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LHC Single Beam DA:
measurements vs simulations

Ewen H. Maclean

Studies in collaboration with R.Tomás, M.Giovannozzi, F.Schmidt, T.H.B.Persson &
R.Appleby, with many thanks to the LHC optics measurement and correction team

Many thanks to the LHC@home volunteers!
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Compensation & understanding of the nonlinear single-particle dynamics has
begun to emerge as an operational constraint in LHC Run 2
7th Evian Workshop: Nonlinear optics commissioning in the LHC

Single beam DA is expected to be a significant challenge for the
High-Luminosity LHC upgrade
Optics Measurement and Correction Challenges for the HL-LHC, CERN-ACC-2017-0088

→ Since 2011, a program of beam-based measurements
has studied NL-dynamics throughout the LHC cycle

DA is a key observable & figure-of-merit for LHC. Examined via 3 methods:

Long-term dynamic aperture (free oscillations):

Conventional measurement via single kicks

Measurement of long-term evolution of DA with heated beams

Short-term dynamic aperture:

Short term DA of driven oscillations
(seen next talk by F.Carlier)

https://indico.cern.ch/event/578001/contributions/2366314/
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Measurement via single kicks
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LHC ‘aperture kicker’ dipole ramps
up/down in ∼ 1/2 turn

Provide large amplitude displacement
of pilot bunch (∼ 1010p)

Kick action determined from TbT
BPM position data

→ (0.5 × Peak-to-Peak)2/β

Beam-loss following kick determines
distance between kick and DA(N)
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First detailed measurements performed in 2012 (LHCB2) to study DA
and amplitude detuning
E.H. Maclean, R. Tomás, F. Schmidt, T.H.B. Persson, Phys. Rev. ST Accel. Beams 17 081002 (2014)
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Operational config’ Beam-based corrections

Two configurations examined at injection:

Operation configuration: Landau octupoles (MO) for instability damping

→ Measurements in H & V planes

Corrected configuration: MO off + beam-based correction for b4 & b5 errors

→ Measurement in H, V, & diagonal

https://journals.aps.org/prab/pdf/10.1103/PhysRevSTAB.17.081002
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NL-dynamics at injection dominated by sources in LHC arcs
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NL-dynamics at injection dominated by sources in LHC arcs
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Operational config’, H-plane:

Observe large first and second order detuning-with-amplitude
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Compare measured detuning to best-knowledge model:
measured errors, measured alignments, octupole hysteresis
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Single biggest source of uncertainty in NL-model is linear coupling
(see IPAC’17 WEPIK092 and reserve slides)

http://accelconf.web.cern.ch/AccelConf/ipac2017/papers/wepik092.pdf
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Operational configuration, V-plane:

Main feature observed is Amplitude dependent closest tune approach

→ Action dependent analogue of ∆Qmin from |C−| (PRSTAB 17 081002, IPAC’15 TUPTY042)
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Major source at 450GeV is linear coupling + h1111 (cross-term detuning)

Mechanism has been proposed: R.Tomás,T.Persson,E.Maclean, PRSTAB, 19, 071003 (2016)

Predictions validated during 2016 LHC MD (to be published)

https://journals.aps.org/prab/pdf/10.1103/PhysRevSTAB.17.081002
http://accelconf.web.cern.ch/AccelConf/IPAC2015/papers/tupty042.pdf
https://journals.aps.org/prab/abstract/10.1103/PhysRevAccelBeams.19.071003
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We believe we have a good understanding of the dynamics in H & V planes

Linear coupling has a major influence on the observed behaviour

This also translates into a large influence on dynamic aperture
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Compare DA 30s after kick to best-knowledge model in SIXTRACK

 0

 2

 4

 6

 8

10

12

14

 0  2  4  6  8 10 12 14

σ y
 [σ

no
m

in
al

]

σx [σnominal]

Simulations: |C-|=2×10-3

|C-|=4×10-3

DA inferred from measured loss data

 0

20

40

60

80

100

0 2 4 6 8 10

S
ur

vi
vi

ng
 In

te
ns

ity
 3

0s
 a

fte
r 

ki
ck

 [%
]

Horizontal Kick [σnominal]

Predicted loss

Measured loss



ICFA workshop: DA for circular accelerators, Beijing, 2nd Nov’ 2017

Corrected configuration, with beam-based minimization of Q ′′ & Q ′′′
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Compare DA 30s after kick to model in SIXTRACK

→ residual NL-chroma matched in NL-model
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DA measured via single-kicks shows excellent agreement to model
predictions at injection (within 10%)

But single-kick method suffers from some limitations:

Time consuming to measure full parameter space in σx/σy angles

Only possible to measure at injection:

→ machine protection concerns
(large, rapid losses upon kick risk quench, or even damage!)

→ require fresh injection after every kick
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Measurement of DA evolution using transverse damper
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Aim not only to measure DA at given
time, but also as function of turns

Apply scaling law to measured/
simulated DA:

D(N) = D∞ + b
(log N)κ

M.Giovannozzi, W.Scandale, E.Todesco, Phys. Rev. E 57 3432

M.Giovannozzi, Phys. Rev. ST Accel. Beams 15, 024001   0
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Allows extrapolation of DA to operational
timescales

→ 2.5 hours ≡ 108
turns

→ typical LHC simulation is 105 - 106
turns

Provides more robust test for comparison
of measurement to simulation

https://journals.aps.org/pre/abstract/10.1103/PhysRevE.57.3432
https://journals.aps.org/prab/abstract/10.1103/PhysRevSTAB.15.024001
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Basic model for comparison very similar to study with kicked beams on Beam 2:

Measured normal/skew errors from 2-pole to 15-pole → 60 instances (‘seeds’) to account for measurement uncertainties

Measured alignment errors

Applied settings of octupole/decapole/skew-sextupole correctors

Match Qx,y & Q′

x,y with quadrupole/sextupole correctors

Some beam-based input: octupole hysteresis, decapole feed-down

Ensure limits on model/measurement comparison come from machine
knowledge rather than simulation parameters
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http://lhcathome.web.cern.ch/
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Closed orbit / beta-beat checked to have small impact on predicted DA
evolution (see reserve slides)

Linear coupling can have a very large impact on LHC DA (IPAC’17 WEPIK092)

Typical operational range of |C−| has larger effect than uncertainty
on magnetic measurements

Accurate coupling model is a priority for comparison to measurements
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Match amplitude/phase of linear couling resonance driving terms to earlier
studies with AC-dipole, & injection oscillations during DA measurements
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Comparison of modelled and measured DA
In preparation: E.H.Maclean, M.Giovannozzi & R.Appleby

‘Novel method to measure the extent of the stable phase space region of proton synchrotrons using Nekoroshev-like

scaling laws’
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Comparison of modelled and measured DA at 106 turns,
for full range of octupole corrector strength
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Extrapolation of measured & simulated DA via scaling law
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Correction of NL-errors in low-β∗ IRs is a major motivation

for DA studies in LHC

Significant impact due to large βx,y in triplets and separation dipoles, e.g. IP1@0.6m
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High-Luminosity (HL)-LHC upgrade planned for 2025

→ increase β∗ reach to ∼ 0.15 cm
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NL-errors in low-β∗ IRs have potential to affect many key properties

Lifetime reduction → single-beam DA is a serious concern for HL-LHC upgrade

Normal octupole errors distort Q-footprint during β∗-squeeze

→ affects Landau damping of instabilities

MO footprint, MO+IR-b4 footprint

Observe/predict large feed-down to linear coupling from X’ing & sep bumps

→ can distort footprint causing loss of Landau damping

Feed-down in IR also generates beta-beating

→ detrimental to ATLAS/CMS luminosity imbalance

→ potential > 20% beta-beating due to sextupole feed-down in HL-LHC

→ Not just problem of machine optimization: machine protection!



ICFA workshop: DA for circular accelerators, Beijing, 2nd Nov’ 2017

Dedicated nonlinear correctors for sextupole→dodecapole, located
left/right of all experimental IRs

LHC: b3, a3, b4, a4, b6

HL-LHC: b3, a3, b4, a4, b5, aa5, b6, a6

First commissioning of NL-corrections in LHC experimental IRs

implemented in 2017
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Normal octupole corrections determined to locally compensate
amplitude-detuning generated in IR1 & IR5 at β∗ = 0.4m
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Normal octupole correction improved lifetime at β∗ = 0.14 m

(machine development test to probe β∗ reach of collider)
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Normal/skew sextupole in IR5 & IR1 corrected by minimizing
linear shift of tune with crossing angle
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Very high-order errors are hard to measure:

→ direct DA compensation may be best method

→ First detailed measuremens at 6.5 TeV several weeks ago (β∗ = 0.4m)

Biggest challenge was finding the DA!

No losses observed for operational powering of Landau octupoles

Only saw significant losses with dodecapole correctors in experimental IRs
powered to maximum strength

DA> 10 σnom for operational
configuration of octupoles

Max dodecapole powering
reduced DA to ∼ 8 σnom

dodecapole effects scale
rapidly with (β∗)−3
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In 2017 LHC operated with local corrections for normal/skew sextupoles &
normal/skew octupoles in low-β∗ IRs

Clear practical benefits to operation:
→ instrumentation & understanding/damping of instabilities

Does optimization of indirect observables (e.g. feed-down) improve DA?

How important is DA in relation to other parameters influenced
by IR-nonlinearities?
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Conclusions

Modelled & simulated DA at LHC injection agree within 10 %
via 2 techniques

Technique based on slow blow-up of bunch with transverse
damper validated at injection

First beam-based commissioning for NL-errors at 6.5 TeV

performed in 2017 with promising results

Begun to apply DA measurement at 6.5 TeV as tool to study
high-order NL-errors in experimental insertions
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Reserve Slides
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Uncertainty in predicted DA due to typical operational range of |C−|, compared to
uncertainty in magnetic measurements
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Beam-based correction of Q ′′/Q ′′′ implemented operationally in 2015

Significantly improved beam-losses and blow-up upon AC-dipole excitation
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Closed orbit and beta-beat have small
impact on predicted DA

→ replicate operational behaviour
to create effective model

→ avoids large number of virtual correctors,
allowing simulations on LHC@home
volunteer computing service
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Measurements also performed with
varying decapole strength in LHC arcs
(450 GeV)
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DA from losses

Model δ = 0.0×RMS[δpilot]

Model δ = 0.5×RMS[δpilot]

Model δ = 1.0×RMS[δpilot]

Model δ = 1.5×RMS[δpilot]

Model δ = 2.0×RMS[δpilot]

Model δ = 3.0×RMS[δpilot]

DA variation with δp/p was very small
for octupole configurations at 450GeV

Strong decapole sources caused large
momentum dependent DA in model
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Expect IR-tunespread to scale with ∼ (β∗)−2

IR-tunespread appears consistent over extended period

  0

 50

100

150

1 2 3

∂Q
x 

/ ∂
 ε

x 
 [1

03 m
-1

]

β*

0.2

2012

2016

2017

Measured detuning

(40cm Meas) × (β*)-2

Model detuning with inverse correction

Inverse correction applied to 30cm measurement



ICFA workshop: DA for circular accelerators, Beijing, 2nd Nov’ 2017

Skew octupole compensation at β∗ = 0.4m

→observe large feed-down to linear coupling
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Normal sextupole FD

(linear)
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Big skew octupole FD!
(quadratic)

Difficult correction → a4 corrector L1 dead

Before correction: ∆|C−|0→150µrad = 5 × 10−3

After correction: ∆|C−|0→150µrad = 1.5 × 10−3

Important for instabilities during crossing-angle levelling!


