

Optimization of Nonlinear Dynamics for ALS-U Lattices

Changchun Sun Advance Light Source (ALS) Lawrence Berkeley National Laboratory

ICFA Beam Dynamics Panel Mini Workshop, Nov 1-3, IHEP, Beijing, China

Office of

Science

Outline

- Overview of ALS upgrade (ALS-U)
- ALS-U lattice design requirements
- Nonlinear dynamics optimization
- Conclusions

MBA Based Diffraction Limited Light Sources Become Reality

MAX-IV (Sweden), 3 GeV, 250 pm

APS-U (US), 6 GeV, 65 pm

SLS-2 (Switzerland), 2.4 GeV, 125 pm

Sirius (Brazil), 3 GeV, 280 pm

Spring-8-U (Japan), 6 GeV, 100 pm

Soleil (France), 2.75 GeV, 500 pm

HEPS (China), 6 GeV, 60 pm

ESRF-II (France), 6 GeV, 150 pm

ALS-U (US), 2 GeV, 70 pm

Scope of ALS-U

BERKELEY

- **1. Replacement** of the existing triple-bend achromat storage ring with a new, high-performance storage ring based on a multi-bend achromat.
- **2.** Addition of a low-emittance, full-energy accumulator ring in the existing storage-ring tunnel to enable on-axis, swap-out injection using fast magnets.
- **3. Upgrade** of the optics on existing beamlines and realignment or relocation of beamlines where necessary.
- **4.** Addition of three new undulator beamlines that are optimized for novel science made possible by the beam's high coherent flux.

ALS and ALS-U in Numbers

Optimizing for soft x-rays

Coherent Flux

Challenges of ALS-U lattice design

ALS today : triple-bend achromat

ALS-U: multi-bend achromat

The quantities are linearly scaled with ~Nd:

	Beta At center	Maximum Dispersion	Natural Chromaticity	Maximum Qaud Grad.	Chromatic sext Grad.	Dynamic Aperture	Lifetime			
ALS	~22 m	~15 cm	~30	~20 T/m	550 T/m^2	~15 mm	~7 hour			
ALS-U	~2 m	~2 cm	~66	~105 T/m	5000T/m^2	~1 mm	~1 hour			
$Nd^{\bigstar} \rightarrow Small$ emittance Small beta and dispersion \rightarrow Strong Quad gradient \rightarrow Strong chromaticity										
📥 Strong sextupole 📥 Strong nonlinear effect 📥 Difficult to optimize										

9BA Lattice Layout for One of 12 Sectors

9BA Lattice Layout for One of 12 Sectors

• Engineering constraints

- ✓ Fit in the current ALS footprint, 196.5 m circumference
- ✓ Distance between magnet is 0.075 m
- Quad gradient <105 T/m ,
- ✓ Inner bend gradient (geometric quad with offset) 40 T/m <k1<47 T/m
- ✓ Outer bend gradient (geometric dipole) k1<20 T/m
- ✓ Chromatic sextupole gradient k2 <7000 T/m^2
- ✓ Harmonic sextupole gradient k2 <4000 T/m²

Physics Constraints

- Maximum beta function < 30m</p>
- Equal fractional tunes for coupling resonance

Dispersion in the straight <1mm

ALS-U Lattice Design and Optimization

• Design goals

- ✓ Low natural emittance (~100pm), low beta-functions in straight sections
- ✔ Sufficient Dynamic Aperture (DA) to accept 2nm injected beam
- ✓ Large Momentum Aperture (MA) for sufficiently long lifetime

ALS-U Lattice Design and Optimization

• Design goals

- ✓ Low natural emittance (~100pm), low beta-functions in straight sections
- ✔ Sufficient Dynamic Aperture (DA) to accept 2nm injected beam
- ✓ Large Momentum Aperture (MA) for sufficiently long lifetime

• Optimization problem

- \checkmark Multi-variables problem with the number of knobs larger than 10
- ✓ Multi-objectives probem with often conflicting requirements
- \checkmark Highly constrained by space, engineer and physics requirements

ALS-U Lattice Design and Optimization

• Design goals

- ✓ Low natural emittance (~100pm), low beta-functions in straight sections
- ✔ Sufficient Dynamic Aperture (DA) to accept 2nm injected beam
- ✓ Large Momentum Aperture (MA) for sufficiently long lifetime

• Optimization problem

- ✓ Multi-variables problem with the number of knobs larger than 10
- Multi-objectives probem with often conflicting requirements
- \checkmark Highly constrained by space, engineer and physics requirements

• Approaches:

✓ Earlier attempts to first design linear lattice and then optimize the nonlinear dynamics by targeting non-linear tuneshifts (chromatic, geometric) and resonant terms were not very successful

✓ Simultaneous optimization of linear and nonlinear properties of the lattice is necessary

✓ Multi-Objective Genetic Algorithm (MOGA) is extensively used to optimize ALS-U lattice

Optimization of Nonlinear Dynamics

Analytical Approach

- Calculate resonance driving term (RDT), tune shift with amplitude and energy
- Miniziation of these calculated quantities
- Fast approach and supports a larger number of knob tuning
- Weights need to be assigned to individual quantities based on experience
- ✓ Results might not be optimal
- Must check and iterate with direct tracking
- Direct Tracking Approach
 - Determine the quantities such as dynamic aperture, momentum aperture, lifetime and diffusion rate by tracking
 - Optimized these quantities using optimization algorithms
 - Tuning linear lattice as well as sextupoles and octupoles
 - A slow approach, need parallel computing for a large number of knob tuning
 - A global optimal with trade-off between multi-objectives could be found using Multi-Objective Genetic algorithm (MOGA)

Correlation of Nonlinear Quantities Determined by Both Analytical and Tracking Methods

- Large DA (MA) requires small RDTs (Tuneshift with energy), however small RDTs (Tuneshift with energy) do not always imply good DA (MA)
- Therefore, DA(MA) determined by tracking should be used a primary objectives to optimize nonlinear dynamics in order to find global optimal
- However, RDTs (Tuneshift with energy) could be used as constraints or secondary objectives in the optimizer to improve the speed of convergence

DA Area vs Total Diffusion Rate

- Dynamics aperture area [M. Borland, Elegant V 23.1]
 - → 21 lines, and 11 steps for each line
 - 4 interval splitting to refine the boundary
 - 4D trackding for 1000 turns
 - Boundary is clipped to avoid the island
- Total diffusion rate [C. Steier and W. Wan, IPAC 2010]
 - → Frequency Map Analysis
 - → 21 by 21 non-uniform grid search
 - → 4D tracking for 512 turns for each grid.
 - Diffusion rate is calculated according to

$$d = \log\left(\frac{\sqrt{(v_{x,1} - v_{x,2})^2 + (v_{y,1} - v_{y,2})^2}}{N}\right)$$

- Diffusion rate is assigned to -3 for lost particle
- Boundary is clipped to avoid the island
- Summation of the diffusion rate over all the clipped
 grids.

Dynamic Aperture (DA)

Our previous study shows that lattice optimized with tot. diff. rate as an objective has better nonlinear performance

Momentum Aperture (MA)

- It is timing consuming to evaluate MA for the whole ring in the optimizer
- Instead, we use the average of MAs at several locations as an objective
 - 6D tracking with both radiation and cavity on
 - ✓ Tracking particle for 1000 turns (2 turns of synchrotron oscillation)

Tracy, MOGA and Parallelization

• Tracy

- Tracy is a single particle tracking library developed at ALS and has both matrix or symplectic tracking methods.
- It has evolved into different variants and used in many laboratories
- Most recent developments to improve its computing speed, flexibility, and its compatibility with parallel computing techniques (openMP).

Tracy, MOGA and Parallelization

• Tracy

- Tracy is a single particle tracking library developed at ALS and has both matrix or symplectic tracking methods.
- It has evolved into different variants and used in many laboratories
- Most recent developments to improve its computing speed, flexibility, and its compatibility with parallel computing techniques (openMP).

• MOGA

- Multi-Objective Genetic Algorithm (MOGA) NSGA-II (Nondominated Sorting Genetic Algorithm II) is a widely used method to design and optimize accelerator components.
- MOGA has been integrated to Tracy to optimize ALS and ALS-U lattices using parallel computing technique.
 MOGA optimization example for ALS brightness upgrade with two objectives

Tracy, MOGA and Parallelization

• Tracy

- Tracy is a single particle tracking library developed at ALS and has both matrix or symplectic tracking methods.
- It has evolved into different variants and used in many laboratories
- Most recent developments to improve its computing speed, flexibility, and its compatibility with parallel computing techniques (openMP).

• MOGA

- Multi-Objective Genetic Algorithm (MOGA) NSGA-II (Nondominated Sorting Genetic Algorithm II) is a widely used method to design and optimize accelerator components.
- MOGA has been integrated to Tracy to optimize ALS and ALS-U lattices using parallel computing technique.
 MOGA optimization example for ALS brightness upgrade with two objectives

Parallelization

- Hybrid Open MPI/openMP is implemented in MOGA
- MPI is used to parallelize the generation evaluations
- OpenMP is used to parallelize DA and MA evaluations

Optimization Strategy with MOGA

- Evaluations of the nonlinear objectives momentum and dynamic apertures are time consuming
- We were unable to find a good and fully converged solutions in a reasonable time when we optimized the linear and nonlinear properties starting from random initial population lattices in the first attempt
- Starting with good initial solutions will help to improve the convergence
- We carry out the MOGA optimization in two stages.
 - First, a fast linear optimization is carried out to explore the input parameter space
 - Then, linear and nonlinear properties are optimized simultaneously with the parameters input from linear optimization
- The linear and nonlinear optimizations are carried out in several steps.
 For each step, we modified the search rang of the parameters and genetic optimization parameters

- A fast optimization, take several hours and could find true global optimal
- Two objectives: natural emittance is minimized and beta functions at the center of straight are minimized to 1 meter
- Initial populations are uniformly and randomly sampled in the parameter space
- The boundary conditions on beta function (<3m) and emittance (<150 pm) are also applied to concentrate the search and speed up the optimization
- No lattice errors are included

BER

• The parameter space at 100th generation is analyzed and used for linear and nonlinear optimization in the next step

Linear and Nonlinear Optimizations

- A slow optimization process, could take several days or weeks
- 3 objectives: emittance, total diffusion rate and momentum aperture
- 11 knobs: 9 quad gradients and 2 harmonic sextupoles. Chromaticity is fitted to 1
- Relative skew quad error and quad gradient error are included
- Several optimization steps are carried out. For each step, the search rang of the parameters and the genetic parameters are modified to have spread search and fast convergent speed

Final Pareto Front of Linear and Nonlinear Optimization

- Optimization is terminated when a converged solution front is observed
- Several solutions picked from the Pareto front are analyzed
- The solution named v18 has better overall performances

Parameter List of 9BA v18 Lattice

PARAMETER LIST OF RING (Dir_3934679, sol 127)

Energy [GeV] = 2.00000 Circumf. [m] = 196.50000Rev. Time [nsec] = 655.45345Rev. Freg.[MHz] = 1.52566 Betatron Tune H = 41.38011V = 20.38958Mom. Compaction = 2.67674E-04Chromaticity H = -64.90647V = -67.62903Synch.Integral 1 = 0.052602 = 0.807533 = 0.107044 = -0.698835 = 0.00003 Damp.Partition H = 1.86539V = 1.00000 F = 1.13461 Rad. Loss [KeV] = 181.91 Energy Spread = 8.28121E-04 Emittance 1.09024E-10 = 7.726328 Rad. Damping H =V = 14.412610E = 12.702691

9BA v18 lattice

V18	QFI	QF2	QF3	QF4	QF5	QDT	QD2	B31K	B32K	B33K	SHF*	SHD	5F	SD
Grad. K (/brho)	12.542	10.113	15.309	15.870	15.606	-10.182	14.021	-2.8937	-6.9999	-6.9999	100.104	-1508.80	801.06	-658.494
Length (m)	01.9	0.19	0.305	0.305	0.305	0.180	0.09	0.34	0.5	0.5	0.025	0.025	0.28	0.28
Bend (deg)								3.3333	3.3333	3.3333				
BERKE						Gradie K = B	ents K define /Brho, and f	ed here are or sextupole	normalized e K = B''/Brh	gradient by o.	magnetic rig	gidity Brho at	2GeV. For	qual.

Frequency Map

Momentum Aperture and Lifetime

Conclusions

- ALS-U received CD-0. We are actively working on the lattice design and optimization.
- MOGA has been extensively used to optimize ALS-U lattices, including 8BA, 9BA, super-bend and reverse bending lattices
- 9BA lattice is chosen as the current baseline design, which has dynamic aperture about 1 mm and lifetime about 1 hour
- Continue to explore lattice choices and improve the DA and MA

