νx+2νy. 
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Single Resonance in Horizontal 
Motion, ν=(1/3)+Δν

27 

H = 2πΔνJx −
3πΔνFJx (−2+ 9cosµ + cos2µ −14sin

µ
2
)

sin(3πΔν )(cosµ
4
+ sin µ

4
)2

cos3ψx

= πΔν (x 2 + px
2 )+ kx (x 2 −3px

2 )

The effective Hamiltonian (                          ) is given by,  e−:3H : = M1e
: f3:( )

3
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where 

k = −
2πΔν sin3 µ

2
cscµ(1+ sin µ

2
)(−2+ 9cosµ + cos2µ −14sin µ

2
)

φ L sin(3πΔν )(7+ cosµ)(cosµ
4
+ sin µ

4
)2

and      and       are the coordinates in the normalized phase space. x px



Single Resonance, Δν=0.005 

H = πΔν (x 2 + px
2 )+ kx (x 2 −3px

2 )

11/1/2017 28 

Tracking in comparison to the effective Hamiltonian:  
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Scale: a=πΔν/3k, defined by singularity or separatrix. 



None Resonance in Horizontal Motion 

29 

H = πν (x 2 + px
2 )+κ x (x 2 −3px

2 )+ χ x (x 2 + px
2 )

The effective Hamiltonian is given by,  
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where 

κ =
µ sin3 µ

2
cscµ(1+ sin µ

2
)(−2+ 9cosµ + cos2µ −14sin µ

2
)

φ L sin 3µ
2
(7+ cosµ)(cosµ

4
+ sin µ

4
)2

χ =
µ sin2 µ

2
cscµ(1+ sin µ

2
)(7+ cosµ + 2sin µ

2
)

φ L (7+ cosµ)(cosµ
4
+ sin µ

4
)2
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The third integer driving term (3νx) dominates. 



Topology of Phase Space 

30 

Scale: a=πν/(χ-3κ), again defined by singularity or separatrix. 

ν=0.194 ν=0.280 
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Three points on the horizontal axis: x = −a, 2(κ + −κχ )
(κ + χ )

a, 2(κ − −κχ )
(κ + χ )

a



Persistence 

31 

ν=0.194 ν=0.280 
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The higher order perturbation distorted the contours but not break them when  
the tune is sufficiently away from the resonances. Tracking with L=15 m and  
φ=π/96. 



Convergence of Perturbation Series 
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3rd 6th 

9th 12th 

ν=0.28 



Dynamic Aperture in Horizontal Plane 
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kept as a constant φ L



Degenerate Resonance, ν=(1/3)+Δν

34 

H = πΔν[(x 2 + px
2 )+ (y 2 + py

2 )]+ kx (x 2 −3px
2 )+ q[x (y 2 − py

2 )− 2ypx py ]

The effective Hamiltonian (                          ) is given by,  e−:3H : = M1e
: f3:( )

3
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where 

k = −
2πΔν sin3 µ

2
cscµ(1+ sin µ

2
)(−2+ 9cosµ + cos2µ −14sin µ

2
)

φ L sin(3πΔν )(7+ cosµ)(cosµ
4
+ sin µ

4
)2

q =
12πΔν sin3 µ

2
cscµ(1+ sin µ

2
)(2− 6cosµ −10sin µ

2
+ sin 3µ

2
)

φ L sin(3πΔν )(7+ cosµ)

and                        are the coordinates in the normalized phase space. x, px, y, py



A Special Solution 
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H = πΔν (x 2 + px
2 )− 2q

3
x (x 2 −3px

2 )

We find a reduced Hamiltonian, 

under the condition of, 

py = c1x
y = −c1px

c1 = ±
2q+3k
q

with a constant, 
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Invariant Surfaces, Δν=0.005 
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Scale: a=-πΔν/2q, again defined by singularity or separatrix. 



Comparison to a General Solution 
with same energy 
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Volume of Stability 
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the common region covered by the largest surface from each kind. 



Two Degree of Freedom
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H = πν[(x 2 + px
2 )+ (y 2 + py

2 )]+κ x (x 2 −3px
2 )+ χ x (x 2 + px

2 )

+θ[x (y 2 − py
2 )− 2ypx py ]+ξ[x (3y

2 + py
2 )+ 2ypx py ]

The effective Hamiltonian is given by,  
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where 

θ = −
6µ sin3 µ

2
cscµ(1+ sin µ

2
)(2− 6cosµ −10sin µ

2
+ sin 3µ

2
)

φ L sin 3µ
2
(7+ cosµ)

ξ = −
2µ sin2 µ

2
cscµ(1+ sin µ

2
)(−4+ sin µ

2
)

φ L (7+ cosµ)

The sum resonances driving terms: 3νx, νx+2νy, dominate. 

κ

θ



Quasi-Invariant Surfaces 
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First kind 

Second kind 

ν=0.28 
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Dynamic Aperture 
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ν=0.28 

y = −4π 2κν 2 + 4πκν (−3κ + χ )x − (κ + χ )(−3κ + χ )2 x
(θ +3ξ )(−3κ + χ )2

2

Two lines are given by,                  and x = πν
3κ − χ



Conclusion 
1.  Hamiltonian and symplectic maps are fundamental for the beam 

dynamics in storage rings, including the linear and chromatic 
optics. 

2.  Chromatic optics can be computed order-by-order analytically. And 
linear chromaticity can be corrected by sextupoles. 

3.  The first-order perturbation of the sextupoles, or more precisely the 
third-order effective Hamiltonian, largely determines the dynamics 
away from the other major resonances: 1/4, 1/5, 1/6, and 1/7. 

4.  Dynamic aperture in the normalized phase space is given by, 

       in FODO cell, where φ is the bending angle and L length of the cell. 
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A∝φ L
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