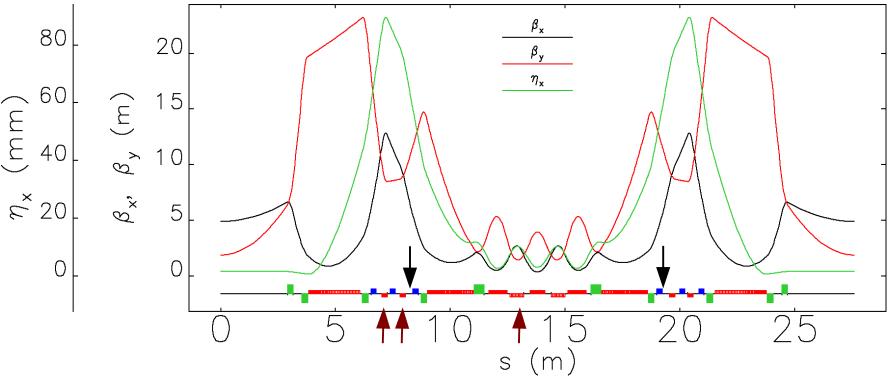


Comparison of five tracking based methods of optimizing nonlinear dynamics

Aimin Xiao presenting for Yipeng Sun, Michael Borland Argonne National Laboratory

Thanks to APS-U physics team for discussions


ICFA Mini-Workshop on Dynamic Apertures of Circular Accelerators November 01-03, 2017

Outline

- Overview of APS-U lattice
- Linear optics optimization
- Nonlinear optics optimization
 - Different algorithms and optimization targets
- Ensemble evaluation of performance robustness
- Benchmark studies at APS
- Conclusion

41-pm lattice with reverse bends

- Reverse bends in Q4, Q5, and Q8
- Emittance reduced from 67 pm to 41 pm
- Max η_x raised 74 mm to 90 mm: weaker sextupole magnets
- Black arrows mark two potential octupoles in existing 8-pole magnets

M. Borland et al. Proc. NA-PAC16 (2016).

Yipeng Sun - Nov 2017

Linear optics optimization

- Integer tunes scanned for best performance
 - Limited by minus I phase separation between sextupoles
- Linear lattice design iterates with other systems
 - Magnet design
 - Vacuum design
 - Beam instrumentation design
- Linear optics included in some MOGA optimization processes, using
 - Direct variation of gradients or
 - Variation of linear optics targets (e.g., emittance, fractional tunes, beta functions, phase separation)

High-level lattice comparison

	$67 \mathrm{pm}\text{-}\mathrm{V6}$	42 pm-V5r1	
Betatron motion			
$ u_x$	95.125	95.101	
$ u_y$	36.122	36.101	
$\xi_{x,nat}$	-138.580	-130.835	
$\bar{\xi}_{y,nat}$	-108.477	-122.013	
Lattice functions			
Maximum β_x	12.9	13.0	m
Maximum β_y	18.9	22.9	m
Maximum η_x	0.074	0.090	m
Average β_x	4.2	3.7	m
Average β_y	7.8	9.5	m
Average η_x	0.030	0.033	m
Radiation-integral-relate	d quantities	at $6 \mathrm{GeV}$	
Natural emittance	66.9	42.3	$_{\rm pm}$
Energy spread	0.096	0.127	%
Horizontal damping time	12.1	7.3	\mathbf{ms}
Vertical damping time	19.5	16.1	\mathbf{ms}
Longitudinal damping time	14.1	20.1	\mathbf{ms}
Energy loss per turn	2.27	2.74	MeV
ID Straight Sections			
eta_x	7.0	4.9	m
η_x	1.11	0.57	$\mathbf{m}\mathbf{m}$
β_y	2.4	1.9	m
$\epsilon_{x,eff}$	67.0	42.3	m
Miscellaneous parameter	s		
Momentum compaction	5.66×10^{-5}	$3.96 imes 10^{-5}$	
Damping partition J_x	1.61	2.20	
Damping partition J_y	1.00	1.00	
Damping partition J_{δ}	1.39	0.80	

Apertures and injected beam

- Physical apertures are much smaller than in our existing ring
 - Basic chamber has radius 10 mm in simulations
 - Photon absorbers have radius 8 mm
 - Insertion device chambers in three flavors
 - 2: Round with radius of 4 mm to allow helical SCUs
 - 8: Super-elliptical with a=4 mm, b=3 mm, n=6 to allow HGVPUs
 - 25: Elliptical with semi-axis of 10 mm and 3 mm
 - Collimation is still under study
 - Likely to be smaller than photon absorbers

- Booster at 6 GeV, 100nm by 20nm emittance
- Vertical on-axis swap-out injection
- DA optimized to accept ±3σ from booster transversely

 $\left|\frac{x}{a}\right|^n + \left|\frac{y}{b}\right|^n = 1$

Nonlinear optics optimization^{1,2}

- Optimization goals:
 - Large dynamic acceptance for injection efficiency
 - Large local momentum acceptance for Touschek lifetime
 - Desired positive chromaticity, motivated by 48-bunch mode
- Performance limited by
 - Smaller physical apertures
 - Strong focusing, large natural chromaticity
 - Smaller dispersion at sextupoles (than APS)
- Direct tracking optimization can include
 - Effects of likely errors
 - Effects of radiation damping and longitudinal motion
 - Vacuum chamber apertures
- Recently improved lifetime:
 - Control chromatic detuning
 - Inclusion of ID physical apertures
 - Explore different symmetry conditions for sextupoles

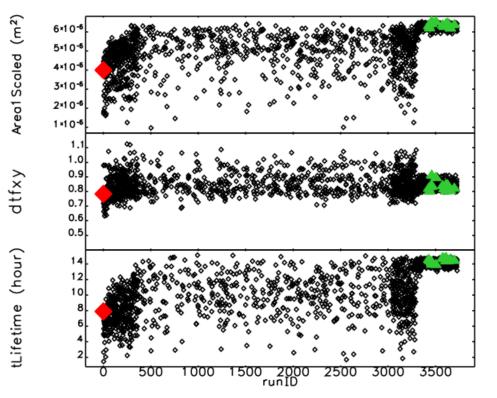
Exploration of different algorithms and optimization targets

Algorithms:

- MOGA: multi-objective genetic algorithm
- MPSO: modified particle swarm optimization (combines some features of GA)

Targets¹:

- LMA: objective of dynamic acceptance, local momentum acceptance and chromatic detuning (as above)
- ANA: objective of nonlinear chromaticity and driving/detuning terms
- **CSI**: objective of CS invariant distortion and chromatic detuning
- DA: objective of on- and off-momentum dynamic acceptance, and chromatic detuning
- **DET**: detuning of x-y grid (on and off momentum)


Knobs:

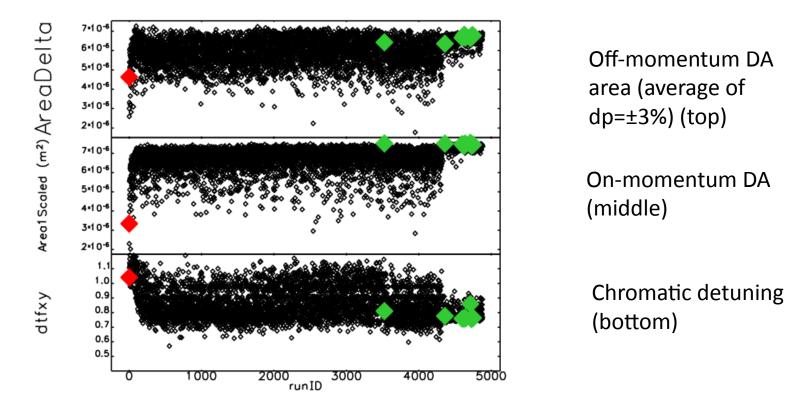
- Up to 12 families of sextupoles, w/ or w/o symmetry
- Same linear optics

1. Y.-P. Sun et al., in NA-PAC16 (2016).

"LMA": DA, LMA, chromatic detuning ^{1,2}

DA area (top)

Chromatic detuning (middle)


Touschek lifetime (bottom)

- Nominal optimization method
- Need to track two synchrotron periods for LMA (~1000 turns)
- One case takes ~5 hours on 12 cores
- Effective and reliable

- 1. M. Borland et al. ANL/APS/LS-319, APS (2010).
- 2. M. Borland et al. J Synchrotron Radiation, 21:912 (2014).

"DA": On- and off-momentum DA^{1,2}

- Preliminarily determines that fewer turns (<<1000 turns) needed for DA calculation 1. L. Yang et al. PRSTAB, 14:054001 (2011).
- Greatly reduces computing time needed
- Needs at least 500-1000 evaluations to converge
- 2. M. Ehrlichman. PRSTAB, 19:044001 (2016).

Other methods

In general, these methods take less computing time than LMA and DA

- ANA: objective of nonlinear chromaticity and driving/detuning terms¹
 - Objectives targets selected from optimization results of other methods (LMA, DET...)
- CSI: objective of CS invariant distortion and chromatic detuning^{2,3,4}
 - Track for one turn, or one super-cell
 - Different initial conditions of x-y space
- **DET:** objective of detuning of x-y grids, w/ or w/o energy offset

J. Bengtsson. SLS-TME-TA-1997-0009, SLS (1997).
 B. Autin. M. Month et al., eds., Physics of Particle Accelerators, 288. American Institute of Physics (1987).
 J. Hagel. CERN LEP-TH 86-22, CERN (1986).
 Y. Li and L. Yu. TUPOB54, NA-PAC 2016.

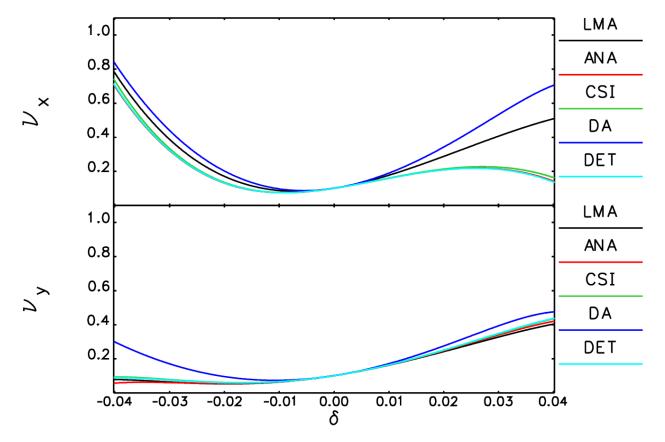
Computing time

Method	Computing time [cores*hour]	Note
ANA	0.04	
CSI	0.23	64 turns + 1 pass
DET	0.71	$64 \mathrm{turns}$
DA	6	50 turns + 3 momentum
LMA	46	400 turns (>= 1 SO period)

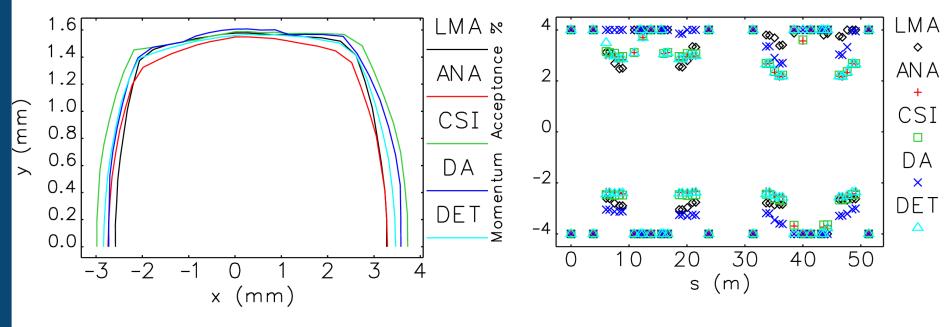
Computing time needed for each method Measured using APS weed all.q cluster

Solutions from different methods

Element Name	LMA	ANA	CSI	DA	DET
S01A:S1	-141.5	-127.8	-143.3	-103.3	-128.7
S01A:S2	213.6	122.3	119.7	115.9	120.0
S01A:S3	-129.6	-133.3	-84.5	-116.4	-120.1
S01B:S3	-137.2	-133.3	-84.5	-116.4	-120.1
S01B:S2	240.5	122.3	119.7	142.8	120.0
S01B:S1	-155.7	-127.8	-143.3	-117.5	-128.7
S02A:S1	-145.4	-166.0	-135.9	-154.6	-160.4
S02A:S2	132.9	241.6	242.8	231.8	243.4
S02A:S3	-115.3	-114.7	-184.7	-173.1	-134.7
S02B:S3	-126.3	-114.7	-184.7	-173.1	-134.7
S02B:S2	140.0	241.6	242.8	231.8	243.4
S02B:S1	-136.7	-166.0	-135.9	-154.6	-160.4


Table 2: Sextupole magnets K2 comparison

Up to 12 families of sextupoles, w/ or w/o symmetry Same linear optics


Yipeng Sun - Nov 2017

Chromatic detuning in latest 41-pm lattice

- LMA: objective of dynamic acceptance, chromatic detuning and local momentum acceptance
- ANA: objective of nonlinear chromaticity and driving/detuning terms
- CSI: objective of CS invariant distortion and chromatic detuning
- DA: objective of on- and off-momentum dynamic acceptance, and chromatic detuning
- DET: objective of detuning of x-y grids, w/ or w/o energy offset

Performance <u>without errors</u>

Dynamic acceptance

Local momentum acceptance

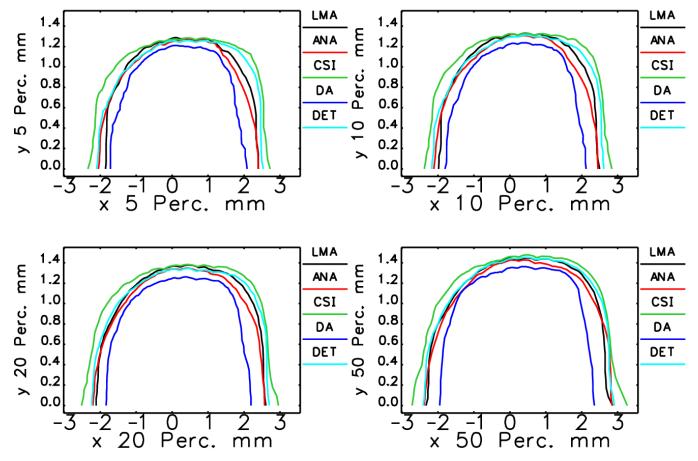
These methods provide:

- Different dynamic acceptance
- Different local momentum acceptance
- LMA, DA and CSI are similar; ANA and DET slightly worse
- This conclusion does not hold for evaluation with errors

Comparison

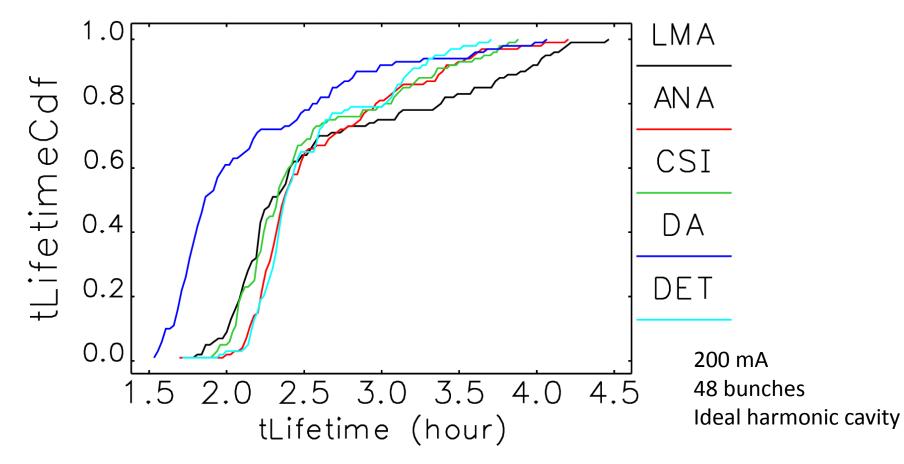
Parameter	LMA	ANA	\mathbf{CSI}	DA	DET	Unit
dnux/dp	5.02	5.00	5.00	5.00	5.00	
$\mathrm{dnuy}/\mathrm{dp}$	5.02	5.00	5.00	5.00	5.00	
dnux/dp2	423.19	117.48	136.86	652.03	118.50	
$\mathrm{dnuy}/\mathrm{dp2}$	305.44	323.91	346.40	491.95	347.26	
$\mathrm{dnux}/\mathrm{dp3}$	-32628.7	-41581.8	-41208.5	-31396.1	-41907.2	
dnuy/dp3	-1636.3	-353.2	-1875.1	-5712.2	-1180.3	
dnux/dJx	46164.0	5984.6	101964.3	146987.0	31375.4	
$\mathrm{dnux}/\mathrm{dJy}$	-33835.1	3186.7	-60663.5	-216904.3	-29534.0	
dnuy/dJy	119718.4	129042.1	181253.6	38876.7	129046.8	

Different chromaticities and linear detuning terms

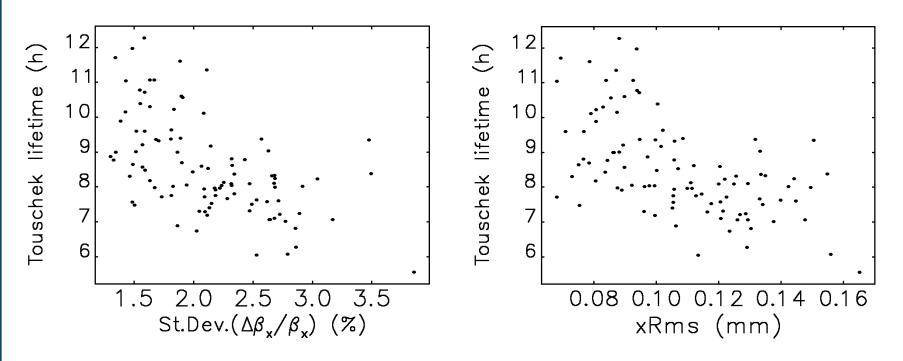

Ensemble evaluation procedure

- After MOGA optimization, perform commissioning simulations (with Vadim Sajaev's scripts¹)
 - Magnet strength and tilt errors
 - Misalignment and BPM errors; corrector errors
 - All configurations show similar success rate
- Ensemble evaluation to check the solution using results of commissioning simulations
 - Random and systematic multipoles; steering multipoles
 - Narrow IDs and harmonic cavity
 - These give ~100 dynamic acceptance (DA) and local momentum acceptance (LMA) results
 - Simplified methods for Touschek lifetime calculations with ideal 4th harmonic cavity

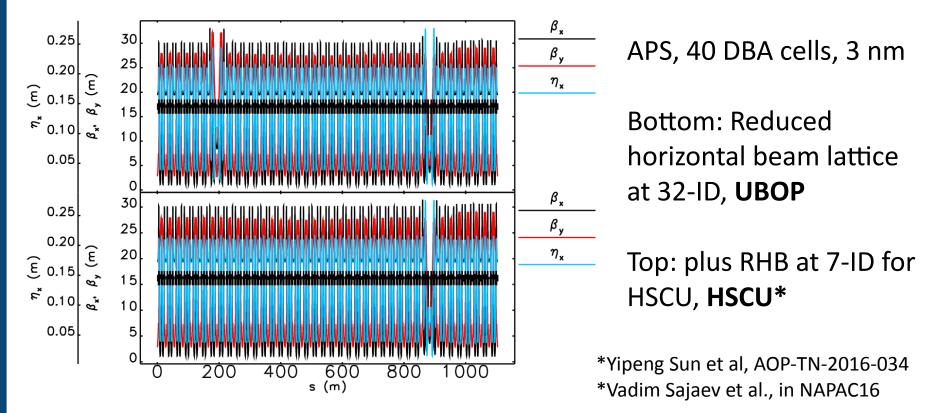
1: V. Sajaev, IPAC15, 533 (2015).


DA from ensemble evaluations

- Similar/larger DA than previous lattice version
- **CSI** and **DET** give larger dynamic acceptance
- LMA and ANA are similar
- Detailed injection simulation still to be done

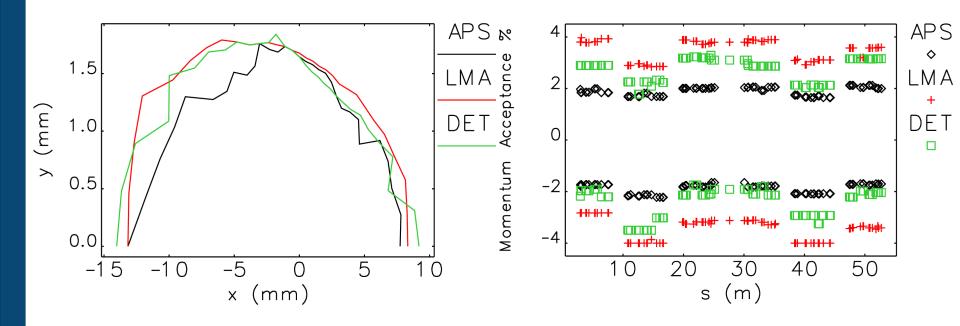

Touschek lifetime from ensemble evaluations

- LMA still most reliable; DET and ANA, CSI give similar lifetime
- DA lower lifetime



Analysis of performance variation for 67pm V6 lattice

- Looking for explanation of performance variation in ensemble evaluation
- See correlations with Touschek lifetime (324 bunch mode)
 - Horizontal beta beat, dispersion beat, rms x orbit (r=-0.57)
 - Vertical beta beat (r=-0.53)
- Correlations with DA are weaker
- Improved orbit and lattice correction should be pursued to improve lifetime


Benchmark Studies at APS

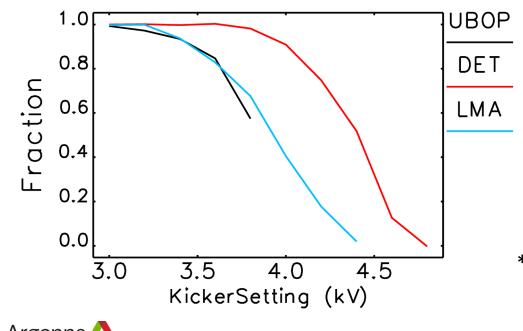
- LMA method benchmarked several times, consistently improve APS machine performance (injection efficiency and lifetime)
- Recently preliminarily compared LMA and DET
 - 21 families of sextupoles (S4 and S5 for narrow ID-4)

Benchmark Studies at APS, simulations

Dynamic acceptance

Local momentum acceptance

DET solution shows ~2mm wider DA in x LMA solution shows larger momentum apertures Note: LMA solution was picked with highest lifetime, and smaller DA



Yipeng Sun - Nov 2017

Benchmark Studies at APS, measurements

Case	Inj. Eff.	Lifetime [h]
UBOP + K2(UBOP)	87%	69
HSCU + K2(UBOP)	85%	58
HSCU + K2(LMA)	87%	73
HSCU + K2(DET)	92%	66

Injection efficiency and lifetime (1.3% coupling, 102 mA in 324 bunches, 9.5 MV RF, chromaticity of 3 in both planes).

LMA solution was picked with highest lifetime, and smaller DA

Both LMA and DET solutions improve APS performance

*Vadim Sajaev, Yipeng Sun, Apr 18, 2017

Online machine-based optimization APS

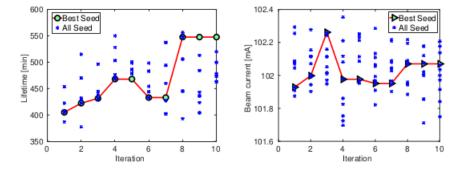
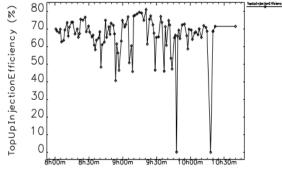



Figure 5: Topup mode, lifetime (left) and beam current $[5]{2}$ of (right) at each iteration. A total of 10 iterations, and 10 seeds for each iteration. Starting point is optimized sextupoles from MOGA simulation [7,15] on the medium chro-Figure 7: Top maticity lattice ($\xi = 6$).

Time starting Sat May 28 07:52:45 2016

Figure 7: Top up injection efficiency during optimization.

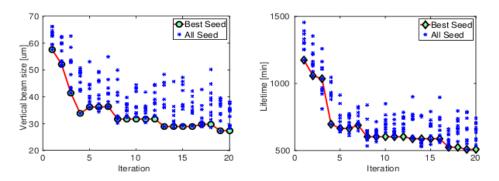


Figure 8: Vertical beam size (at sector 35 pinhole location) (left) and lifetime (right) at each iteration. A total of 20 iterations, and 10 seeds for each iteration. Starting point is 0 strength skew quads.

Parameter	MOGA	LOCO
σ_x @s35 pinhole	104.7	103.9
σ_y @s35 pinhole	24.6	22.3
Beam current [mA]	63	95
Lifetime [min]	320	300
ξ_x/ξ_y (measured)	6.34/6.27	4.23/3.28
RF gap voltage [MV]	9.415	9.410

Y.-P. Sun et al., in NA-PAC2016

Partial List of On-going and Planned Work

- Iterate with vacuum and magnet engineering design
- New optimization algorithms and setup development
 - Include off-m beta beating (in ANA)
 - Include optics beating from 100 commissioning/ensemble seeds (for faster methods)
 - ReMOGA for **LMA** (try to improve the worst seed)
- Octupole fields in the 8-pole corrector magnets (4 per sector); previous studies demonstrated improvements
- Continue bench-marking efforts for single-particle dynamics models using existing APS

Conclusions

- Both linear and nonlinear optics optimized for APS-U 41-pm lattice
- Different algorithms and optimization targets implemented for nonlinear optics optimizations
 - Some are much faster than original optimization approach using LMA
 - Explored different solutions spaces
 - Comparable performance
- There are some indications that improved orbit and lattice correction will allow increasing the lifetime of APS-U
- APS applications improved machine performance
 - Simulation based optimization
 - Online machine based optimization

Acknowledgements

- Early version of H7BA lattice used file provided by ESRF.
- Many of the simulations used the Blues cluster at Argonne's Laboratory Computing Resources Center
- Vadim Sajaev for providing commissioning scripts
- M. Ehrlichman for triggering our interest in the DA method; and Y. Li for introducing us to the square matrix method
- APS-U Beam physics team provided frequent feedback and advice

