Dynamic Aperture Optimization of storage ring based colliders with Multi-Objective Algorithm

ZHANG, Yuan WANG, Yiwei WANG, Dou GENG, Huiping

ICFA Mini-Workshop on Dynamic Aperture of Circular Accelerator, 1-3 November 2017, IHEP, Beijing, China

Many Thanks: J. Qiang(LBNL), K. Oide(KEK), D. Zhou(KEK)

Outline

- Introduction
- Algorithm
- Application
- Summary

Multi-objective genetic algorithm (MOGA)

- Application in storage ring based light source is very popular and successful
 - APS/DLS, ELEGANT, M. Borland, in 48th ICFA Beam Dynamics Workshop on Future Light Sources
 - NSLSII, L. Yang, Y. Li, W. Guo and S. Krinsky, prst-AB, 14, 054001 (2011)
 - SLS, BMAD, M. Ehrlichman , arXiv: 1603.02459
 - HEPS, Accelerator Toolbox, Y. Jiao and G. Xu,

•

Different Algorithm

.

- Particle Swarm, SPEAR3, X. Huang, J. Safranek, NIMA 757, 48, 2014
- Differential Evolution, J. Qiang et al., IPAC' 13
- Downhill Simplex, SuperKEKB, FCC, к. Oide *et al.*

Excitation

K. Oide, "A design of beam optics for FCC-ee", Sep. 2015
 @IHEP 255 sextupole pairs
 The Arc Cell per half ring cov.sad
 Guide for the former of the

 The dynamic aperture was optimized with element-by-element radiation damping, automatic tapering, and crab waist.

- Basically a 90 degree FODO cell.

ղ_y (mm)

- QFs are longer (3 m) than QDs (1.5 m) to mitigate the radiation, as discussed later.

150

200

250

300

350

- All sextupoles are paired with -/ transformation.

100

- 255 sextupole pairs per half ring.

Why we did the job?

- We need to optimize the DA of CEPC
- We want to try the direct DA optimization in collider, just as the community has done in light source
- Different optimization algorithm is worth to be tried
- SAD(http://acc-physics.kek.jp/sad/) is used for the DA determination. It is a parallel code, but the scalability is not very good. A MPI-based parallel code to call SAD will be much more efficient.

Differential Evolution Algorithm (single objective)

- The "DE community" has been growing since the early DE years of 1994 1996
- DE is a very simple population based, stochastic function minimizer which is very powerful at the same time.
- There are a few strategies, we choose 'rand-to-best'. Attempts a balance between robustness and fast convergence.

 $v(i,j) = \begin{cases} x(i,j) + F \times [x(b,j) - x(i,j)] + F \times [x(r1,j) - x(r2,j)], & If rand(j) < CR \\ x(i,j), & Otherwise \end{cases}$

 Different problems often require different settings for NP, F and CR

Multi-objective Optimization

- Most problems in nature have several (possibly conflicting) objectives to be satisfied.
- Many of these problems are frequently treated as singleobjective optimization problems by transforming all but one objective into constraints.
- The term *optimize* means finding such a solution which would give the values of all the objective functions acceptable to the decision maker.

Giuseppe Narzisi, "Multi-Objective Optimization", 2008

MODE: Multi-Objective optimization by Differential Evolution

The parallel algorithm is referencing to J. Qiang(IPAC'13)

- 1. Initialize the population of parameter vectors
- 2. Generate the offspring population using the above differential evolution algorithm
- 3. Find the non-dominated population, which are treated as the best solutions in DE to generate offspring
- 4. Sorting all the population, select the best NP solution as the parents
- 5. Return to step 2, if stopping condition not met

MODE: Scalable Enough at 1000nodes farm?

Master Initialize Master Assign tasks Slaver Slaver Slaver 000 Multiple function function generation Master Receive data End N Generating a new generation (sort/crossover/mutation)

Courtesy of Yongjun Li(BNL)

New Parallel Paradigm

High Parallel + High Scalability

- Even the time taken by different task is different
- Even some node is very busy

Definition of Objective Cost Value

• DA Boundary:

- $\frac{x^2}{20^2} + \frac{z^2}{16^2} = 1$ (example)
- z for energy deviation in unit of σ_p
- x for transverse amplitude in unit of σ
- transverse coupling: designed value
- The difference between the DA boundary and real DA is defined the objective cost value
- Less cost value is better

SuperKEKB: Notice Issues, 18th KEKB Review, March 3-5, 2014 Antician aperture is a serious issue

Transverse aperture is reduced significantly.

DA Optimization of LER (SuperKEKB)

Objectives:

- $v_x \in (0.53, 0.66), v_y \in (0.55, 0.66),$ for $\delta_p \in (-0.019, 0.019)$
- $\frac{x^2}{50^2} + \frac{z^2}{26^2} = 1$, for z=Range[-24,24,3], $\epsilon_{x,0} = 1.89$ nmrad, $\delta_{p,0} = 7.7e-4$
- Variables: 68
 - 2 Octupoles
 - 54 sextupole pairs
 - 12 skew sextupole pairs

CEPC DA Optimization Knobs

50 knobs in total

- IR sextupoles: (10)
- Arc Sextupole (32)
- Phase advance (8)

IR knobs

- Main Chromaticity Sextupoles
 (2)
- Neighbor weaker sextupole to correct finite length effect
 (2)
- A. Bogomyagkov, ArXiv:0909.4872
- Sextupole to correct higher order chromaticity in vertical direction (1)
 Y. Cai, PRAB.19.111006

Different strength between Upstream and Downstream of IP. 10 knobs in IR.

Arc sextupole

- 90/90 FODO
- Non-interleave sextupole scheme
- 4 SF + 4 SD sextupole configurations in one arc section
- 7 sub-period in in one arc section,
- 4 arc section in half ring Total knobs: 32

Contribution from phase advance

Some Try of Speed-up/Optimization Method

Brute-force dynamic aperture tracking is very time consuming

- More strategy of DE algorithm are randomly selected used
- The objective is first eased, for example only track 50 turns instead of 100 or 200 turns.
- The time consuming cost function is calculated only when the necessary constraints be satisfied. [arXiv: 1603.02459]
- First try to optimize with less variables, then more variables.
- Iteration with non-dominated solution

Optimization in one-step vs multiple steps (32 arc sextupole familiy)

cost in phase=0

Iteration with Pareto Front Solution

- Non-dominated solution achieved + Other initialized solutions are randomly generated
- No very clear further optimization
- We usually do the iteration if time permits

Optimize with different population size

Np=1200~1800 (20-30 times variable number) is good enough

Different Chromaticity Constraint

Bx=0.17m

Contribution of β_x^*

Contribution of β_x^* (2)

More sextupole configurations

Optimize with DAMPONLY model

Damp at each element: No diffusion coming from synchrotron radiation.

> fluc, phase=0 ► fluc, phase= $\pi/2$ =

fluc, phase=π ⊢

fluc, phase= $3\pi/2$

damponly, phase= $3*\pi/2$

Fluctuation Effect on the vertical dynamic aperture

Only serious DA loss in vertical direction.

On-Momentum DA with damping at each element and radiation fluctuation at each element.

Effect of Synchrotron Radiation in Quadrupoles

FODO Arc - Horizontal

- K. Oide, PRAB 19.111005
- Maximum momentum deviation

•
$$\Delta p = \frac{\alpha_z}{\pi \nu_s J_z} R_Q n^2 \epsilon_x \exp(-\frac{\alpha_z}{4\nu_s})$$

• $n \equiv \Delta x / \sigma_x$

•
$$R_Q = \frac{2\sqrt{2}}{\theta_c^2} \left(\frac{\sqrt{2}+1}{l_{\rm QF}} + \frac{\sqrt{2}-1}{l_{\rm QD}} \right)$$

• α_Z and J_Z , the synchrotron damping rate and longitudinal damping partition number. $l_{\rm QF,QD}$ the lengths of the quadrupoles.

IR QD0 – Vertical

• A. Bogomyagkov (BINP), FCC-ee, Z

Momentum deviation versus amplitude

- This could explain why the DA with (FLUC) is flat versus δ
- For example, if we want to achieve $20\sigma@\delta = 0$, the DA should be also about $20\sigma@\delta = 0.01$

Suppress noise of DA result with radiation fluctuation

Х

0

 δ_n

- DA is tracked with different initial phase: $\left(0, \frac{\pi}{2}, \pi, \frac{3\pi}{2}\right)$ for different energy
- 10 more times survey for on-momentum particle is tracked, and the minimum value is treated as the on-momentum DA
- Tracked DA result will be clipped to ensure DA at large momentum deviation will be less than that at small deviation
- Only two objective: min-DA of $(0, \pi)$ and min-DA of $\left(\frac{\pi}{2}, \frac{3\pi}{2}\right)$

On Momentum Dynamic Aperture (CEPC-Higgs)

Initial Phase: 0

100 samples are tracked. 200 turns are tracked.

Synchrotron motion, synchtron radiation in dipoles, quads and sextupoles, tapering, Maxwellian fringes, kinematical terms, crab waist are included.

Off momentum Dynamic Aperture W/O Optimization

100 samples. Radiation fluctuation is included. 0.3% emittance coupling. 200 turns are tracked.

Chromaticity

Crab Waist

$$K_2 = \frac{(-1)^m}{2\theta} \sqrt{\frac{\beta_{x,IP}}{\beta_{x,S}}} \frac{1}{\beta_{y,S}\beta_{y,IP}}$$

IP Downstream: $K2 = 0.69 \text{ m}^{-2}$

IP Upstream: $K2 = -0.69 \text{ m}^{-2}$

90% survival

Summary

- Mode is developed for CEPC DA optimization
- The normal procedure of optimization is established
- All effects (exception: beam-beam, error, solenoid) is included in the dynamic aperture survey
- DA achieved: $20\sigma_x * 20\sigma_y$, 1.7% momentum acceptance

backup

CEPC Parameters

	Higgs	W	Z
Number of IPs	2		
Energy (GeV)	120	80	45.5
Circumference (km)	100		
SR loss/turn (GeV)	1.68	0.33	0.035
Half crossing angle (mrad)	16.5		
Piwinski angle	2.75	4.39	10.8
N_e /bunch (10 ¹⁰)	12.9	3.6	1.6
Bunch number	286	5220	10900
Beam current (mA)	17.7	90.3	83.8
SR power /beam (MW)	30	30	2.9
Bending radius (km)	10.9		
Momentum compaction (10 ⁻⁵)	1.14		
$\beta_{IP} x/y (m)$	0.36/0.002		
Emittance x/y (nm)	1.21/0.0036	0.54/0.0018	0.17/0.0029
Transverse σ_{IP} (um)	20.9/0.086	13.9/0.060	7.91/0.076
$\xi_{\rm x}/\xi_{\rm y}/{ m IP}$	0.024/0.094	0.009/0.055	0.005/0.0165
RF Phase (degree)	128	134.4	138.6
$V_{RF}(\text{GV})$	2.14	0.465	0.053
f_{RF} (MHz) (harmonic)	650		
Nature bunch length σ_{z} (mm)	2.72	2.98	3.67
Bunch length σ_{z} (mm)	3.48	3.7	5.18
HOM power/cavity (kw)	0.46 (2cell)	0.32(2cell)	0.11(2cell)
Energy spread (%)	0.098	0.066	0.037
Energy acceptance requirement (%)	1.21		
Energy acceptance by RF (%)	2.06	1.48	0.75
Photon number due to beamstrahlung	0.25	0.11	0.08
Lifetime due to beamstrahlung (hour)	1.0		
<i>F</i> (hour glass)	0.93	0.96	0.986
L_{max} /IP (10^{34} cm ⁻² s ⁻¹)	2.0	4.1	1.0