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Relativistic Heavy Ion Collider (RHIC)
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• RHIC at Brookhaven National Laboratory collides heavy ions and polarized 
protons since 2000.  

• RHIC injectors includes AGS, Booster, Linac and ion sources from EBIS and 
Tandem Accelerator.  Beam top energy: proton 255GeV, ion 100GeV/nucleon.

• Two physics experiments: STAR (IP6) ,  PHENIX (IP8). 
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RHIC Upgrade: eRHIC

• L ~1033-1034 cm-2s-1

(exceeding HERA luminosity by 2 orders of magnitude)

• High electron and proton polarization (>70%); 
Realizing complex spin pattern for electrons and protons

• Large acceptance detector
with detector elements integrated in the accelerator IR for forward 
particle detection

• Minimizing the construction and operational cost of 
accelerator

Main Accelerator Design Goal for eRHIC:
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Pre-CDR Design Concept
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• Added electron storage ring 
(5-18 GeV)

• Up to 2.1 A electron current. 

• 10 MW maximum RF power 
(administrative limit)

• Flat proton beam formed by cooling

• On-energy polarized electron 
injector 
(RCS is a cost-effective injector option)

• Polarized electron source and 
400 MeV injector linac: 
10nC, 1 Hz

( slide: courtesy of V. Ptitsyn )
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Strong-strong and Weak-strong
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Staged Simulation Studies
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Simulation Codes

 Weak-strong Codes
• SimTrack: a compact C++ code for particle orbit and spin tracking

Y. Luo, NIM A (2015) 95-103; Y. Luo ; PRSTAB 15, 051004 (2012); Y. Luo e.a., 
PRSTAB 19, 021001 (2016) 

• EPIC: a two-pass weak-strong code to mimic strong-strong simulation with asymmetric 
bunch length.
Y. Hao, Beam-beam effect study in ERL based eRHIC, Ph.D Thesis, Indiana University, 
2008

• C. Montag, Beam-beam Simulations with Realistic Crab Crossing for the eRhic Ring-
Ring Electron Beam. IPAC-2016.

 Strong-strong Codes
• BBSS (K.Ohmi, KEK) K.Ohmi, Simulation of beam-beam effects in a circular e+e-

collider. Phys. Rev E 62, 5 (2000).

• BeamBeam3D (J.Qiang, LBNL) 
https://web.fnal.gov/collaboration/COMPASS/Documents/scidac08beambeam.pdf

• SimTrack ( Y. Luo , BNL) also can be used  for strong-strong BB simulation
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https://web.fnal.gov/collaboration/COMPASS/Documents/scidac08beambeam.pdf
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Unit Proton Electron
Circumference m 3833.845 3833.845

Energy GeV 275 10

Bunch population 1.11 3.05

Number of bunches 330 330

Emittance nm 16/6.1 24.4/3.5

Beta at IP m 0.94/0.042 0.62/0.073

Bunch length cm 7 1

Beam-beam parameter 0.014/0.005 0.092/0.083

Betatron tune 31.310/32.305 34.08/31.06

Synchrotron tune 0.002 0.025

Energy spread 0.00065 0.001

Crab cavity RF frequency MHz 336 336

Crossing angle mrad 22 

Luminosity 1033 cm-2s-1 2.9

Machine and Beam Parameters 
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Dynamic Beta Effects
Electron tune scanProton tune scan

12

Y. Luo



Tune Footprint /Tune Diffusion
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xx = 0.014,  xy = 0.005xx = 0.092,  xy = 0.083

Y. Luo

Electron ring proton ring



Weak-strong: tune scan
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L / L0,    L0 = 2.9 ×1033  cm-2s-1
Relative luminosity:

Electron tune scan, 50k turns Y. Luo
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Proton tune scan, 1M turns

Luminosity decay: DL / Lini,    DL = Lfin -Lini,    Lini - first 10k turns,    Lfin - last 10k turns

Y. Luo



Strong-strong: tune scan
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Electron tune scan: Horizontal beam centroid motion <x>
G.Bassi, A.He, W.Guo

with code BBSS
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G.Bassi, A.He, W.GuoElectron tune scan: luminosity
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Beam-beam Limit: weak – strong simulation

Y. LuoElectron intensity scan

Luminosity loss percentage in 1 hour 
(averaged from 1M turn tracking). 

Proton intensity scan

Final luminosity after 50k turns. 
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Beam-Beam Limit: strong-strong simulation

G.Bassi, A.He

Luminosity vs. proton bunch population

electrons:   Qx0 = 0.08,     Qy0 = 0.06

protons:     Qx0 = 0.310,   Qy0 = 0.305

nominal
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Define 

If there is no emittance blow-up, 𝜅 will remain constant. 

Beam-Beam Limit: 2-D bunch intensity scan

Y. Luo

with SimTrack



Outline

 Introduction to eRHIC Design

 BB Study Strategies for eRHIC

 Head-on Collision Study 

Crabbed Collision Study

 Additional Considerations

 Summary



Scheme of Local Crabbing
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• To compensate the geometric luminosity loss due to a horizontal crossing angle of 
22mrad, and to avoid the long-range beam-beam interaction, crab cavities are to be 
used to make sure the electron and proton bunches collide head-on at IP.

• Local crabbing scheme is to be adopted. Two sets of crab cavities are located on 
both sides of IP, with a π/2 horizontal betatron phase advances to IP.

The voltage of crab cavity:
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Crabbing with different frequencies

NP R&D PI meeting, 
10/20/2017

Weak-strong simulation (SimTrack) Strong-strong simulation (BeamBeam3D)

Y.Hao, Y. Luo
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Crab Crossing Resonance (I)
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By comparing with the ‘frozen’ electron
case, we believe there is physics reason
that cause the lumi-degradation observed 
in the strong-strong simulations.

NP R&D PI meeting, 
10/20/2017

Y.Hao
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Crab Crossing Resonance (II)

25NP R&D PI meeting, 
10/20/2017

Y.Hao
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3rd Harmonic Crab Cavities

Without 3rd C.C. With 3rd C.C.

Y.Hao, Y. Luo

• To compensate the sine shape of crab cavity voltage, it is possible to add a third 
order harmonics. The foundational crab cavity frequency can be 112MHz, the 3rd

harmonics will be 336MHz.
• Simulation results show that we can gain 5% more luminosity by adding 3rd

harmonic crab cavities to proton ring.  The optimum ratio of crabbing angles for 
the fundamental and 3rd harmonics crab cavities are 1.16 : (-0.16)



Dispersion at C.C.
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Y.Hao, Y. Luo

• The effects of dispersion Dx and D’x at crab cavities are studied with both 
weak-strong and strong-strong simulations. 

• D’x plays an important role to emittance growth and luminosity evolution. 
• Simulation results show that the tolerance for D’x should be less than 0.5. 

Strong-strong simulation
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Noises in Crab Cavity

LHC, white noise

LHC, from noise PSD,
Normalized to 3e-4.

From studies of LHC Hi-lumi , the PSD of the noise of LLRF control is very
important to achieve reasonable results. Need to understand the most driving
frequencies for EIC.

J. Qiang
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Summary

 Both weak-strong and strong-strong beam-beam simulation are
used to study the beam-beam effects in the future electron-ion
collider design of eRHIC.

 We sstudied the beam-beam interaction related beam and optics
parameters. The simulation results show that the present design
parameters are reasonable and the design luminosity is achievable.

 The present design tunes of both rings are in the good working
point area. The design bunch intensities and the beam-beam
parameters are well below the beam-beam limits.

More studies are going on to understand and determine any
possible beam-beam related beam emittance growth or beam
lifetime reduction.
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Two Collisions Per Turn
• Previous BB studies focused on 1 collision per turn for each bunch. 

• If we want to delivery collisions to two experiments and both beams 
have the  same filling pattern, each bunch will have 2 collisions per turn.

• If we keep bunch intensities and beta* as the design, the beam-beam 
parameters and beam-beam tune spread will be doubled.
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1 collision/turn
2 collisions/turn

Y. Luo



Simulation Results (I)
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• 2 collisions per turn:  at IP6 & IP8 ,  or at IP6 & IP12. 
• Both weak-strong and strong-strong BB Simulations were performed .
• In the strong-strong beam-beam simulation, we did a 2-d bunch intensity scan.

center motion <x> : blue-proton, red->electron

2 collisions/turn : IP6 & IP122 collisions/turn : IP6 & IP8



Simulation Results (II)
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• Define 

• Simulation results show that each bunch  can not collide twice per 
turn with present design beam and optics parameters.

2 collisions/turn : IP6 & IP122 collisions/turn : IP6 & IP8



Bunch Filling Scheme

• To delivery collisions to  two experiments simultaneously without reducing 
the bunch intensities, one solution is to adopt bunch shift scheme ( M. 
Blaskiewicz etc. ) to avoid 2 collisions per turn for any bunch.

 RF System: 

proton ring:   112MHz, 1440 buckets, bucket width 2.66m

electron ring: 560MHz, 7200 buckets, bucket width 0.53m

 Filling Patterns:

proton:      1 bunch / bucket, 1440 bunches

electron:   3*(240*5  + 3 +  239*5 + 2 ) = 7200 buckets, 1437 bunches

 PHENIX experiment moved south by 0.53m (1 electron bucket width)

35

Y. Luo
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With the bunch shift scheme

1) Each bunch only collides once per turn at IP6 or IP8 . 
2) There are  720 collisions at IP6 ( STAR) each turn,  717 collisions  at IP8 (PHENIX).
3) Integrated luminosity per experiment is half of that with only 1 experiment. 

• Assumption:               
1) Proton bunches go 
counter-clockwise, 
electron bunches 
clockwise.                   
2) Proton bunch 1 
and electron bunch 1 
collide at IP6. 



LR BB Effect
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• The common beam pipe at the experiment IRs  is +/-4.5m. 
• LR BB effect with 2 experiments has to be evaluated. 
• From the following table, the minimum separation with 2 experiments 

are 82𝜎𝑝 and 71𝜎𝑒 .

• Therefore, the LR BB effect is negligible for eRHIC design.

}

1 experiment 2 experiments

Number of LR BB 6 12

Nearest distance to IP  [ m ] 1.33 0.53

Horizontal separation 𝑑 [mm] 29.26 11.66

Local beam sizes (𝜎𝑝, 𝜎𝑒) [mm] (0.212, 0.291 ) (0.142, 0.165)

Separation in beam size (
𝑑

𝜎𝑝
,
𝑑

𝜎𝑒
) (138 , 101 ) (82 , 71)

Y. Luo



Radiation Damping Decrement
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• To reach the beam-beam parameter 0.1 for the electron ring, based on KEKB 
experience, it requires radiation damping decrement 1/4000, or the radiation 
damping time 4000 turns in transverse plane.

• To achieve the same radiation damping decrement at all beam energies, 
superbends are being considered for lattice design.

Schematic 
Superbend

Y. Luo



Simulation Results (I)
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• Here we study the effects of damping decrement to beam-beam interaction. 
• Strong-strong BB simulation was performed with different damping time 

from 4000 turns to 8000 turns. Electron energy is 10 GeV for this study.

Centroid motion <x>  [um] Luminosity   
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Electron 𝝈𝒙 :  BeamBeam3D
Electron 𝝈𝒙 : SimTrack

Simulation Results (II)
• We continue increasing the radiation damping time beyond 8000 turns.
• With a longer SR damping time,  it takes a longer time to reach equilibrium.
• The difference in equilibrium beam sizes is small if radiation time is less                           

than 16,000 turns.
• BB simulation shows that we may have damping time longer than 4000 turns. 



Transient BB Effect During Bunch  Replacement
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• Required electron bunch in the eRHIC storage ring up to 50nC, which 
exceeds the electron gun capability and also leads to instabilities in the 
rapid cycling synchrotron (RCS)  injector. 

• At physics store, to maintain acceptable electron polarization, bunch-by-
bunch replacement with a frequency of 1Hz.

• Design injection scheme:
 longitudinal phase space injection
 5 bunches of 10nC from RCS into one electron bunch of storage ring.

• The emittance growth during to BB parameter variation

( by M. Blaskiewicz)

C. Montag



Weak-strong Simulation Results
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• Weak-strong Beam-beam simulation was performed to evaluate the proton 
bunch emittance growth during the electron bunch replacement. 

• In simulation, proton bunch represented by macro-particles, electron 
bunches by rigid distribution. Electron bunches are injected  with 8𝜎𝑝.           

SR damping  is included. 

( The time span of 100 
bunch replacement is 
about 9 hours.  )


